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Certain mathematical objects appear in a lot of scientific disciplines, like physics, 
signal processing and, naturally, mathematics. In a general setting they can be de-
scribed as frame multipliers, consisting of analysis, multiplication by a fixed sequence 
(called the symbol), and synthesis. In this paper we show a surprising result about 
the inverse of such operators, if any, as well as new results about a core concept of 
frame theory, dual frames. We show that for semi-normalized symbols, the inverse of 
any invertible frame multiplier can always be represented as a frame multiplier with 
the reciprocal symbol and dual frames of the given ones. Furthermore, one of those 
dual frames is uniquely determined and the other one can be arbitrarily chosen. We 
investigate sufficient conditions for the special case, when both dual frames can be 
chosen to be the canonical duals. In connection to the above, we show that the set 
of dual frames determines a frame uniquely. Furthermore, for a given frame, the 
union of all coefficients of its dual frames is dense in �2. We also introduce a class 
of frames (called pseudo-coherent frames), which includes Gabor frames and coher-
ent frames, and investigate invertible pseudo-coherent frame multipliers, allowing a 
classification for frame-type operators for these frames. Finally, we give a numerical 
example for the invertibility of multipliers in the Gabor case.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article 
under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction, notation, and motivation

In many scientific disciplines, certain objects play an important role. Those systems are described by 
an analysis procedure followed by a multiplication, followed by a synthesis. Those operators are of utmost 
importance in

• mathematics, where they are used for the diagonalization of operators [28];
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• physics, where they are a link between classical and quantum mechanics, so called quantization opera-
tors [1];

• signal processing, where they are a particular way to implement time-variant filters [25];
• acoustics, where those time-frequency filters are used in several fields, for example in computational 

auditory scene analysis [34].

In this paper we show a surprising result about the shape of the inverse of such operators, if any. This 
also leads us to new results concerning dual frames, a concept at the core of frame theory.

To be able to describe those operators in a general setting, as an extension of Gabor multipliers [17], 
multipliers for general Bessel sequences were introduced by one of the authors [4]. Further properties of 
multipliers for general sequences and in particular, for Bessel sequences, frames, Riesz bases, Bessel fusion 
sequences, were investigated in [2,30–33]. Multipliers are operators defined by

Mm,Φ,Ψh =
∞∑

n=1
mn〈h, ψn〉φn, (1)

for given sequences Φ = (φn) and Ψ = (ψn) with elements from a Hilbert space H, and a given complex scalar 
sequence m = (mn) called the symbol. Such operators are also investigated for continuous transforms – in a 
general [5] (continuous frame multipliers), wavelet [27] (Calderón–Toeplitz operators) and short-time Fourier 
setting [12] (localization operators). Here we stick to the discrete version. Multipliers are interesting not only 
from a theoretical point of view, but also for applications. They are applied for example in psychoacoustical 
modeling [7] and denoising [24]. Multipliers are a particular way to implement time-variant filters [25]. 
Therefore, for some applications it is important to find the inverse of a multiplier if it exists. The paper [31]
is devoted to invertibility of multipliers, necessary conditions for invertibility, sufficient conditions, and 
representation for the inverse via Neumann series.

In the present paper our attention is on how to express the inverse of an invertible frame multiplier 
as a multiplier with the reciprocal symbol and dual frames of the given ones. We show a result for all 
frames, namely, the inverse of any invertible frame multiplier with a semi-normalized symbol can always be 
represented as a multiplier with the reciprocal symbol and dual frames of the given ones, where one of these 
dual frames is uniquely determined and the other one can be arbitrarily chosen:

Theorem 1.1. Let Φ and Ψ be frames for H, and let the symbol m satisfy 0 < infn|mn| ≤ supn|mn| < ∞. 
Assume that Mm,Φ,Ψ is invertible. Then

• there exists a unique dual frame Φ† of Φ, so that for any dual frame Ψd of Ψ we have

M−1
m,Φ,Ψ = M1/m,Ψd,Φ† ; (2)

• there exists a unique dual frame Ψ† of Ψ , so that for any dual frame Φd of Φ we have

M−1
m,Φ,Ψ = M1/m,Ψ†,Φd . (3)

The investigation of this topic led us to surprising new results about dual frames. We show that a frame is 
uniquely determined by the set of its dual frames. Furthermore, for a given frame, the union of all coefficients 
of its dual frames is dense in �2:

Theorem 1.2. Let Φ be a frame for H. Then the following statements hold.

(i) The closure of the union of all sets R(UΦd), where Φd runs through all dual frames of Φ, is �2.
(ii) Let Ψ be a frame for H. If every dual frame Φd of Φ is a dual frame of Ψ , then Ψ = Φ.
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Fig. 1. An illustrative example to visualize a multiplier. (Top left) The time-frequency representation of the music signal f . (Top 
right) The symbol m, found by a (manual) estimation of the time-frequency region of the singer’s voice. (Bottom) Time-frequency 
representation of M

m,Ψ̃,Ψ
f .

In Fig. 1 we show a visualization of a multiplier Mm,Φ,Ψ in the time-frequency plane, which will again 
become interesting in the last section of the paper. The visualization is done using algorithms in the LTFAT 
toolbox [29]. We consider a music signal f and the action of a multiplier Mm,Φ,Ψ on f . For f we use a 
2 seconds long excerpt of the “Jump” from Van Halen. For a time-frequency representation of the musical 
signal f (top left) we use a ‘painless’ Gabor frame Ψ (an 80 ms Hanning window with 12.5% overlap). 
By a manual estimation, we determine the symbol m that should describe the time-frequency region of 
the singer’s voice. This region is then multiplied by 0.01, the rest by 1 (top right). Finally, we show a 
time-frequency representation of the modified signal (bottom).

For implementations and scripts producing Figs. 1 and 2, see http://www.kfs.oeaw.ac.at/Representation
InverseMultiplier.

1.1. Motivation

In [4] it is proved that, if m is semi-normalized, then a Riesz multiplier Mm,Φ,Ψ is automatically invertible 
and

M−1
m,Φ,Ψ = M1/m,Ψ̃,Φ̃, (4)

where Φ̃ and Ψ̃ denote the canonical duals of Φ and Ψ , respectively.
The result on Riesz multipliers has opened the following questions:

[Q1] Are there other invertible frame multipliers Mm,Φ,Ψ whose inverses can be represented using the inverted 
symbol 1/m and appropriate dual frames of Φ and Ψ?

http://www.kfs.oeaw.ac.at/RepresentationInverseMultiplier
http://www.kfs.oeaw.ac.at/RepresentationInverseMultiplier
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[Q2] Are there other invertible frame multipliers Mm,Φ,Ψ whose inverses can be written as M1/m,Ψ̃,Φ̃ using 
the canonical duals?

The paper is devoted to these two questions. First note that every bounded (resp. bounded surjective) 
operator can be written as a Bessel (resp. frame) multiplier. Thus, the inverse of every invertible multiplier 
can be written as a frame multiplier. The aim of the present paper is to represent the inverse of an invertible 
frame multiplier as described in [Q1].

We give an affirmative answer to Question [Q1]. We show in Theorem 1.1 that the inverse of every invert-
ible frame multiplier with semi-normalized symbol can be represented as a multiplier with the reciprocal 
symbol and dual frames of the given ones. One of the dual frames is uniquely determined, while the other 
one can be arbitrarily chosen.

We also give an affirmative answer to Question [Q2]. We determine frame multipliers Mm,Φ,Ψ (not nec-
essarily being Riesz multipliers) which are invertible and their inverses can be written as M1/m,Ψ̃,Φ̃.

In Section 5, we introduce a class of frames (called pseudo-coherent frames), which includes Gabor 
frames and coherent frames. Classification of invertible pseudo-coherent frame-type operators is given and 
representations of the inverses using pseudo-coherent frames are determined.

The last section contains a numerical example with an invertible Gabor frame multiplier.

1.2. Notation and definitions

Throughout the paper, H denotes a separable Hilbert space, Φ = (φn)∞n=1 and Ψ = (ψn)∞n=1 are sequences 
with elements from H. The sequence (en)∞n=1 denotes an orthonormal basis of H and (δn)∞n=1 denotes the 
canonical basis of �2. When the index set is omitted, N should be understood as the index set. The letter m
is used to denote a complex valued scalar sequence (mn). Furthermore, m = (mn) and 1/m = (1/mn). 
The sequence m is called semi-normalized if 0 < infn|mn| ≤ supn|mn| < ∞. For m ∈ �∞, we will use the 
operator Mm : �2 → �2 given by Mm(cn) = (mncn), which is bounded with ‖Mm‖ = ‖m‖�∞ . An operator 
M : H → H is called invertible if it is a bounded bijection from H onto H. The identity operator on H is 
denoted by IdH.

Recall that Φ is called a frame for H with bounds AΦ, BΦ if 0 < AΦ ≤ BΦ < ∞ and AΦ‖h‖2 ≤∑∞
n=1|〈h, φn〉|2 ≤ BΦ‖h‖2 for every h ∈ H. For a given frame Φ for H, the analysis operator is denoted 

by UΦ, the synthesis operator by TΦ, the frame operator by SΦ, a dual frame of Φ by Φd = (φd
n), and 

the canonical dual by Φ̃ = (φ̃n). For the definition of all these frame-related concepts, as well as for the 
definition of a Bessel sequence and a Riesz basis, we refer to [10]. Recall that two frames Φ and Ψ for H are 
called equivalent if there exists an invertible operator G : H → H so that ψn = Gφn for all n ∈ N. When Φ
is a frame for H, then a dual frame Φd of Φ is equivalent to Φ if and only if Φd = Φ̃ [23, Section 1.2].

For given m, Φ, and Ψ , the operator Mm,Φ,Ψ given by Eq. (1) is called a multiplier. The operator Mm,Φ,Ψ

is called unconditionally convergent if the series in Eq. (1) converges unconditionally for every h ∈ H. When 
Φ and Ψ are Bessel sequences, frames, Riesz bases for H, then Mm,Φ,Ψ will be called a Bessel multiplier, 
frame multiplier, Riesz multiplier, respectively. When m ∈ �∞, then a Bessel multiplier is a well defined 
operator from H into H [4].

Note that frame multipliers with a constant symbol are the so-called frame-type operators (see, e.g., [16,
14,35]) or mixed frame operators (see, e.g., [11]), as the frame multiplier M(1),Φ,Ψ corresponds to the frame-
type operator denoted as SΨ,Φ and for c 	= 0, M(c),Φ,Ψ = cSΨ,Φ = SΨ,cΦ.

2. The set of dual frames

In order to prove Theorem 1.1 and Proposition 3.1, we need Theorem 1.2, stated on page 982. This is a 
result which is of independent interest for frame theory, showing new properties of the set of dual frames.
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Proof of Theorem 1.2. (i) Let the sequence c = (cn) ∈ �2 fulfill c ⊥ R(UΦd) for every dual frame Φd of Φ. 
Then

TΦdc = 0, ∀dual frame Φd of Φ. (5)

The dual frames of Φ are precisely the sequences(
φ̃n + hn −

∞∑
j=1

〈φ̃n, φj〉hj

)∞

n=1

,

where (hn)∞n=1 is a Bessel sequence in H (see, e.g., [10, Theorem 5.6.5]). Therefore,

∞∑
n=1

cn

(
φ̃n + hn −

∞∑
j=1

〈φ̃n, φj〉hj

)
= 0

for every Bessel sequence {hn}∞n=1 in H. By Eq. (5) we have TΦ̃c = 0, which implies that

∞∑
n=1

cn

(
hn −

∞∑
j=1

〈φ̃n, φj〉hj

)
= 0 (6)

for every Bessel sequence {hn}∞n=1 in H. Using Eq. (6) with the Bessel sequence (hn)∞n=1 = (e1, 0, 0, 0, . . .), 
we obtain

c1e1 −
∞∑

n=1
cn〈φ̃n, φ1〉e1 = 0.

Since 
∑∞

n=1 cnφ̃n = 0, it now follows that c1 = 0. In a similar way, using Eq. (6) with the Bessel sequence 
(hn)∞n=1 = (0, . . . , 0, ej , 0, 0, 0, . . .), where ej stands at the j-th position, we obtain cj = 0 for every j ≥ 2. 
Therefore, c = (0), which completes the proof.

(ii) Assume that all dual frames Φd of Φ are dual frames of Ψ . Then TΦUΦd = IdH = TΨUΦd , which by (i) 
implies that TΦ = TΨ and hence, Φ = Ψ . �

By the above result, different frames have different sets of dual frames; if two frames Φ and Ψ for H have 
the same sets of dual frames, then Φ = Ψ . In particular, two different frames cannot have sets of dual frames 
which are included into one another.

3. Inversion of multipliers by inverted symbol [Q1] and dual frames

Here we give an affirmative answer to Question [Q1]. The result about the inverses of invertible frame 
multipliers with semi-normalized symbols is stated in Theorem 1.1. In addition, we show the following:

Proposition 3.1. For the assumptions in Theorem 1.1, we have the additional properties:

• If F = (fn) is a Bessel sequence in H which fulfills M−1
m,Φ,Ψ = M1/m,Ψ†,F (resp. M−1

m,Φ,Ψ = M1/m,F,Φ†), 
then F must be a dual frame of Φ (resp. Ψ).

• Ψ† is the only Bessel sequence in H which satisfies M−1
m,Φ,Ψ = M1/m,Ψ†,Φd for all dual frames Φd of Φ.

• Φ† is the only Bessel sequence in H which satisfies M−1
m,Φ,Ψ = M1/m,Ψd,Φ† for all dual frames Ψd of Ψ .
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Proof of Theorem 1.1 and Proposition 3.1. Denote M := Mm,Φ,Ψ . First observe that the sequence 
(M−1(mnφn)) is a dual frame of Ψ . Denote it by Ψ†. Therefore, M−1TΦδn = TΨ†M1/mδn, n ∈ N. Now the 
boundedness of the operators implies that M−1TΦ = TΨ†M1/m on �2. Using any dual frame Φd of Φ we get 
M−1 = TΨ†M1/mUΦd = M1/m,Ψ†,Φd on H.

In a similar way as above, it follows that the sequence ((M−1)∗(mnψn)) is a dual frame of Φ (denoted 
by Φ†) and hence, (

M−1)∗TΨ = TΦ†M1/m on �2. (7)

Therefore, M−1 = TΨdM1/mUΦ† = M1/m,Ψd,Φ† .
Now assume that F = (fn) is a Bessel sequence in H which satisfies M−1

m,Φ,Ψ = M1/m,F,Φ† . By Eq. (7), it 
follows that TΨUF = M∗TΦ†M1/mUF = M∗(M−1)∗ = IdH, which implies that F is a dual frame of Ψ . In a 
similar way, every Bessel sequence F in H which satisfies M−1

m,Φ,Ψ = M1/m,Ψ†,F must be a dual frame of Φ.
On the other hand, assume that F is a Bessel sequence in H which satisfies M1/m,F,Φd = M1/m,Ψ†,Φd

for all dual frames Φd of Φ. Then TFM1/mUΦd = TΨ†M1/mUΦd for all dual frames Φd of Φ, which by 
Theorem 1.2(i) implies that TFM1/m = TΨ†M1/m. Since m is semi-normalized (so, M1/m is invertible 
on �2), it follows that TF = TΨ† and hence, F = Ψ†.

The statement for Φ† follows in a similar way. �
Remark 3.2. Concerning Theorem 1.1, it is natural to ask whether the frame Ψ† (resp Φ†) is the canonical 
dual of Ψ (resp. Φ). Observe that in this context we have Ψ† = Ψ̃ (resp. Φ† = Φ̃) if and only if Ψ is equivalent 
to (mnφn) (resp. Φ is equivalent to (mnψn)).

Note that Eqs. (2) and (3) are not constructive approaches leading to an implementation for the inversion 
of M . For the dual frame Ψ† (resp. Φ†) we already had to apply M−1. For more constructive approaches to 
the inversion of multipliers see the next sections and [31].

A sub-result of Theorem 1.1, the representation of the inverse for the particular case of finite-dimensional 
spaces and Ψ = Φd, has been independently found in the context of frame diagonalization of matrices [19].

Remark 3.3. In [32] the following conjecture is formulated: For an unconditionally convergent multiplier 
Mm,Φ,Ψ , there always exist sequences (cn) and (dn) so that Mm,Φ,Ψ = M(1),(cnφn),(dnψn) and the sequences 
(cnφn), (dnψn) are Bessel sequences.

If this conjecture is true, then any invertible, unconditionally convergent multiplier Mm,Φ,Ψ can be rewrit-
ten as Mm,Φ,Ψ = M(1),(cnφn),(dnψn) where the sequences (cnφn), (dnψn) are frames for H, and thus, by 
Theorem 1.1, M−1

m,Φ,Ψ can be written as M(1),(dnψn)†,(cnφn)d and M(1),(dnψn)d,(cnφn)† .

4. Inversion of multipliers using the canonical duals [Q2]

The following example shows cases where Question [Q2] is answered affirmatively.

Example 4.1. Every frame Φ for H fulfills M−1
(1),Φ,Φ = M(1),Φ̃,Φ̃.

Example 4.2 shows a case when Mm,Φ,Ψ is invertible but the inverse is not equal to M1/m,Ψ̃,Φ̃.

Example 4.2. Let Φ = (e1, e1, e1, e2, e2, e2, e3, e3, e3, . . .) and Ψ = (e1, e1, −e1, e2, e2, −e2, e3, e3, −e3, . . .). 
Then M(1),Ψ̃ ,Φ̃ = 1

9 IdH 	= M−1
(1),Φ,Ψ = IdH.

The next proposition determines a class of multipliers which are invertible and whose inverses can be 
written as in Eq. (4). While in Theorem 1.1 it is assumed that the frame multiplier is invertible, in Propo-
sition 4.3 we investigate the invertibility of frame multipliers – we give sufficient conditions for invertibility 
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and sufficient conditions for non-invertibility. For the rest of the section the letter c means a non-zero 
constant.

Proposition 4.3. Let Φ and Ψ be frames for H and (mn) = (c). Then the following assertions hold.

(i) If R(UΦ) ⊆ R(UΨ ), then M(1/c),Ψ̃ ,Φ̃ is a bounded right inverse of M(c),Φ,Ψ .
(ii) If R(UΨ ) ⊆ R(UΦ), then M(1/c),Ψ̃ ,Φ̃ is a bounded left inverse of M(c),Φ,Ψ .
(iii) If R(UΦ) = R(UΨ ), then M(c),Φ,Ψ is invertible and M−1

(c),Φ,Ψ = M( 1
c ),Ψ̃ ,Φ̃.

(iv) If R(UΦ) � R(UΨ ), then M(c),Φ,Ψ is not invertible.
(v) If R(UΨ ) � R(UΦ), then M(c),Φ,Ψ is not invertible.

Proof. (i) Assume that R(UΦ) ⊆ R(UΨ ). For every h ∈ H, the element UΦS
−1
Φ h can be written as UΨg

h for 
some gh ∈ H and

M(c),Φ,ΨM(1/c),Ψ̃ ,Φ̃h = TΦUΨS
−1
Ψ TΨUΦS

−1
Φ h = TΦUΨg

h = h.

(ii) can be proved in a similar way as (i).
(iii) follows from (i) and (ii).
(iv) Assume that R(UΦ) ⊂ R(UΨ ) with R(UΦ) 	= R(UΨ ). By (i), the operator M(1/c),Ψ̃ ,Φ̃ is a bounded 

right inverse of M(c),Φ,Ψ . We will prove that M(1/c),Ψ̃ ,Φ̃ is not a left inverse of M(c),Φ,Ψ , which will imply 
that M(c),Φ,Ψ cannot be invertible. Consider an arbitrary element g ∈ R(UΨ ), g /∈ R(UΦ). Write g = UΨh

for some h ∈ H. Since �2 = R(UΦ) ⊕ ker(TΦ), we can also write g = UΦf + d for some f ∈ H and some 
d ∈ ker(TΦ), d 	= 0. Since d = g−UΦf ∈ R(UΨ ), it follows that d /∈ kerTΨ , which implies that S−1

Ψ TΨd 	= 0. 
Then

M(1/c),Ψ̃ ,Φ̃M(c),Φ,Ψh = S−1
Ψ TΨUΦS

−1
Φ TΦUΨh

= S−1
Ψ TΨUΦS

−1
Φ TΦ(UΦf + d)

= S−1
Ψ TΨ (UΨh− d) = h− S−1

Ψ TΨd 	= h,

which implies that M(1/c),Ψ̃ ,Φ̃ is not a left inverse of M(c),Φ,Ψ .
(v) Assume that R(UΨ ) ⊂ R(UΦ) with R(UΨ ) 	= R(UΦ). By (i), M(1/c),Ψ̃ ,Φ̃ is a bounded left inverse of 

M(c),Φ,Ψ . In a similar way as in (iv), one can prove that M(1/c),Ψ̃ ,Φ̃ is not a right inverse of M(c),Φ,Ψ , which 
implies that M(c),Φ,Ψ cannot be invertible. �

Concerning the statements in Proposition 4.3, note that if none of R(UΦ) and R(UΨ ) is a subset of the 
other one, then both invertibility and non-invertibility of M(c),Φ,Ψ are possible. For a case of invertibility, con-
sider the frame multiplier M(1),Φ,Ψ , where Φ = (e1, e1, e2, e2, e3, e3, e4, e4, . . .) and Ψ = (1

2e1,
1
2e1,

1
2e2,

1
2e2,

1
3e3,

2
3e3, 14e4, 34e4, . . .), and thus, M(1),Φ,Ψ is the identity operator on H. For a case of non-invertibility, con-

sider the frame multiplier M(1),Φ,Ψ , where Φ = (e1, e1, e2, e2, e3, e3, e4, e4, . . .) and Ψ = (e1, e1, e2, e3, e4, . . .).

Remark 4.4. Let Φ and Ψ be frames for H. The condition R(UΦ) = R(UΨ ) corresponds to Φ and Ψ being 
equivalent frames [9, Corollary 4.5]. The condition R(UΦ) ⊆ R(UΨ ) is identical to Ψ being partial equivalent 
to Φ, i.e. to the existence of a bounded operator Q : H → H, such that φk = Qψk, ∀k ∈ N, see [3].

Corollary 4.5. If Φ and Ψ are equivalent frames, then M(c),Φ,Ψ is invertible and M−1
(c),Φ,Ψ = M( 1

c ),Ψ̃ ,Φ̃.

Now it is natural to pose the inverse question: If M−1
(c),Φ,Ψ = M( 1

c ),Ψ̃ ,Φ̃, does it follow that Φ and Ψ are 
equivalent? We give an affirmative answer in the next theorem.
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Theorem 4.6. Let Φ and Ψ be frames for H. The following statements are equivalent.

(a) M(c),Φ,Ψ is invertible and M−1
(c),Φ,Ψ = M( 1

c ),Ψ̃ ,Φ̃.
(b) Φ and Ψ are equivalent frames.

(c1) M(c),Φ,Ψ is invertible and the unique frame Ψ† in Theorem 1.1 is Ψ̃ .
(c2) M(c),Φ,Ψ is invertible and the unique frame Φ† in Theorem 1.1 is Φ̃.
(d1) M(c),Φ,Ψ is invertible and M−1

(c),Φ,Ψ = M( 1
c ),Ψ̃ ,Φd for all dual frames Φd of Φ.

(d2) M(c),Φ,Ψ is invertible and M−1
(c),Φ,Ψ = M( 1

c ),Ψd,Φ̃ for all dual frames Ψd of Ψ .

Proof. Without loss of generality, we may consider c = 1. For a closed subspace U of �2, the orthogonal 
projection on U will be denoted by PU .

(a) ⇒ (b) By (a), we have TΨ̃UΦ̃TΦUΨ = IdH and hence, UΨTΨ̃UΦ̃TΦUΨTΨ̃ = UΨTΨ̃ . Then 
PR(UΨ )PR(UΦ̃)PR(UΨ ) = PR(UΨ ), which implies that R(UΨ ) ⊆ R(UΦ̃).

In an analog way, it follows that R(UΦ̃) ⊆ R(UΨ ).
Therefore, R(UΦ̃) = R(UΨ ). This implies that Φ and Ψ are equivalent.
(b) ⇒ (c1) and (c2) Since ψ†

n = M−1(φn), n ∈ N, it follows that Ψ† is equivalent to Ψ . Therefore, Ψ† = Ψ̃ . 
The validity of (c2) follows in a similar way.

(c1) ⇒ (d1) and (c2) ⇒ (d2) Use Theorem 1.1.
(d1) ⇒ (a) and (d2) ⇒ (a) Clear. �
For the more general case of semi-normalized symbols, it is not difficult to prove the following sufficient 

condition for validity of Eq. (4).

Proposition 4.7. Let Φ and Ψ be frames for H, and let the symbol m be semi-normalized. Assume that 
Mm,Φ,Ψ is invertible. If Ψ is equivalent to (mnφn) or Φ is equivalent to (mnψn), then M−1

m,Φ,Ψ = M1/m,Ψ̃,Φ̃.

5. Multipliers for pseudo-coherent frames

5.1. General results

To show a result valid for a lot of classes of frames, let us define the following general concept.

Definition 5.1. Let Λ be a discrete set. Consider θ : Λ → B(H) (i.e., θ(λ) being a bounded operator from H
into H for λ ∈ Λ). Assume that there exist φ : Λ × Λ → C and μ : Λ × Λ → Λ, which satisfy

∀λ ∈ Λ, the mapping λ′ → μ
(
λ, λ′) is a bijection from Λ onto Λ, (8)

θ(λ)∗θ
(
λ′) = φ

(
λ, λ′)θ(μ(λ, λ′)), (9)

θ(λ)θ
(
μ
(
λ, λ′)) = φ

(
λ, λ′

)
θ
(
λ′). (10)

Then a sequence of the form (gλ)λ∈Λ = (θ(λ)g)λ∈Λ, g ∈ H, g 	= 0, is called a θ-pseudo-coherent system.
A θ-pseudo-coherent system which is a frame for H is called a θ-pseudo-coherent frame for H. A multiplier 

for θ-pseudo-coherent frames is called a θ-pseudo-coherent frame multiplier. When m = (1), a θ-pseudo-
coherent frame multiplier is also called θ-pseudo-coherent frame-type operator or θ-pseudo-coherent mixed 
frame operator.

Note that Gabor frames and coherent frames are pseudo-coherent frames (see Subsections 5.2 and 5.3) 
and thus, the results in this subsection hold in the particular case of multipliers for Gabor frames and 
coherent frames.
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In this section we are interested in invertible θ-pseudo-coherent frame multipliers, whose inverses can 
be written not only as frame multipliers, but also as θ-pseudo-coherent frame multipliers. When Mm,Φ,Ψ is 
a θ-pseudo-coherent frame multiplier, Theorem 1.1 naturally leads to the question: when the frames used 
in the representations in (2) and (3) are θ-pseudo-coherent frames? Here we give answers to the above 
questions in the case m = (1). First we consider invertible operators and give equivalent conditions to the 
operator being a θ-pseudo-coherent frame-type operator.

Proposition 5.2. Let g ∈ H and (gλ)λ∈Λ = (θ(λ)g)λ∈Λ be a θ-pseudo-coherent frame for H. Then the frame 
operator Sg for (gλ)λ∈Λ commutes with all the operators θ(λ), λ ∈ Λ, and thus the canonical dual of (gλ)λ∈Λ

is (θ(λ)g̃ )λ∈Λ with g̃ = S−1
g g. Furthermore, if V : H → H is a bounded bijective operator, then the following 

statements are equivalent.

(A1) For every λ ∈ Λ, V θ(λ)g = θ(λ)V g.
(A2) For every λ ∈ Λ and every f ∈ H, V θ(λ)f = θ(λ)V f (i.e., V commutes with θ(λ) for every λ ∈ Λ).
(A3) V is a θ-pseudo-coherent frame-type operator for the same set Λ.
(A4) V −1 is a θ-pseudo-coherent frame-type operator for the same set Λ.
(A5) For every λ ∈ Λ, V ∗ commutes with θ(λ).

Proof. (A3) ⇒ (A2) Let V be the θ-coherent frame-type operator M(1),(θ(λ)v)λ∈Λ,(θ(λ)u)λ∈Λ
for some u, v ∈ H

and let φ and μ satisfy (8)–(10). For every f ∈ H and every λ ∈ Λ,

V θ(λ)f =
∑
λ′∈Λ

〈
θ(λ)f, θ

(
λ′)u〉θ(λ′)v

=
∑
λ′∈Λ

〈
f, φ

(
λ, λ′)θ(μ(λ, λ′))u〉θ(λ′)v

=
∑
λ′∈Λ

〈
f, θ

(
μ
(
λ, λ′))u〉φ(λ, λ′

)
θ
(
λ′)v

=
∑
λ′∈Λ

〈
f, θ

(
μ
(
λ, λ′))u〉θ(λ)θ

(
μ
(
λ, λ′))v = θ(λ)V f.

This also implies the commutative property of the frame operator Sg and its inverse.
(A2) ⇒ (A1) is obvious.
(A1) ⇒ (A3) For every f ∈ H,

V f = V

(∑
λ∈Λ

〈f, g̃λ〉gλ
)

=
∑
λ∈Λ

〈
f, θ(λ)g̃

〉
θ(λ)V g,

which means that V is a θ-pseudo-coherent frame-type operator.
(A1) ⇒ (A4) For λ ∈ Λ, denote hλ = θ(λ)V g. By what is already proved, V can be written as the 

multiplier M(1),(hλ),(g̃λ). Since (hλ) and (g̃λ) are equivalent frames, because hλ = θ(λ)V g = V θ(λ)g =
V Sg g̃λ, Corollary 4.5 implies that M−1

(1),(hλ),(g̃λ) = M(1),(gλ),(h̃λ). By what is already proved, (h̃λ) is a 
θ-pseudo-coherent frame.

(A4) ⇒ (A2) Having in mind the implication (A3) ⇒ (A2) applied to V −1, it follows that V −1 commutes 
with θ(λ), ∀λ ∈ Λ. Therefore, V also commutes with θ(λ), ∀λ ∈ Λ.

(A2) ⇔ (A5) Assume that (A2) holds. Let φ and μ satisfy (8)–(10). Fix λ ∈ Λ. For every λ′ ∈ Λ,

θ(λ)∗V θ
(
λ′)g = θ(λ)∗θ

(
λ′)V g = φ

(
λ, λ′)θ(μ(λ, λ′))V g = V φ

(
λ, λ′)θ(μ(λ, λ′))g = V θ(λ)∗θ

(
λ′)g.

Since (θ(λ′)g)λ′∈Λ is complete in H, it follows that θ(λ)∗V = V θ(λ)∗ and thus, V ∗θ(λ) = θ(λ)V ∗.
The converse implication is now also clear. �
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For an invertible θ-pseudo-coherent frame-type operator V = M(1),(θ(λ)v)λ∈Λ,(θ(λ)u)λ∈Λ
, one can now 

conclude that the frames (θ(λ)v)†λ∈Λ and (θ(λ)u)†λ∈Λ from Theorem 1.1 have a θ-pseudo-coherent structure 
and thus V −1 can be written as a θ-pseudo-coherent frame-type operator as follows:

V −1 = M(1),(θ(λ)V −1v)λ∈Λ,(θ(λ)v)dλ∈Λ
= M(1),(θ(λ)u)dλ∈Λ,(θ(λ)(V −1)∗u)λ∈Λ

using dual frames (θ(λ)u)dλ∈Λ and (θ(λ)v)dλ∈Λ with the θ-pseudo-coherent structure (for example, the canoni-
cal duals). However, the above formulas involve the inverse V −1 in the representation. Other representations 
can be derived as a consequence of the proof of Proposition 5.2 using any given θ-pseudo-coherent frame:

Corollary 5.3. Let V : H → H be an invertible θ-pseudo-coherent frame-type operator M(1),(θ(λ)v)λ∈Λ,(θ(λ)u)λ∈Λ

and let (gλ)λ∈Λ = (θ(λ)g)λ∈Λ be any θ-pseudo-coherent frame for H. Then V −1 can be written as the 
θ-pseudo-coherent frame-type operator M(1),(gλ)λ∈Λ,(h̃λ)λ∈Λ, where hλ = θ(λ)V g, λ ∈ Λ.

Concerning Proposition 5.2, note that if weaker assumptions on V are made, then a similar proof can be 
used to show the following statements.

Lemma 5.4. As in Proposition 5.2, let g ∈ H and let (θ(λ)g)λ∈Λ be a θ-pseudo-coherent frame for H. Let 
V : H → H be an operator. Consider the condition

(A′
3) V can be written as a θ-pseudo-coherent Bessel multiplier with a constant symbol (1) for the same 

set Λ.

Then the following statements hold.

(i) If V is bounded, then (A3) ⇒ (A′
3) ⇔ (A2) ⇔ (A1);

(ii) If V is bounded and surjective, then (A3) ⇔ (A′
3) ⇔ (A2) ⇔ (A1).

So, when a θ-pseudo-coherent Bessel multiplier V = M(1),(θ(λ)v)λ∈Λ,(θ(λ)u)λ∈Λ
is surjective, it can always 

be written as the θ-pseudo-coherent frame multiplier M(1),(θ(λ)V g),(g̃λ), using any θ-pseudo-coherent frame 
(gλ)λ∈Λ = (θ(λ)g)λ∈Λ for H. Note that when a θ-pseudo-coherent Bessel multiplier M(1),(θ(λ)v)λ∈Λ,(θ(λ)u)λ∈Λ

is surjective (resp. invertible), then (θ(λ)v)λ∈Λ is already a frame (resp. (θ(λ)u)λ∈Λ and (θ(λ)v)λ∈Λ are 
frames) for L2(Rd) (see e.g. [8, Proposition 4.2] (resp. see [31, Proposition 3.1])).

5.2. Gabor multipliers

Consider the Hilbert space H = L2(Rd). Let Λ = {(ω, τ)} be a lattice in R2d, i.e., a discrete subgroup 
of R2d of the form AZ2d for some invertible matrix A. For ω ∈ Rd and τ ∈ Rd, recall the modulation 
operator Eω : L2(Rd) → L2(Rd) and the translation operator Tτ : L2(Rd) → L2(Rd) given by (Eωf)(x) =
e2πiωxf(x) and (Tτf)(x) = f(x − τ). For λ = (ω, τ) ∈ Λ and λ′ = (ω′, τ ′) ∈ Λ, take θ(λ) = π(λ) = EωTτ , 
μ(λ, λ′) = λ′ − λ, and φ(λ, λ′) = e2πiτ(ω′−ω). For every λ ∈ Λ, the mapping λ′ → μ(λ, λ′) is a bijection of Λ
onto Λ. Furthermore, the conditions (9) and (10) hold. Indeed, for every λ, λ′ ∈ Λ,

θ(λ)∗θ
(
λ′) = e−2πiτωθ(−λ)θ

(
λ′) = e−2πiτωe2πiτω′

θ
(
λ′ − λ

)
= φ

(
λ, λ′)θ(λ′ − λ

)
= φ

(
λ, λ′)θ(μ(λ, λ′)),

θ(λ)θ
(
μ
(
λ, λ′)) = θ(λ)θ

(
λ′ − λ

)
= e−2πiτ(ω′−ω)θ

(
λ′) = φ

(
λ, λ′

)
θ
(
λ′).

Thus, the θ-pseudo-coherent frames (θ(λ)g)λ∈Λ for H in this case are the Gabor frames (EωTτg)(ω,τ)∈Λ

for L2(Rd). Therefore, all the results in Subsection 5.1 hold for the case of Gabor frames. We restate 
Proposition 5.2 for Gabor frames, having in mind their applicability.
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Proposition 5.5. Let g ∈ L2(Rd) and let (π(λ)g)λ∈Λ be a Gabor frame for L2(Rd). Let V : L2(Rd) → L2(Rd)
be a bounded bijective operator. Then the following statements are equivalent.

(A1) For every λ ∈ Λ, V π(λ)g = π(λ)V g.
(A2) For every λ ∈ Λ and every f ∈ L2(Rd), V π(λ)f = π(λ)V f (i.e., V commutes with π(λ) for every 

λ ∈ Λ).
(A3) V can be written as a Gabor frame multiplier with the constant symbol (1) and lattice Λ, i.e., V is a 

Gabor frame-type operator with respect to the lattice Λ.
(A4) V −1 can be written as a Gabor frame multiplier with the constant symbol (1) and lattice Λ, i.e., V −1

is a Gabor frame-type operator with respect to the lattice Λ.
(A5) For every λ ∈ Λ, V ∗ commutes with π(λ).

Remark 5.6. This result gives a nice representation and criterion for TF-lattice invariant operators [15], 
which correspond to condition (A2). Motivated by [13], the condition (A1) can be considered to define 
‘locally TF-lattice invariant’ operators. We have shown that this local property already implies the global 
one.

Note that Proposition 5.5 (as well as Lemma 5.4(ii)) also answers the question for a characterization 
of operators, which can be represented as Gabor frame-type operators. Based on another approach, the 
parallel work [26] concerns characterization of operators, which can be written as Gabor frame operators.

For representations of Gabor frame-type operators, using the adjoint lattice, see e.g. [16,18]. Necessary 
and sufficient conditions for the invertibility of Gabor frame-type operators are given in [35].

In the finite-dimensional case, for matrices commuting with certain time-frequency shifts and fast algo-
rithms for approximate or exact inversion of Gabor frame operators, see e.g. [6,22].

5.3. Multipliers for coherent frames

Let (G, ·) be a locally compact group. Let (π, H) be a unitary representation of G, i.e., a strongly 
continues homomorphism from G into the group of unitary operators on H, which means that π satisfies 
the properties π(λ · λ′) = π(λ)π(λ′), π(λ)∗ = π(λ−1) = π(λ)−1, and limn→∞ λn = λ and h ∈ H imply 
limn→∞ π(λn)h = π(λ)h (see, e.g., [20, Section 9.2]). Consider a discrete subgroup Λ of G. For λ ∈ Λ and 
λ′ ∈ Λ, take θ(λ) = π(λ), μ(λ, λ′) = λ−1 · λ′, and φ(λ, λ′) = 1, which implies that

θ(λ)∗θ
(
λ′) = π

(
λ−1)π(λ′) = π

(
λ−1 · λ′) = φ

(
λ, λ′)θ(μ(λ, λ′)),

θ(λ)θ
(
μ
(
λ, λ′)) = π(λ)π

(
λ−1 · λ′) = π

(
λ′) = φ

(
λ, λ′

)
θ
(
λ′).

Thus, for g ∈ H, g 	= 0, a sequence (gλ)λ∈Λ = (π(λ)g)λ∈Λ is a π-pseudo-coherent system and a frame (gλ)λ∈Λ

is a π-pseudo-coherent frame (a coherent frame, see e.g. [21]). Thus, all the results in Subsection 5.1 hold 
for the case of multipliers for coherent frames.

As a particular example of coherent frames, consider frames of translates:

Example 5.7. Consider the locally compact group (Rd, +). Let π(λ) = Tλ, λ ∈ Rd, and let H be a closed 
subspace of L2(Rd). Then (π, H) is a unitary representation of Rd. Let Λ be a discrete subgroup of Rd. 
Then a frame of translates (π(λ)g)λ∈Λ, g ∈ H, g 	= 0, is a π-pseudo-coherent frame and all the results in 
Subsection 5.1 hold for the case of multipliers for frames of translates.

By Proposition 5.2, one obtains a characterization of the bounded bijective operators on H which commute 
with the operators of translates on a discrete subgroup. For another structure theorem for operators from 
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Fig. 2. Inversion of multipliers. Time-frequency representation of (top left) the result of the ‘naive’ inversion ḟ , (top right) the 
error of the ‘naive’ inversion, i.e. ḟ − f , (bottom left) the iterative inversion f̈ , (bottom right) the error of the iterative inversion 
f̈ − f .

the Schwartz space S(Rd) into the tempered distributions S′(Rd), which commute with a discrete subgroup 
of translations, we refer to [14].

6. Numerical visualization of results

Let us come back to the example in Fig. 1. Here we use the same signal f , Gabor frame Ψ , and symbol m, 
as in Fig. 1. Note that all the elements of the symbol m fulfill mn,k ∈ {1, 10−2} and denote M = Mm,Ψ̃,Ψ . 
Since m is semi-normalized, the multiplier M is analytically invertible [31, Proposition 4.3]. However, the 
operator is badly conditioned, the condition number is around 99. As mentioned before, the signal f is 
approximately 2 seconds long, using a sampling rate of 44 100. So the signal is a 128 148-dimensional vector.

Starting from g = Mf , we compare two approaches numerically:

1. a ‘naive’ inversion ḟ = M1/m,Ψ̃,Ψg (corresponding to the approach raised in [Q2]),
2. and the ‘iterative’ inversion f̈ = M−1g. For numerical efficiency and in particular, for memory con-

straints, we use the iterative inversion in LTFAT, using a conjugate gradient method (for M∗M). Note 
that by Theorem 1.1, M−1g corresponds to M1/m,Ψ†,Ψg, where ψ†

n,k = (M−1(mn,kψ̃n,k)).

For results see Fig. 2. Clearly the naive approach has strong artifacts. The error is especially big at the 
boundaries of the constant region of the symbols. The chosen atoms are well localized in time-frequency, 
so that within the interior of the constant regions, this inversion works well. This could be expected as we 
have shown in Corollary 4.5 that constant symbols allow this kind of inversion for equivalent frames (so, in 
particular for Ψ and Ψ̃).

The iterative inversion worked well with an error of 3%. This could, naturally, be decreased by in-
vesting more calculation time. But also in the chosen setting for the iterative inversion (100 iterations in
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iframemul [29]) no difference can be seen in the time-frequency representation, as well as no audible difference 
can be detected.

Similar results can also be shown for other redundancies and other sound files.
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