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Extremal problems are studied involving an objective function with values in (order) 
complete lattices of sets generated by so-called set relations. Contrary to the popular 
paradigm in vector optimization, the solution concept for such problems, introduced 
by F. Heyde and A. Löhne, comprises the attainment of the infimum as well as a 
minimality property. The main result is a Minty type variational inequality for set 
optimization problems which provides a sufficient optimality condition under lower 
semicontinuity assumptions and a necessary condition under appropriate generalized 
convexity assumptions. The variational inequality is based on a new Dini directional 
derivative for set-valued functions which is defined in terms of a “lattice difference 
quotient.” A residual operation in a lattice of sets replaces the inverse addition 
in linear spaces. Relationships to families of scalar problems are pointed out and 
used for proofs. The appearance of improper scalarizations poses a major difficulty 
which is dealt with by extending known scalar results such as Diewert’s theorem to 
improper functions.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Throughout the paper, let X and Z be two locally convex, topological linear spaces and C ⊆ Z a convex 
cone with 0 ∈ C. Moreover, P(Z) denotes the set of all subsets of Z including ∅. Let a function f : X → P(Z)
be given. The basic problem is

minimize f subject to x ∈ X.

Motivated by duality for vector optimization, such set-valued optimization problems have been consid-
ered first by Corley [9,10] and Dinh The Luc [44]. They gained popularity after the appearance of [42]
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and [39–41] in which so-called set relations are investigated and used to define minimality concepts for 
sets.

However, the power set P(Z) is too large an object and lacks reasonable structure which can be exploited 
for optimization purposes. On the other hand, additional assumptions imposed on f often imply that the 
images of f belong to a relatively small subset of P(Z) which carries a richer algebraic and order structure. 
For example, C-convexity of f (see [6, Definition 1.1]) implies that the set f(x) +C is convex for all x ∈ X. 
Therefore, appropriate subsets of P(Z) are used as image sets of set-valued functions, for example in [26,
27,43,51], and we will follow this approach. The main goal is to define new lower directional derivatives of 
Dini type for set-valued functions and provide necessary and sufficient conditions in terms of variational 
inequalities of Minty type to characterize solutions of set-valued minimization problems.

Two questions arise. First, what is understood by a solution of the above problem? Secondly, how can 
a directional derivative, in particular a difference quotient, be defined if the image set of the function is 
not a linear space? The answer to the first question is a new solution concept for set-valued optimization 
problems proposed by F. Heyde and A. Löhne [30,43]. This concept subsumes classical minimality notions 
borrowed from vector optimization as well as the infimum/supremum in complete lattices (which are usually 
not present in vector optimization). The answer to the second is provided by means of residuation operations 
in (order) complete lattices of sets which replace the inverse addition (the difference) in linear spaces. This 
approach has been proposed in [27,28].

Several notions of derivatives for set-valued functions have been introduced, compare e.g. [1,2,12,13,
18,34,37,46,52] to mention but a few. Apart from approaches relying on an embedding procedure into a 
linear space or approaches similar to those in [12,37,52], usually some kind of tangent cone to the graph 
of f at a point (x, z) ∈ X × Z with z ∈ f(x) is defined to be the graph of the derivative. In this paper, 
we define a set-valued derivative using increments of function values where the difference is replaced by 
a residual operation and thus provides a substitute for the difference quotient in linear spaces. A “lattice 
limit” procedure then provides the desired derivative.

It turns out that the lattice concepts are appropriate and sufficient to formulate Minty type variational 
inequalities which yield the desired characterizations for the new type of solutions. Minty variational in-
equalities have been introduced in [45] as the problem of finding some x̄ ∈ K such that

∀y ∈ K:
〈
F (y), x̄− y

〉
≤ 0,

where F : Rn → Rn, and K ⊆ Rn is a non-empty convex subset. This inequality proved to be useful to 
study primitive optimization problems when F is some derivative of the objective function f : Rn → R. 
The main result in this field is known as Minty variational principle and basically states that the Minty 
variational inequality provides a sufficient optimality condition for minimizers of f under a lower semiconti-
nuity assumption. The same inequality is also a necessary optimality condition under generalized convexity 
type assumptions. In [11], the Minty variational principle has been applied to a non-differentiable scalar 
optimization problem using lower Dini derivatives. The same approach has been extended to the vector case 
in [12].

The main purpose of this paper is to provide a Minty variational principle for set optimization problems. 
In the process we also need to deepen the study of lower semicontinuity and generalized convexity. Indeed, 
it turns out that known results on generalized convexity need to be extended to cover the case of improper 
functions, which is, to the best of our knowledge, not covered by the existing literature.

The paper is organized as follows. In Section 2, basic notation and results on the “lattice approach” to 
set optimization are introduced. The notion of a conlinear space as a natural setting for the image space of 
classes of set-valued functions is presented in Section 2.2. The solution concept for set optimization problems 
and scalarization techniques are described subsequently. In Section 3, the Dini-type derivative for set-valued 
functions is introduced, while in Section 4 generalized convexity concepts for possibly improper scalar and 
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set-valued functions are discussed. The main results are presented in Sections 5 and 6 which provide the 
desired optimality conditions of Minty type for set optimization problems. In Section 7, conclusions are 
drawn which tie the previous results into a Minty variational principle for set-valued functions.

2. Functions mapping into complete lattices of sets

2.1. Some standard notation

A set C ⊆ Z is called a cone if z ∈ C and t > 0 imply tz ∈ C, thus a cone does not necessarily include 
zero. The conical hull of C ⊆ Z is the set

coneC = {tz | t > 0, z ∈ C}.

The effective domain of an extended real-valued function ϕ : X → R = R ∪ {±∞} is the set domϕ =
{x ∈ X | ϕ(x) 
= +∞}. The lower level sets of such a function are

Lϕ(r) =
{
x ∈ X

∣∣ ϕ(x) ≤ r
}
, r ∈ R.

This means domϕ =
⋃

r∈R
Lϕ(r) and Lϕ(−∞) =

⋂
r∈R

Lϕ(r). It is well-known that ϕ is l.s.c. if, and only 
if, each lower level set Lϕ(r) with r 
= +∞ is closed. In this case Lϕ(−∞) is a closed set.

2.2. The image space

Order complete lattices of sets which will serve as image spaces for set-valued optimization problems can 
be generated as follows. The Minkowski (element-wise) addition for non-empty subsets of Z is extended to 
P(Z) by ∅ + A = A + ∅ = ∅ for A ∈ P(Z). We shall also write z + A for {z} + A and z −A for z + (−1)A
with −A = {−a | a ∈ A}. By

z1 ≤C z2 ⇔ {z2} + C ⊆ {z1} + C ⇔ {z1} − C ⊆ {z2} − C (2.1)

a preorder (a reflexive and transitive relation) on Z is defined. It is compatible with the linear structure 
on Z, and it is antisymmetric (hence a partial order) if, and only if, C is pointed, that is C ∩ (−C) = {0}. 
The relation ≤C can be extended to an order relation on P(Z) in two ways, defining A �C B ⇔ B ⊆ A +C

and A �C B ⇔ A ⊆ B−C for A, B ∈ P(Z). These two relations on P(Z) are not antisymmetric in general, 
and they are different.

One may observe that A �C B if, and only if, A + C ⊇ B + C. Thus, on {A ⊆ Z | A = A + C} the 
relation �C is a partial order which coincides with ⊇. If one needs to require closedness and convexity, one 
is led to

G(Z,C) =
{
A ⊆ Z

∣∣ A = cl co(A + C)
}

which will be used as the image space for set-valued functions in this note. Here, clA and coA denote the 
closure and convex hull of A ⊆ Z. Therefore, the relation ⊇ can be understood as an extension of ≤C from 
Z to G(Z, C).

For further motivation and more details, we refer for example to [25,26,51]. The relation �C is one of 
the two popularized by Kuroiwa (see e.g. [40–42]), who originally used them to define solution concepts for 
optimization problems with a set-valued objective function. The same order relations were applied earlier 
in other contexts, see e.g. [7] and the references in [25,33].
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A basic observation is as follows. The pair (G(Z, C), ⊇) is an order complete, partially ordered set. If 
A ⊆ G(Z, C), then

inf A = cl co
⋃
A∈A

A and supA =
⋂
A∈A

A (2.2)

as a straightforward check may show. One may also observe G(Z, C) = G(Z, clC), so we assume C = clC. 
Therefore, in the remainder of the paper C ⊆ Z is a closed convex cone.

We will also make use of minimal elements with respect to set orders. An element Ā ∈ A is called a 
minimal element of A ⊆ G(Z, C) if

A ∈ A, A ⊇ Ā ⇒ A = Ā.

The set of minimal elements of A is denoted by Min(A, ⊇).
Modifying the Minkowski sum and multiplication with nonnegative reals by setting A ⊕B = cl(A +B) and 

0 ·A = C for all A, B ∈ G(Z, C) we obtain that (G(Z, C), ⊕, ·) is a (real) conlinear space, i.e. (G(Z, C), ⊕, ·)
is a commutative monoid with neutral element C and for all A, A1, A2 ∈ G(Z, C), r, s ∈ R+ it holds 
r(A1 ⊕A2) = rA1 ⊕ rA2, r(sA) = (rs)A and 1A = A, 0A = C, compare [25, Section 2.1.2] and [26].

Moreover, the order ⊇ on G(Z, C) is compatible with the algebraic structure of (G(Z, C), ⊕, ·), thus 
(G(Z, C), ⊕, ·, ⊇) is an ordered conlinear space in the sense of [25, Section 2.1.2] and [26]. Finally,

∀A ∈ G(Z,C), ∀B ⊆ G(Z,C): A⊕ inf B = inf(A⊕ B)

which provides another link between the algebraic and the order structure: (G(Z, C), ⊕, ·, ⊇) is an inf-
residuated conlinear space: compare [22,27,28] and the references therein on inf-residuated sets.

The inf-residual of two elements A, B ∈ G(Z, C) is given by

A −� B = inf
{
D ∈ G(Z,C)

∣∣ B ⊕D ⊆ A
}

= {z ∈ Z | B + z ⊆ A}.

For the last equation, compare [27,28]. The inf-residual may be seen as a replacement for the inverse addition 
(the difference) in linear spaces. Indeed, if A = {zA} ⊕ C = zA + C and B = {zB} ⊕ C = zB + C then

A −� B =
{
z ∈ Z

∣∣ zB + C + z ⊆ {zA} ⊕ C
}

= zA − zB + C = {zA − zB} ⊕ C.

A whole calculus for residuals exists, see [28]. For example, B ⊕ (A −� B) ⊆ A whenever A, B ∈ G(Z, C). 
Compare [27,28] and also [47, Section 4] and the references therein on the use of the residual of two sets. 
The concept of residuation, rarely used in (convex) analysis, dates back to Dedekind, [17, pp. 329–330], [16, 
p. 71], see also [5,20–22].

Example 2.1. Let us consider Z = R, C = R+. Then G(Z, C) = {[r, +∞) | r ∈ R} ∪ {R} ∪ {∅}, and 
G(Z, C) can be identified (with respect to the algebraic and order structures as introduced above which 
turn G(R, R+) into an ordered conlinear space and a complete lattice admitting an inf-residuation) with 
R = R ∪ {±∞} using the ‘inf-addition’ +� (see [27,49]) and the inf-residuation on R as given by

r +� s = inf{a + b | a, b ∈ R, r ≤ a, s ≤ b} and r −� s = inf{t ∈ R | r ≤ s +� t}

for all r, s ∈ R, compare [27,28] for further details.
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Simple examples show that the inf-residual of two sets A, B ∈ G(Z, C) can be empty in many (interesting) 
cases. One may realize what is going on taking Z = R2, C = R2

+ = A and B = {z ∈ R2 | 2z1 + z2 ≥ 0,
1
2z1 + z2 ≥ 0}. Therefore, we introduce another such operation.

Let Z∗ be the topological dual of Z. The (negative) dual cone of C is the set

C− =
{
z∗ ∈ Z∗ ∣∣ ∀c ∈ C: z∗(c) ≤ 0

}
.

We assume C−\{0} 
= ∅. Take z∗ ∈ C−\{0} and define

H
(
z∗
)

=
{
z ∈ Z

∣∣ z∗(z) ≤ 0
}

which is the homogeneous closed half space with normal z∗. The z∗-residual of A, B ∈ G(Z, C) is

A−z∗ B =
(
A⊕H

(
z∗
))

−� B =
{
z ∈ Z

∣∣ B + z ⊆ A⊕H
(
z∗
)}

.

Of course, A −z∗B coincides with the inf-residual of A ⊕H(z∗) and B⊕H(z∗) as elements of G(Z, H(z∗)).

2.3. G(Z, C)-valued functions and the solution concept

Let f : X → G(Z, C) be a function. The graph and the effective domain of f are the sets

graph f =
{
(x, z) ∈ X × Z

∣∣ z ∈ f(x)
}

and dom f =
{
x ∈ X

∣∣ f(x) 
= ∅
}
,

respectively. The function f is called convex if graph f is convex, and it is called positively homogeneous if 
graph f is a cone. The set f [M ] = {f(x) | x ∈ M} is the image of M ⊆ X under f . In particular, f [X] is 
the image of X under f .

What shall we understand by a solution of a set-valued optimization problem? The traditional idea is 
to look for points (x̄, ̄z) ∈ graph f such that z̄ is a minimal point of 

⋃
x∈X f(x) according to ≤C . However, 

this is not very satisfactory in many cases (see, for example, [35, p. 210]), and therefore, the so-called set 
relation approach has been proposed ([42] and several papers by D. Kuroiwa, among them [40,41]) which 
consists of looking for x̄ ∈ dom f such that the value f(x̄) is minimal with respect to a set relation in the 
set f [X] = {f(x) | x ∈ X}. The reader may compare [29] and [50] for this approach.

The paper [30] (see also [43]) put forth a new idea which in some way synthesizes the two previous 
approaches. Here is the basic definition adapted to our framework.

Definition 2.2. (a) A set M ⊆ X is called an infimizer of the function f : X → G(Z, C) if

inf
m∈M

f(m) = inf
x∈X

f(x).

(b) A point x̄ ∈ X is called a minimizer of f : X → G(Z, C) if f(x̄) is a minimal element of f [X], i.e.

x ∈ X, f(x) ⊇ f(x̄) ⇒ f(x) = f(x̄).

(c) A set M ⊆ X is called a solution of the problem

minimize f :X → G(Z,C) subject to x ∈ X, (P)

if M is an infimizer of f consisting only of minimizers.



G.P. Crespi et al. / J. Math. Anal. Appl. 423 (2015) 770–796 775
Note that the condition in (a) is equivalent to

cl co
⋃

m∈M

f(m) = cl co
⋃
x∈X

f(x),

and this condition means that the infimum of f is attained in M . The condition in (b) is just f(x̄) ∈
Min(f [X], ⊇). In the set-valued framework, or as a matter of fact already in the (multi-dimensional) vector-
valued framework, infimum attainment and minimality are no longer equivalent (as in the scalar case), but 
they should, of course, both be part of a meaningful solution concept. The following examples discuss a few 
difficulties one encounters when looking at “vector solutions” rather then “set solutions”.

Example 2.3. (a) Consider R with the usual relation ≤ and ϕ : X → R. Then ϕ[X] possesses minimal elements
if, and only if, inf ϕ[X] ∈ ϕ[X], and inf ϕ[M ] = inf ϕ[X] is a solution of (P), iff ϕ(m) = inf{ϕ(x) | x ∈ X}
for all m ∈ M .

(b) Let S = R2 ∪ {±∞} be equipped with the order ≤C generated by the convex cone C = R2
+ with the 

obvious extension to ±∞. Define a function F : X = R2 → S by

F (x) =
{
x : if 1 − x1 ≤ x2, 0 ≤ x1 ≤ 1;
+∞ : otherwise.

The set of minimal elements of F [X] is the set M = {F (x) ∈ R2 | x2 = 1 − x1, 0 ≤ x1 ≤ 1} whereas 
inf{F (x) | x ∈ X} = 0 ∈ R2 does not belong to the range of F .

(c) Let (S, ≤) be as in (b) and consider

F (x) =
{
x : if max{1 − 2x1,

1
2 − 1

2x1} ≤ x2, x1 ∈ R;
+∞ : otherwise.

The set of minimal elements of F [X] is the set M = {F (x) ∈ R2 | max{1 − 2x1, 12 − 1
2x1} = x2} whereas 

inf{F (x) | x ∈ X} = −∞.

As a remedy for the difficulties in the previous examples a vector-valued problem is embedded into a 
G(Z, C)-valued one. Using the device introduced in Definition 2.4 below, one may see that (subsets of) the 
set of minimal points of F [X] with respect to ≤C indeed provides solutions of the set-valued problem in the 
sense of Definition 2.2.

Definition 2.4. Let F : X → Z ∪ {±∞} be an extended vector-valued function. Its G(Z, C)-valued extension 
f : X → G(Z, C) is defined by

f(x) =

⎧⎪⎨
⎪⎩

Z : F (x) = −∞,

F (x) + C : F (x) ∈ Z,

∅ : F (x) = +∞.

If f is such a G(Z, C)-valued extension, then F (x1) ≤C F (x2) if, and only if, f(x1) ⊇ f(x2) for x1, x2 ∈ X. 
Hence f(x) ∈ Min(f [X], ⊇) if, and only if, F (x) ∈ Min(F [X], ≤C). Moreover, M is a solution of (P) if, and 
only if, F [M ] ⊆ Min(F [X], ≤C) and F [X] ⊆ cl co(F [M ] + C). The last inclusion can be understood as a 
weakened version of the so-called domination property.

2.4. Scalarizations

We will associate to f : X → G(Z, C) a family of extended real-valued functions which we call scalariza-
tions of f . For z∗ ∈ C−\{0} and r ∈ R, the set
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Lz∗(−r) =
{
z ∈ Z

∣∣ r ≤ −z∗(z)
}

is a closed half space with normal direction z∗ if r ∈ R, while Lz∗(+∞) = ∅ and Lz∗(−∞) = Z. We have 
Lz∗(0) = H(z∗).

Definition 2.5. Let f : X → G(Z, C) and z∗ ∈ C−\{0}. The scalarization of f with respect to z∗ is the 
function ϕf,z∗ : X → R defined by

ϕf,z∗(x) = inf
{
−z∗(z)

∣∣ z ∈ f(x)
}
.

Of course, −ϕf,z∗(x) = supz∈f(x) z
∗(z) is the value of the support function of the set f(x) at z∗. Since 

the values of f are closed convex, they are the intersections of all closed half spaces including them; such 
half spaces can only be generated by elements of C−\{0} since f maps into G(Z, C). Hence

f(x) =
⋂

z∗∈C−\{0}

{
z ∈ Z

∣∣ ϕf,z∗(x) ≤ −z∗(z)
}

=
⋂

z∗∈C−\{0}
f(x) ⊕H

(
z∗
)
, (2.3)

and we have f(x) ⊕H(z∗) = Lz∗(−ϕf,z∗(x)) as well as dom f = domϕf,z∗ for all z∗ ∈ C−\{0}.

Example 2.6. Let F : X → Z ∪ {±∞} be an extended vector-valued function and f : X → G(Z, C) its 
G(Z, C)-valued extension. Then, dom f = {x ∈ X | F (x) 
= +∞}, and for each z∗ ∈ C−\{0}, ϕf,z∗(x) =
−(z∗◦F )(x) = −z∗(F (x)), whenever F (x) ∈ Z, ϕf,z∗(x) = −∞, whenever F (x) = −∞ and ϕf,z∗(x) = +∞, 
whenever F (x) = +∞.

Remark 2.7. If f : X → G(Z, C), then a set M ⊆ X is a solution to (P) if, and only if,

(a) ∀x ∈ X: f(x) ⊆ cl co
⋃

m∈M f(m),
(b) for m ∈ M and x ∈ X, either ϕf,z∗(m) = ϕf,z∗(x) for all z∗ ∈ C−\{0}, or there exists z∗0 ∈ C−\{0}

such that ϕf,z∗
0 (m) < ϕf,z∗

0 (x).

This follows by a standard separation argument, since the requirements for a solution as given in Defini-
tion 2.2 only leave two possibilities for f(x), f(m) ∈ G(Z, C): either f(x) = f(m), or f(x) � f(m).

2.5. Continuity notions for set-valued functions

By UX(0) and UZ(0) we denote a neighborhood base at the origin of X and Z, respectively. If necessary, 
we assume that such a neighborhood base consists of absorbing, balanced and convex sets which is always 
possible in locally convex spaces.

Definition 2.8. (a) A function f : X → G(Z, C) is said to be lattice-lower semicontinuous (lattice-l.s.c. for 
short) at x ∈ X if

∀x ∈ X: f(x) ≤ lim inf
y→x

f(y) =
⋂

U∈UX(0)

cl co
⋃
u∈U

f(x + u).

It is called lattice-lower semicontinuous if it is lattice-lower semicontinuous at each x ∈ X.
(b) A function f : X → G(Z, C) is said to be uniformly (Hausdorff) lower semicontinuous (uniformly-l.s.c. 

for short) if for all V ∈ UZ(0) there exists a U ∈ UX(0) such that for all x ∈ X

∀u ∈ U : f(x + u) ⊆ f(x) + V. (2.4)
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(c) A function f : X → G(Z, C) is called D∗-lower semicontinuous if ϕf,z∗ is an extended real-valued 
lower semi-continuous function for all z∗ ∈ D∗ where D∗ ⊆ C−\{0}, and “{z∗}-lower semicontinuous” will 
be abbreviated to “z∗-lower semicontinuous”.

Recall that a scalar function ϕ : X → R is l.s.c. if, and only if, ϕ(x) ≤ lim infy→x ϕ(y) for all x ∈ X.

Proposition 2.9.

(a) If f : X → G(Z, C) is uniformly l.s.c., then each scalarization ϕf,z∗ : X → R with z∗ ∈ C−\{0} is 
uniformly l.s.c., i.e. for all ε > 0 there exists a U ∈ UX(0) such that for all x ∈ X

∀u ∈ U : ϕf,z∗(x) ≤ ϕf,z∗(x + u) + ε. (2.5)

(b) If each scalarization ϕf,z∗ : X → R of f : X → G(Z, C) with z∗ ∈ C−\{0} is l.s.c., then f is lattice-l.s.c.

Proof. (a) If V = {z ∈ Z | z∗(z) ≤ ε} then, by definition, there exists a U ∈ UX(0) such that
f(x + u) ⊆ f(x) ⊕ V , hence ϕf,z∗(x) ≤ ϕf,z∗(x + u) + ε for all u ∈ U and all x ∈ X.

(b) Lower semicontinuity of ϕf,z∗ is

∀x ∈ X: ϕf,z∗(x) ≤ lim inf
y→x

ϕf,z∗(x) = sup
U∈UX(0)

inf
u∈U

ϕf,z∗(x + u).

Since the support function of a set coincides with the support function of the closed convex hull of the same 
set we obtain

inf
u∈U

ϕf,z∗(x + u) = inf
u∈U

inf
z∈f(x+u)

−z∗(z) = inf
{
−z∗(z)

∣∣∣ z ∈ cl co
⋃
u∈U

f(x + u)
}
.

On the other hand,

η ∈
⋂

U∈UX(0)

cl co
⋃
u∈U

f(x + u)

implies

∀U ∈ UX(0): inf
{
−z∗(z)

∣∣∣ z ∈ cl co
⋃
u∈U

f(x + u)
}

≤ −z∗(η),

hence

sup
U∈UX(0)

inf
{
−z∗(z)

∣∣∣ z ∈ cl co
⋃
u∈U

f(x + u)
}

≤ −z∗(η),

and finally

sup
U∈UX(0)

inf
{
−z∗(z)

∣∣∣ z ∈ cl co
⋃
u∈U

f(x + u)
}

≤ inf
{
−z∗(z)

∣∣∣ ⋂
U∈UX(0)

cl co
⋃
u∈U

f(x + u)
}
.

Thus,
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f(x) (2.3)=
⋂

z∗∈C−\{0}

{
z ∈ Z

∣∣ ϕf,z∗(x) ≤ −z∗(z)
}

⊇
⋂

z∗∈C−\{0}

{
z ∈ Z

∣∣∣ inf
{
−z∗(z)

∣∣∣ z ∈
⋂

U∈UX(0)

cl co
⋃
u∈U

f(x + u)
}

≤ −z∗(z)
}

= lim inf
y→x

f(y)

where the last equation also is (2.3) applied to lim infy→x f(y) instead of f(x). �
The property defined in (b) of Definition 2.8 is a uniform version of a continuity notion called Hausdorff 

upper continuity in [24]. We refer to it as “uniformly-l.s.c.” to avoid confusion since it implies lattice-lower 
semicontinuity for a set-valued function and also lower semicontinuity of its scalarizations as shown in (b) 
of Proposition 2.9.

If f : X → G(Z, C) is the set-valued extension of a function F : X → Z ∪ {±∞} as introduced in Defini-
tion 2.4, then f is C−\{0}-l.s.c. if F is (Hausdorff) l.s.c. in the sense that for all x ∈ X and for all V ∈ UZ(0)
there exists a U ∈ UX(0) such that

∀u ∈ U : f(x + u) ∈ f(x) + V.

For a more detailed comparison among different continuity notions of set-valued functions, we refer to [31]
and the references therein.

3. The lower Dini directional derivative for set-valued functions

Here is the definition of a new Dini-type derivative for set-valued functions.

Definition 3.1. Let f : X → G(Z, C) be a function, x, u ∈ X and z∗ ∈ C−\{0}. The lower Dini directional 
derivative of f at x in the direction u with respect to z∗ is

f↓
z∗(x, u) = lim inf

t↓0

1
t

(
f(x + tu) −z∗ f(x)

)
=

⋂
s>0

cl
⋃

t∈(0,s)

1
t

(
f(x + tu) −z∗ f(x)

)
.

Note that we can drop the convex hull involved in the infimum in G(Z, C) since the union of closed half 
spaces with the same normal automatically is convex. For scalar functions we adapt the standard definition 
of the lower Dini directional derivative to our setting.

Definition 3.2. Let ϕ : X → R be a scalar function, x, u ∈ X. The lower Dini directional derivative of ϕ at 
x in direction u is

ϕ↓(x, u) = lim inf
t↓0

1
t

(
ϕ(x + tu) −� ϕ(x)

)
.

With Definition 3.2, we do not assume x ∈ domϕ, nor we do demand ϕ to be a proper function. To this 
extent, the difference operator is replaced by −�, the residual operator.

Example 3.3. Let ϕ : X → R be an extended real-valued function and f its G(R, R+)-valued extension (see 
Definition 2.4). The dual cone of C = R+ is −R+ and

∀z∗ ∈ C−\{0}: f↓
z∗(x, u) = f↓

−1(x, u).

Moreover, f↓
−1(x, ·) is the G(R, R+)-valued extension of ϕ↓(x, ·), that is
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f↓
−1(x, u) =

⎧⎪⎨
⎪⎩

R : ϕ↓(x, u) = −∞,

ϕ↓(x, u) + R+ : ϕ↓(x, u) ∈ R,

∅ : ϕ↓(x, u) = +∞.

This can be shown by observing

f(x + tu) −−1 f(x) =

⎧⎪⎨
⎪⎩

R ⇔ ϕ(x + tu) −� ϕ(x) = −∞,

ϕ(x + tu) − ϕ(x) + R+ ⇔ ϕ(x + tu), ϕ(x) ∈ R,

∅ ⇔ ϕ(x + tu) −� ϕ(x) = +∞,

and these cases are mutually exclusive and exhausting.

The following proposition collects some elementary properties of Dini derivatives for future reference.

Proposition 3.4.

(a) Both u �→ f↓
z∗(x, u) and u �→ ϕ↓(x, u) are positively homogeneous, i.e.

∀r > 0: f↓
z∗(x, ru) = rf↓

z∗(x, u)

and parallel for ϕ↓.
(b) For all x ∈ X, for all u ∈ X,

f↓
z∗(x, u) =

{
z ∈ Z

∣∣ ϕ↓
f,z∗(x, u) ≤ −z∗(z)

}
, (3.1)

ϕ↓
f,z∗(x, u) = ϕf↓

z∗ (x,·),z∗(u). (3.2)

(c) If x /∈ dom f = domϕf,z∗ , then ϕ↓
f,z∗(x, u) = −∞ and f↓

z∗(x, u) = Z for all u ∈ X.

Proof. (a) and (c) are immediate. For (b), observe that for any x, u ∈ X, t > 0 and any z∗ ∈ C−\{0},

1
t

(
f(x + tu) −z∗ f(x)

)
= 1

t

{
z ∈ Z

∣∣ ϕf,z∗(x + tu) −� ϕf,z∗(x) ≤ −z∗(z)
}

and

⋂
t0>0

cl
⋃

0<t<t0

1
t

(
f(x + tu) −z∗ f(x)

)
=

{
z ∈ Z

∣∣∣ lim inf
t↓0

1
t

(
ϕ(x + tu) −� ϕ(x)

)
≤ −z∗(z)

}
,

compare also [27,51]. �
Remark 3.5. This is not the first attempt to introduce a Dini derivative for set-valued functions. In [12,13], 
for instance, the lower Dini directional derivative of f at (x, z) with z ∈ f(x) was defined as

f ′(x, z;u) =
⋂
s>0

cl
⋃

t∈(0,s)

1
t

(
f(x + tu) + {−z}

)
.

Since

∀z ∈ f(x): f(x + tu) −z∗ f(x) =
{
y ∈ Z

∣∣ f(x) + y ⊆ f(x + tu) ⊕H
(
z∗
)}

⊆
{
y ∈ Z

∣∣ z + y ⊆ f(x + tu) ⊕H
(
z∗
)}

=
[
f(x + tu) + {−z}

]
⊕H

(
z∗
)



780 G.P. Crespi et al. / J. Math. Anal. Appl. 423 (2015) 770–796
we have f↓
z∗(x, u) ⊆ f ′(x, z; u) ⊕ H(z∗) = Lz∗(sup{z∗(y) | y ∈ f ′(x, z; u)}). On the other hand, if there is 

z ∈ f(x) such that −z∗(z) = ϕf,z∗(x) then one can replace f(x) by z + H(z∗) in the above formula and 
obtain the converse inclusion, thus f↓

z∗(x, u) = f ′(x, z; u) ⊕H(z∗) in this case.
This means that the z∗-Dini derivative is a little more precise than the previous concept which is taken 

“at points of the graph”. If an assumption about the existence of support points of f(x) is satisfied then the 
two concepts coincide “half space-wise” at those support points.

In particular, if f(x) ⊆ z + C holds true for z ∈ f(x), then

f ′(x, z;u) =
⋂

z∗∈C−\{0}
f↓
z∗(x, u).

This shows that for vector-valued functions one can take intersections of the half space-valued z∗-Dini 
derivatives.

Another idea is to use the residual operation in G(Z, C) instead of its z∗-variant in G(Z, H(z∗)), com-
pare [14]. The corresponding lower Dini directional derivative of a function f : X → G(Z, C) is defined 
by

f↓(x, u) = lim inf
t↓0

1
t

(
f(x + tu) −� f(x)

)
⊆

⋂
z∗∈C−\{0}

f↓
z∗(x, u).

The following example shows that this derivative quickly becomes “non-finite” in the sense that it assumes 
the value ∅ even if the lower Dini derivative with respect to z∗ is non-empty for each z∗ ∈ C−\{0}.

It will become clear in Section 6 that Definition 3.1 provides a good enough concept for Minty type 
variational inequalities.

Example 3.6. Let X = R and Z = R2 with the ordering cone C = cl cone{(0, 1)T } and f : X → G(Z, C)
defined by

f(x) =
{

[x2 − 1, 1 − x2] × R+ : x ∈ [0, 1],
∅ : otherwise.

Fix x = 0 and u = 1. Then for all z∗ ∈ C−\{0}, t ∈ [0, 1]

ϕf,z∗(x + tu) =
(
t2 − 1

)∣∣z∗1 ∣∣ and 1
t

(
ϕf,z∗(x + tu) −� ϕf,z∗(x)

)
= t

∣∣z∗1 ∣∣.
Thus ϕ↓

f,z∗(x, u) = 0 and f↓
z∗(x, u) = H(z∗).

If z = (k, l)T ∈ f(x) with k ∈ [−1, 1] and l = 0, then

f ′(x, z;u) =

⎧⎪⎨
⎪⎩

{(y1, y2)T ∈ R2 | y2 ≥ 0} : if k 
= ±1;
{(y1, y2)T ∈ R2 | y1, y2 ≥ 0} : if k = −1;
{(y1, y2)T ∈ R2 | −y1, y2 ≥ 0} : if k = 1.

Let z = (k, l)T ∈ f(x) with k ∈ [−1, 1] and l > 0, then

f ′(x, z;u) =

⎧⎪⎨
⎪⎩

R2 : if k 
= ±1;
{(y1, y2)T ∈ R2 | y1 ≥ 0} : if k = −1;

T 2
{(y1, y2) ∈ R | −y1 ≥ 0} : if k = 1.
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For all t ∈ (0, 1), it holds

1
t

(
f(x + tu) −� f(x)

)
= 1

t

{
z ∈ Z

∣∣ f(x) + z ⊆ f(x + tu)
}

= 1
t

{
z ∈ Z

∣∣ [(−1 + z1, 0)T , (1 + z1, 0)T
]
⊆

[(
t2 − 1, 0

)T
,
(
1 − t2, 0

)T ]} = ∅,

hence

f↓(x, u) = ∅ �
⋂

z∗∈C−\{0}
Lz∗

(
−ϕ↓

f,z∗(x, u)
)

=
⋂

z∗∈C−\{0}
f↓
z∗(x, u) = C.

4. Generalized convexity

Generalized convexity and generalized monotonicity arise almost naturally when dealing with a Minty 
variational principle (see e.g. [11]). In the sequel, we need the following concept.

A set D ⊆ X is said to be star-shaped at x̄ ∈ D if

∀x ∈ D, ∀t ∈ [0, 1]: tx̄ + (1 − t)x ∈ D.

The results on extended real-valued functions ϕ : X → R presented in the following resemble known 
results on proper functions, as given e.g. in [8], and even the proofs are in the same line. However, to 
the best of our knowledge none of the properties or even definitions below has been stated for improper 
functions, thus proofs are given here for the sake of completeness.

4.1. Extension to the extended real-valued case

Let ϕ : X → R be an extended real-valued function. The function ϕa,b : R → R is defined by

ϕa,b(t) =
{
ϕ(a + t(b− a)) : t ∈ [0, 1],
+∞ : otherwise.

In the following, we will say that the function ϕ is radially l.s.c. at a if the function ϕa,b is l.s.c. for all 
b ∈ X, and similar for other properties. The following result is Diewert’s Mean Value Theorem [19].

Proposition 4.1. Let ϕ : X → R and a, b ∈ X be such that ϕa,b : [0, 1] → R is lower semicontinuous (and 
real-valued). Then, there exist 0 ≤ t < 1 and 0 < s ≤ 1 such that

ϕ(b) − ϕ(a) ≤ (ϕa,b)↓(t, 1) and

ϕ(a) − ϕ(b) ≤ (ϕa,b)↓(s,−1).

Note that for all 0 ≤ t < 1 and 0 < s ≤ 1 the following equations are satisfied

(ϕa,b)↓(t, 1) = ϕ↓(a + t(b− a), b− a
)
,

(ϕa,b)↓(s,−1) = ϕ↓(a + s(b− a), a− b
)
.

By a careful case study, we can extend this classical result to the case when ϕa,b : [0, 1] → R is extended 
real-valued and not necessarily proper. Then, the difference has to be replaced by the inf-residual in R.
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Theorem 4.2. Let ϕ : X → R and a, b ∈ X be given such that a 
= b and ϕa,b : R → R is lower semicontinuous. 
Then:

(a) If either ϕ(a) = +∞, or {a, b} ⊆ domϕ, then there exists 0 ≤ t < 1 such that

ϕ(b) −� ϕ(a) ≤ (ϕa,b)↓(t, 1).

(b) If either ϕ(b) = +∞, or {a, b} ⊆ domϕ, then there exists 0 < s ≤ 1 such that

ϕ(a) −� ϕ(b) ≤ (ϕa,b)↓(s,−1).

Proof. (a) The proof of the first inequality is given via a case study. If ϕ(a) = +∞ or ϕ(b) = −∞, then

ϕ(b) −� ϕ(a) = inf
{
r ∈ R

∣∣ ϕ(b) ≤ ϕ(a) + r
}

= −∞,

so the first inequality is trivially satisfied.
Next, assume {a, b} ⊆ domϕ and ϕ(b) 
= −∞. If ϕa,b(t) = −∞ for some 0 ≤ t < 1, then by lower 

semicontinuity ϕa,b(t0) = −∞, setting

t0 = sup
{
t ∈ {0, 1}

∣∣ ϕa,b(t) = −∞
}

and by assumption t0 < 1. Hence (ϕa,b)↓(t0, 1) = +∞, satisfying the first inequality.
Finally, let {a, b} ⊆ domϕ and ϕ(b) 
= −∞ be assumed and ϕa,b(t) = +∞ for some 0 < t < 1 and set

t0 = inf
{
t ∈ (0, 1)

∣∣ ϕa,b(t) = +∞
}
.

If t0 = 0, then we are finished, as in this case (ϕa,b)↓(0, 1) = +∞ is true, hence assume 0 < t0. In this case, 
[0, t] ⊆ domϕa,b is true for all t ∈ (0, t0), and the above result combined with Proposition 4.1 applied to 
b = a + t(b − a) gives that for all 0 < t < t0 there exists a 0 ≤ t̄ < 1 such that

ϕ
(
a + t(b− a)

)
≤ ϕ(a) +� (ϕa,a+t(b−a))↓(t̄, 1).

But as (ϕa,a+t(b−a))↓(t̄, 1) = (ϕa,b)↓(t̄, 1) is true and by lower semicontinuity of ϕa,b the value ϕ(a + t(b −a))
converges to +∞ as t converges to t0, this implies that (ϕa,b)↓(t̄, 1) converges to +∞ and eventually satisfies 
the desired inequality.

(b) Notice that ϕa,b(s) = ϕb,a(1 −s) and (ϕa,b)↓(s, −1) = (ϕb,a)↓((1 −s), 1), hence the result is immediate 
from the above. �
Corollary 4.3. Let ϕ : X → R be a radially l.s.c. function and a ∈ domϕ. If ϕ↓(b, a − b) ≤ 0 for all b ∈ X, 
then either ϕ(a) = −∞ or ϕ is proper and domϕ is star-shaped at a. In both cases, the infimum of ϕ is 
attained at a.

Proof. Theorem 4.2 tells us that for all b ∈ X there exists an s ∈ (0, 1] such that

ϕ(a) −� ϕ(b) ≤ ϕ↓
a,b(s,−1).

Using the definition of the lower Dini directional derivative one directly checks that

∀s ∈ R: ϕ↓ (s,−1) = ϕ↓(a + s(b− a), a− b
)
.
a,b
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Taking x = a + s(b − a) we obtain from ϕ↓(x, a − x) ≤ 0

∀s ∈ R: ϕ↓(a + s(b− a), a−
(
a + s(b− a)

))
= ϕ↓(a + s(b− a),−s(b− a)

)
≤ 0.

Using the positive homogeneity of ϕ↓(x, ·) we get

∀s > 0: ϕ↓(a + s(b− a), a− b
)

= ϕ↓
a,b(s,−1) ≤ 0.

Hence ϕ(a) = −∞ or −∞ < ϕ(a) ≤ ϕ(b) for all b ∈ X. In the second case, ϕ is proper since a ∈ domϕ.
It is left to prove that domϕ is star-shaped at a. Assume b ∈ domϕ and t /∈ domϕa,b for some t ∈ (0, 1)

and set

r0 = inf
{
r ∈ [t, 1]

∣∣ r ∈ domϕa,b

}
.

If r0 ∈ domϕa,b then we are done, as in this case for x = a + r0(b − a) by lower semicontinuity of ϕa,b it 
holds ϕ↓(x, a −x) = +∞, a contradiction. Hence assume ϕa,b(r0) = +∞. As r0 < 1, we can choose a strictly 
decreasing sequence {rn}n∈N ⊆ domϕa,b with rn → r0 as n converges to +∞. Applying Theorem 4.2 to 
an = a + rn+1(b − a) and bn = a + rn(b − a) for all n ∈ N, then there exists 0 < t ≤ 1 such that for 
r = rn+1 + t(rn − rn+1) it holds

ϕ(an) −� ϕ(bn) ≤ (ϕan,bn)↓(t,−1) = (ϕa,b)↓(r,−1).

Hence by assumption

ϕ
(
a + rn+1(b− a)

)
−� ϕ

(
a + rn(b− a)

)
≤ (ϕa,b)↓(r,−1) ≤ 0,

implying

ϕ
(
a + rn+1(b− a)

)
≤ ϕ

(
a + rn(b− a)

)
.

Especially, {ϕ(a + rn(b − a))}n∈N is a decreasing sequence in R ∪ {−∞} as {rn}n∈N ⊆ domϕa,b was 
assumed. By lower semicontinuity of ϕa,b it holds ϕ(a + r0(b − a)) ≤ lim infn→∞ ϕ(a + rn(b − a)) < +∞, 
a contradiction. �

In the following definition, we extend some well-known notions to the case of extended real-valued func-
tions, compare e.g. [8,15,23,32,48]. Especially, we do not exclude the case −∞ ∈ ϕ[X] or ϕ↓(b, a − b) = −∞.

Definition 4.4. A function ϕ : X → R is said to be

(a) quasiconvex if for all a, b ∈ X and all t ∈ (0, 1), ϕa,b(t) ≤ max{ϕ(a), ϕ(b)};
(b) semistrictly quasiconvex if for all a, b ∈ domϕ with ϕ(a) 
= ϕ(b) and all t ∈ (0, 1), ϕa,b(t) <

max{ϕ(a), ϕ(b)};
(c) (lower Dini) pseudoconvex, if ϕ(a) < ϕ(b) implies ϕ↓(b, a − b) < 0.

It is an easy task to prove that a convex function is semistrictly quasiconvex, quasiconvex and pseudo-
convex.

Notice that semistrictly quasiconvexity is defined with a strict inequality for all a, b ∈ domϕ with ϕ(a) 
=
ϕ(b) while quasiconvexity only requires an inequality, but for all a, b ∈ X. The notions of a quasiconvex or 
semistrictly quasiconvex function are independent of each other as the following example shows.
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Example 4.5. Let ϕ : R → R be such that ϕ(0) = 1 and ϕ(x) = 0 for x 
= 0. Then ϕ is semistrictly 
quasiconvex, but not quasiconvex. The function ψ = −ϕ is quasiconvex, but not semistrictly quasiconvex.

If ϕ : X → R is radially quasiconvex or semistrictly quasiconvex at a ∈ domϕ then domϕ is star-shaped 
at a. The domain of an extended real-valued l.s.c. and pseudoconvex function is not necessarily star-shaped 
anywhere, therefore it does not have to be quasiconvex or semistrictly quasiconvex either. On the other 
hand, neither quasiconvexity, nor semistrict quasiconvexity implies pseudoconvexity, either.

Example 4.6. Let ϕ : R → R be defined by ϕ(x) = 0 whenever x ≤ 0 or x ≥ 1 and ϕ(x) = +∞ otherwise. 
Then ϕ is l.s.c. and pseudoconvex, but domϕ is nowhere star-shaped, hence ϕ is neither quasiconvex, nor 
semistrictly quasiconvex. On the other hand, let ψ : R → R be defined as ψ(x) = −x2, whenever 0 ≤ x

and ψ(x) = +∞, elsewhere. Then ψ is both semistrictly quasiconvex and quasiconvex, but ψ↓(0, 1) = 0 in 
contrast to ψ(1) < ψ(0) = 0, hence ψ is not pseudoconvex.

Remark 4.7. The following equivalent characterizations of quasiconvexity are well known for proper func-
tions, compare, for example, [15, Proposition 3.2]. Without any problems, they can be extended to the 
general case of extended real-valued functions ϕ : X → R.

(a1) The function ϕ : X → R is quasiconvex;
(a2) For all r ∈ R the lower level set Lϕ(r) is convex;
(a3) For all r ∈ R the strict lower level set L<

ϕ (r) = {x ∈ X | ϕ(x) < r} is convex.

In particular, if ϕ is quasiconvex, then domϕ and Lϕ(−∞) are convex sets.

The following definition provides “radial” versions of the properties from Definition 4.4.

Definition 4.8. A function ϕ : X → R is said to be radially quasiconvex (semistrictly quasiconvex, pseudo-
convex) at x0 ∈ X if the function ϕx0,x : R → R is quasiconvex (semistrictly quasiconvex, pseudoconvex) 
for all x ∈ X.

Proposition 4.9. Let ϕ : X → R be a function. Then:

(a) The set L<
ϕ (ϕ(x)) ∪{x} is star-shaped at x for all x ∈ domϕ if, and only if, ϕ is semistrictly quasiconvex.

(b) If ϕ is semistrictly quasiconvex and l.s.c. then it is quasiconvex.
(c) A function ϕ is (semistrictly) quasiconvex if, and only if, it is radially (semistrictly) quasiconvex at 

every x ∈ domϕ.

Proof. (a) The function ϕ is semistrictly quasiconvex if, and only if, ϕ(y) < ϕ(x) implies ϕ(y + t(x − y)) <
ϕ(x) for all t ∈ (0, 1). This, in turn is equivalent to L<

ϕ (ϕ(x)) ∪ {x} being star-shaped at x for all x ∈ X.
(b) We only need to check the quasiconvexity inequality for ϕ(x) = ϕ(y). Define xt = x + t(y − x)

with t ∈ (0, 1) and assume ϕ(xt) > ϕ(x) = ϕ(y). By semistrict quasiconvexity, ϕ(xs) < ϕ(xt) for all s ∈
[0, 1]\{t}. If s ∈ (t, 1) and ϕ(xs) 
= ϕ(x) then again by semistrict quasiconvexity ϕ(xt) < max{ϕ(x), ϕ(xs)}, 
a contradiction. The same can be done for s ∈ (0, t), hence ϕ(x) = ϕ(xs) for all s ∈ (0, 1)\{t} and 
ϕ(xt) > ϕ(x). This contradicts the lower semicontinuity of ϕ.

(c) Immediate. �
Especially, ϕ is radially semistrictly quasiconvex at a ∈ domϕ if, and only if, for all b ∈ domϕ and all 

t ∈ [0, 1] the set L<
ϕ (ϕ(a + t(b − a))) ∪ {t} is a convex interval.
a,b
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For proper functions with convex domains, the result of Proposition 4.9(b) can already be found in [36, 
Theorem 2.5]. Here, the result is applied to improper functions and therefore we provide a proof, fully aware 
that the original one does not make use of the properness assumption.

Proposition 4.10. If ϕ(a) = inf ϕ[X] for some a ∈ domϕ then ϕ is radially quasiconvex at a if, and only if,

∀b ∈ X, ∀t ∈ (0, 1): ϕ
(
a + t(b− a)

)
≤ max

{
ϕ(a), ϕ(b)

}
. (4.1)

In this case, ϕ↓(b, a − b) ≤ 0 holds true for all b ∈ X.

Proof. If ϕ is radially quasiconvex at a, then (4.1) is immediate.
For the converse, let ϕ(a) = inf ϕ[X] and (4.1) be satisfied. Then ϕ(a) ≤ ϕ(xt) is satisfied for all b ∈ X

and all t ∈ (0, 1) where xt = a + t(b − a). By (4.1), ϕ(xs) ≤ ϕ(xt) for all s ∈ (0, t). Now, take s1, s2 ∈ [0, 1]
with s1 
= s2, α ∈ (0, 1) and set t = max{s1, s2}, s = αs1 + (1 − α)s2. Then s ∈ (0, t) hence by the above

ϕ(xs) ≤ ϕ(xt) ≤ max
{
ϕ(xs1), ϕ(xs2)

}
which means that ϕa,b is quasiconvex since the remaining cases for s1, s2, α are trivial.

If the conditions of the first part are satisfied then ϕ(a) ≤ ϕ(b) hence, by (4.1), ϕ(b + t(a − b)) ≤ ϕ(b)
for all t ∈ (0, 1) which in turn implies ϕ(b + t(a − b)) −� ϕ(b) ≤ 0 for all t ∈ (0, 1) whence

lim inf
t↓0

1
t

(
ϕ
(
b + t(a− b)

)
−� ϕ(x)

)
≤ 0.

This completes the proof. �
In general, property (4.1) is weaker than radial quasiconvexity at a.

Example 4.11. Let ϕ : R → R be given by ϕ(x) = sup{x2, 1 −x2}. Then property (4.1) is satisfied at a = −2, 
but ϕ is not radially quasiconvex at a.

Proposition 4.12. Let ϕ : X → R be radially l.s.c. at a ∈ X. Then ϕ is radially quasiconvex at a if, and only 
if, for all b ∈ X and all r ∈ R the set {t ∈ [0, 1] | ϕa,b(t) ≤ r} is a closed convex subset of [0, 1] (a closed 
interval, possibly empty).

In this case, the set {s ∈ [0, 1] | ϕa,b(s) = inft∈[0,1] ϕa,b(t)} is also a closed convex subset of [0, 1] which 
is non-empty for each b ∈ X.

Proof. With Remark 4.7 and the lower level set characterization of lower semi-continuity in view, the 
sublevel sets Lϕa,b

(r) are closed convex sets for all b ∈ X and all r ∈ R if, and only if, the function ϕa,b is 
l.s.c. and quasiconvex for all b ∈ X. This proves the equivalence.

In this case, the set

Lϕa,b

(
inf

t∈[0,1]
ϕa,b(t)

)
=

{
s ∈ [0, 1]

∣∣∣ ϕa,b(s) = inf
t∈[0,1]

ϕa,b(t)
}

is closed and convex for each b ∈ X which proves the second claim. This set is non-empty which is trivially 
the case if −∞ is among the values of ϕa,b, and which follows from the Weierstrass theorem since ϕa,b is 
lower semicontinuous on the compact set [0, 1]. �
Proposition 4.13. Let ϕ : X → R be radially l.s.c. at a ∈ domϕ. Then ϕ is radially semistrictly quasiconvex 
at a if, and only if, for all b ∈ domϕ there exist s0 ≤ t0 ∈ [0, 1] such that ϕa,b is strictly decreasing on 
[0, s0], strictly increasing on [t0, 1] and constantly equal to inf ϕa,b[0, 1] on [s0, t0].
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Proof. Assume ϕ is radially semistrictly quasiconvex at a ∈ domϕ. Take b ∈ domϕ. By Proposition 4.9(b) 
ϕ is radially quasiconvex at a. Proposition 4.12 yields the existence of s0 ≤ t0 ∈ [0, 1] such that [s0, t0] =
Lϕa,b

(inft∈[0,1] ϕa,b(t)). If 0 < t < s < s0 then ϕa,b(0) > ϕa,b(t) > ϕa,b(s) by semistrict quasiconvexity of 
ϕa,b and the fact that s0 is a minimizer of ϕa,b on [0, 1]. A similar argument proves that ϕa,b is strictly 
increasing on [t0, 1].

Conversely, let 0 ≤ s < t ≤ 1 be such that ϕa,b(s) < ϕa,b(t). Then s, t ∈ [t0, 1], hence ϕa,b(αs +(1 −α)t) <
ϕa,b(t) = max{ϕa,b(s), ϕa,b(t)} for all α ∈ (0, 1). If 0 ≤ t < s ≤ 1 such that ϕa,b(s) < ϕa,b(t) then t, s ∈ [0, s0]
and a parallel argument works. Hence ϕa,b is semistrictly quasiconvex. �
Proposition 4.14. Let ϕ : X → R be radially pseudoconvex and radially l.s.c. at a ∈ domϕ such that domϕ

is star-shaped at a. Then ϕ is radially semistrictly quasiconvex at a.

Proof. Assume that for some b ∈ domϕ the function ϕa,b is not semistrictly quasiconvex. Then there are 
r, s, t ∈ R such that 0 ≤ r < s < t ≤ 1, ϕa,b(r) 
= ϕa,b(t) and

max
{
ϕa,b(r), ϕa,b(t)

}
≤ ϕa,b(s).

We assume ϕa,b(r) < max{ϕa,b(r), ϕa,b(t)} = ϕa,b(t). The other case can be dealt with by symmetric 
arguments.

Fix δ > 0 such that ϕa,b(r) < ϕa,b(t) − δ. Since ϕa,b is l.s.c. the set

{
s′ ∈ R

∣∣ ϕa,b

(
s′
)
> ϕa,b(t) − δ

}
is open. Hence there is ε > 0 such that [s − ε, s + ε] ⊆ (r, t) and

∀s′ ∈ [s− ε, s + ε]: ϕa,b

(
s′
)
> ϕa,b(t) − δ.

Take s′ ∈ [s, s + ε), s′′ ∈ (s′, s + ε] and assume ϕa,b(s′′) < ϕa,b(s′). By Theorem 4.2 there exists an 
ŝ ∈ (s′, s′′] satisfying

0 < ϕa,b

(
s′
)
− ϕa,b

(
s′′
)
≤ (ϕa,b)↓

(
ŝ, s′ − s′′

)
.

Indeed, setting a′ = a + s′(b − a), b′ = a + s′′(b − a) one obtains by Theorem 4.2 an α ∈ (0, 1] satisfying 
ϕ(a′) − ϕ(b′) ≤ (ϕa′,b′)↓(α, −1). Defining ŝ = s + α(s′′ − s′) ∈ (s′, s′′] and observing ϕ(a′) = ϕa,b(s′), 
ϕ(b′) = ϕa,b(s′′) and (ϕa,b)↓(α, −1) = (ϕa,b)↓(ŝ, s′−s′′) one obtains the above inequality. Using the positive 
homogeneity of the directional derivative we can multiply the inequality 0 < (ϕa,b)↓(ŝ, s′− s′′) by r−ŝ

s′−s′′ > 0
and obtain 0 < (ϕa,b)↓(ŝ, r− ŝ). The pseudoconvexity of ϕa,b yields ϕa,b(r) ≥ ϕa,b(ŝ) which contradicts the 
assumption ϕa,b(r) < ϕa,b(t) − δ < ϕa,b(ŝ) − δ (observe ŝ ∈ [s, s + ε]). Hence ϕa,b(s′′) ≥ ϕa,b(s′) whenever 
s′, s′′ ∈ [s, s + ε] and s′ < s′′. This implies

∀s′ ∈ [s, s + ε): (ϕa,b)↓
(
s′, 1

)
≥ 0,

and positive homogeneity of the directional derivative implies (ϕa,b)↓(s′, t − s′) ≥ 0 and this by pseudocon-
vexity of ϕa,b

ϕa,b(t) ≥ ϕa,b

(
s′
)
≥ ϕa,b(s) ≥ ϕa,b(t).

This means ϕa,b(s′) = ϕa,b(t) for all s′ ∈ [s, s + ε). In turn, this implies that for s′ ∈ (s, s + ε) we have 
(ϕa,b)↓(s′, −1) ≥ 0, hence (ϕa,b)↓(s′, r− s′) ≥ 0 and by pseudoconvexity ϕa,b(s′) ≤ ϕa,b(r). This contradicts 
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the assumption ϕa,b(r) < ϕa,b(t), hence (together with the symmetric case) the function ϕa,b is semistrictly 
quasiconvex for all b ∈ domϕ. �

By Proposition 4.9, a radially l.s.c. and radially semistrictly quasiconvex function ϕ : X → R especially 
is radially quasiconvex. Thus under the assumptions of Proposition 4.14 ϕ is also radially quasiconvex at a.

Corollary 4.15. Let ϕ : X → R be radially pseudoconvex and radially l.s.c. at a ∈ domϕ such that domϕ

is star-shaped at a. If ϕ↓(b, a − b) < 0 then ϕ↓(bt, a − bt) < 0 for all t ≥ 1 where bt = a + t(b − a). If, 
additionally, ϕ(b) > −∞ then ϕ(bt) > −∞ for all t ≥ 1.

Proof. The result is immediate if ϕ(bt) = +∞ since in this case ϕ↓(bt, a − bt) = −∞ due to the properties 
of the inf-residuation −� on R and the definition of the directional derivative.

Assume bt ∈ domϕ. Since ϕ↓(b, a −b) < 0 there exists an s ∈ (0, 1) such that either ϕ(a +s(b −a)) < ϕ(b)
or ϕ(b) = ϕ(a + s(b − a)) = −∞. Hence, for t > 0 we either have ϕ(a + t(b − a)) = ϕ(b) = −∞ or, by 
Proposition 4.13 applied to ϕa,bt , ϕ(a + t(b − a)) > ϕ(b). Note that, by Proposition 4.14, ϕ is radially 
semistrictly quasiconvex at a. In both cases, ϕ↓(bt, a −bt) < 0 for t ≥ 0 since in the first case we can apply that 
ϕ is radially pseudoconvex at a, and the second produces ϕ↓(bt, a − bt) = −∞ from (−∞) −� (−∞) = −∞.

Finally, if ϕ(b) > −∞, then, again by Proposition 4.13 applied to ϕa,bt , ϕ(bt) > ϕ(b) for all t > 1. �
4.2. Generalized convexity for set-valued functions

In this section, we define (generalized) convexity notions for a set-valued function f , sometimes through 
the corresponding properties for the scalarizations ϕf,z∗ .

Definition 4.16. A function f : X → G(Z, C) is called quasiconvex if

∀a, b ∈ X, ∀t ∈ [0, 1]: f
(
a + t(b− a)

)
⊇ f(a) ∩ f(b). (4.2)

Formula (4.2) is equivalent to f(a + t(b − a)) �C sup{f(a), f(b)} since the supremum in G(Z, C) is an 
intersection. Therefore, the definition of quasiconvexity for set-valued functions is a direct generalization of 
the scalar definition.

With respect to scalarizations we shall use the following concepts, compare [3,4,13] and also the result 
presented in Theorem 5.8 below.

Definition 4.17. A function f : X → G(Z, C) is called

(a) C−\{0}-l.s.c. if ϕf,z∗ is l.s.c. for all z∗ ∈ C−\{0},
(b) radially C−\{0}-quasiconvex (semistrictly quasiconvex, pseudoconvex, l.s.c.) at x0 ∈ X if ϕf,z∗ : X → R

is radially quasiconvex (semistrictly quasiconvex, pseudoconvex, l.s.c.) at x0 ∈ X for all z∗ ∈ C−\{0}.

As in the scalar case, we introduce “radial” properties for set-valued functions as follows, compare [11].

Definition 4.18. A function f : X → G(Z, C) is called radially l.s.c. (radially quasiconvex) at a ∈ X if the 
function fa,b : R → G(Z, C) defined by

fa,b(t) =
{
f(a + t(b− a)) : t ∈ [0, 1],
∅ : otherwise

is l.s.c. (quasiconvex).
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The equation

∀t ∈ R: (ϕf,z∗)a,b(t) = ϕfa,b,z∗(t)

is immediate.
Direct calculations prove that a set-valued function f : X → G(Z, C) is convex, if and only if, it is 

C−\{0}-convex, i.e. each scalarization ϕf,z∗ : X → R with z∗ ∈ C−\{0} has a convex epigraph. Moreover, 
a C−\{0}-quasiconvex function f : X → G(Z, C) is quasiconvex, compare [38, Theorem 2.1]. The following 
example shows that, in general, the second implication cannot be reversed.

Example 4.19. Let Z = R2 and C = cl co(cone{(−1, 1)T , (1, 1)T }) and f : R → Z be defined as

f(x) =
{

(x, 0)T + C : x ∈ ±2N,
(2y + 1, 1)T + C : 2y < x < 2(y + 1), y ∈ ±N,

then f is quasiconvex, while no scalarization with z∗ ∈ intC− is quasiconvex.

Remark 4.20. If f : X → G(Z, C) is radially C−\{0}-pseudoconvex, radially C−\{0}-l.s.c. and dom f is 
star-shaped at a, then f is radially C−\{0}-quasiconvex and radially C−\{0}-semistrictly quasiconvex at 
a ∈ dom f . This follows from Proposition 4.9(b) and Proposition 4.14.

5. Characterization of infimizers

According to the solution concept we introduced in Definition 2.2, we begin with the following definition.

Definition 5.1. (See [28].) Let f : X → G(Z, C) and M ⊆ X be non-empty. Then, the function f̂(·; M) : X →
G(Z, C) defined by

f̂(x;M) = inf f [M + x] = inf
m∈M

f(m + x) = cl co
⋃

m∈M

f(m + x)

is called the inf-translation of f by M . The family of scalarizations of the inf-translation of f by M is given 
by

ϕf̂(·;M),z∗(x) = inf
z∈f̂(x;M)

−z∗(z).

Remark 5.2. The following relationships will be useful later on. We refer to [28].

(a) ϕf̂(·;M),z∗(x) = ϕ̂f,z∗(x; M) = infm∈M ϕf,z∗(m + x).
(b) The infimum of f [X] is attained in M if, and only if, it is attained in every N ⊆ X with M ⊆ N ; in 

particular, if M is an infimizer then coM also is an infimizer.
(c) inf f̂(·; M)[X] = infx∈X f̂(x; M) = inf f [X].
(d) The infimum of f [X] is attained in M if, and only if, f̂(0; M) = inf f̂(·; M)[X].
(e) The infimum of f [X] is attained in M if, and only if, ϕf,z∗(·; M) attains its infimum at 0 ∈ X for all 

z∗ ∈ C−\{0},

inf f [M ] = inf f [X] ⇔ ∀z∗ ∈ C−\{0}: ϕ̂f,z∗(0;M) = inf
x∈X

ϕ̂f,z∗(x;M).
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This means that 0 is a set a-minimizer of f(·; M) in the sense of [13, Definition 3.2], i.e. f̂(x; M) ⊆ f̂(0; M)
for all x ∈ X.

Proposition 5.3. If f : X → G(Z, C) is uniformly l.s.c. then f̂(·; M) is C−\{0}-l.s.c. for all nonempty sets 
M ⊆ X.

Proof. If f is uniformly l.s.c. then ϕf,z∗ is uniformly l.s.c. for all z∗ ∈ C−\{0} as established in Proposi-
tion 2.9(b). Replacing x in (2.5) by m + x and taking the infimum over m ∈ M on both sides yields that 
for every ε > 0 there exists a U ∈ UX(0) such that

∀x ∈ X, ∀u ∈ U : inf
m∈M

ϕf,z∗(m + x) ≤ inf
m∈M

ϕf,z∗(m + x + u) + ε,

thus ϕf(·;M),z∗ = ϕ̂f,z∗(·; M) is l.s.c. �
The next result provides a sufficient condition for an infimizer in terms of the Dini directional derivative.

Theorem 5.4. Let f : X → G(Z, C) be uniformly l.s.c. and ∅ 
= M ⊆ dom f . If

∀x ∈ X: 0 ∈
⋂

z∗∈C−\{0}
f̂(·;M)↓z∗(x,−x) (5.1)

then the infimum of f over X is attained in M . Moreover, f̂(0; M) = Z or dom f̂(·; M) is star-shaped at 0.

Proof. By Proposition 5.3, each scalarization ϕf(·;M),z∗ = ϕ̂f,z∗(·; M) of f̂(·; M) is (uniformly) l.s.c. 
Moreover, 0 ∈ dom ϕ̂f,z∗(·; M) since M ⊆ dom f . From (3.1) we conclude that (5.1) is equivalent to 
ϕ↓
f(·;M),z∗(x, −x) ≤ 0 for all z∗ ∈ C−\{0}.
By Remark 5.2(e), the infimum of f [X] is attained in M if, and only if, the infimum of ϕf(·;M),z∗ [X] is 

attained at 0 for all z∗ ∈ C−\{0}.
Applying Corollary 4.3 we obtain the results. �

Remark 5.5. The condition (5.1) in Theorem 5.4 can be replaced by

f̂(0;M) = f̂(0; coM) and ∀x ∈ X: 0 ∈
⋂

z∗∈C−\{0}
f̂(·; coM)↓z∗(x,−x).

In this case, f̂(0; M) = f̂(0; coM) = Z, or dom f̂(·; coM) is star-shaped at 0.

Remark 5.6. If M = {x0} for x0 ∈ X then (5.1) is equivalent to

∀x ∈ X: 0 ∈
⋂

z∗∈C−\{0}
f↓
z∗(x, x0 − x).

Indeed, this follows from f̂(x; {x0}) = f(x0 + x) and, especially, f̂(0; {x0}) = f(x0). Thus, if the infimizer 
is a singleton then the complicated looking condition (5.1) boils down to a more familiar form. Although it 
is in general very unlikely that the infimum of a G(Z, C)-valued function is attained in a single point, this 
is the case for the inf-translation of f by an infimizer (set) M . The reduction of infimizer sets to singletons 
was the main motivation for the introduction of the inf-translation in [28].

Lemma 5.7. Let f : X → G(Z, C), ∅ 
= M ⊆ dom f and z∗ ∈ C−\{0}. Assume that (4.1) is satisfied for ϕf,z∗

whenever x0 ∈ coM . Then (4.1) with x0 = 0 is satisfied for ϕ̂f,z∗(·; coM).
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Proof. Assume there are x ∈ X and t ∈ (0, 1) such that ϕ̂f,z∗(·; coM) does not satisfy (4.1) with x0 = 0, 
i.e.

ϕ̂f,z∗(tx; coM) > max
{
ϕ̂f,z∗(0; coM), ϕ̂f,z∗(x; coM)

}
.

Since

ϕ̂f,z∗(y; coM) = inf
m∈co M

ϕf,z∗(m + y)

there are m1, m2 ∈ coM such that

∀m ∈ coM : ϕf,z∗(m + tx) > max
{
ϕf,z∗(m1), ϕf,z∗(m2 + x)

}
.

Taking m = m1 + t(m2 −m1) ∈ coM we obtain

ϕf,z∗
(
m1 + t(x + m2 −m1)

)
> max

{
ϕf,z∗(m1), ϕf,z∗(m2 + x)

}
which contradicts the assumption that ϕf,z∗ satisfies (4.1) at any x0 ∈ coM (choose x0 = m1 and replace 
x in (4.1) by x + m2 with x from above). �

Combining the previous results we obtain the following necessary condition for infimizers.

Theorem 5.8. Let f : X → G(Z, C) and ∅ 
= M ⊆ dom f be such that for each z∗ ∈ C−\{0} the scalarization 
ϕf,z∗ of f satisfies (4.1) whenever x0 ∈ M . If the infimum of f over X is attained in M then f̂(0; M) =
f̂(0; coM), f̂(·; coM) is radially quasiconvex at 0 and

∀x ∈ X: 0 ∈
⋂

z∗∈C−\{0}
f̂(·; coM)↓z∗(x,−x). (5.2)

Proof. Using Remark 5.2(d), (b) we obtain f̂(0; M) = f̂(0; coM). Remark 5.2(e), Lemma 5.7 and Proposi-
tion 4.10 yield that ϕ̂f,z∗(·; coM) is radially quasiconvex at 0, hence f̂(·; coM) is radially quasiconvex (see 
discussion after Definition 4.18). The derivative condition now follows from Proposition 4.10 and (3.1). �
Remark 5.9. Notice that radial quasiconvexity of each scalarization of f at each m ∈ coM and inf f [M ] =
inf f [X] together are sufficient conditions for the assumptions of Theorem 5.8 to be satisfied.

If Z is a Banach space and C+(−C) = Z, i.e. C generates Z, the function f : X → G(Z, C) is quasiconvex 
and the infimum of f [X] is attained in coM ⊆ dom f , then

0 ∈
⋂

z∗∈extd C−

f̂(·; coM)↓z∗(x,−x). (5.3)

However, (5.3) can hold without f(0; coM) being anywhere near the infimum of f [X]. The sufficient property 
given in Theorem 5.4 is therefore notably stronger. If f : X → G(Z, C) is uniformly l.s.c. and (5.3) is satisfied, 
then 0 is a set A-minimizer of f(·; coM) in the sense of [13, Definition 3.4], i.e. for all x ∈ X and all 
z∗ ∈ extdC− it holds ϕf̂(·;co M),z∗(0) ≤ ϕf̂(·;co M),z∗(x).

Example 5.10. Let Z = R2, C = R2
+ and f = R → G(Z, C), dom f = R+ and f(x) = [(0, x)T , (x, 0)T ] + C, 

whenever x ∈ dom f . Thus Z is a Banach space, C generates Z, f is uniformly l.s.c. and convex and thus 
especially C−\{0}-quasiconvex, the infimum of f [X] and ϕf,z∗ [X] is attained at 0, whenever z∗ ∈ intC−. 
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The extreme directions of C− are the elements of cone{(−1, 0)T , (0, −1)T } and whenever z∗ ∈ extdC−, 
then ϕf,z∗ [dom f ] = {0}. Thus, for any choice of ∅ 
= M ⊆ dom f , (5.3) is satisfied whereas (5.1) holds true, 
iff 0 ∈ M .

6. Characterization of minimizers

In this section, we shall give sufficient conditions for a point x0 ∈ dom f to produce a minimal value of 
f : X → G(Z, C), i.e. f(x0) satisfies

x ∈ X, f(x) ⊇ f(x0) ⇒ f(x) = f(x0)

(compare (b) of Definition 2.2).
For a fixed x0 ∈ dom f , we define the set

A(f, x0) =
{
x ∈ X

∣∣ f(x) � f(x0)
}

which, of course, always is a subset of dom f . Note

f(x0) ∈ Min f [X] ⇔
[
x ∈ X, f(x) ⊇ f(x0) ⇒ x /∈ A(f, x0)

]
.

If x ∈ A(f, x0) we can separate a point z̄ ∈ f(x)\f(x0) from f(x0) since the images of f are closed convex 
sets. Thus, there are z∗0 ∈ C−\{0}, r0 ∈ R such that

∀z ∈ f(x0): z∗0(z̄) < r0 ≤ z∗0(z).

Therefore, x ∈ A(f, x0) if, and only if,

∃z∗0 ∈ C−\{0}: ϕf,z∗
0 (x) < ϕf,z∗

0 (x0).

Hence, if A(f, x0) 
= ∅ then there is z∗0 ∈ C−\{0} such that ϕf,z∗
0 (x0) ∈ R and A(f, x0) ⊆ dom f .

This discussion can be used to verify the following result.

Proposition 6.1. Let f : X → G(Z, C) be radially C−\{0}-semistrictly quasiconvex at x0 ∈ dom f . Then 
A(f, x0) ∪ {x0} is star-shaped at x0.

Proof. Assume there are x ∈ A(f, x0) and t ∈ (0, 1) such that x0 + t(x − x0) /∈ A(f, x0). Then f(x0 + t(x −
x0)) ⊆ f(x0), hence

∀z∗ ∈ C−\{0}: ϕf,z∗(x0) ≤ ϕf,z∗
0

(
x0 + t(x− x0)

)
.

On the other hand, the above separation argument shows ϕf,z∗
0 (x) < ϕf,z∗

0 (x0), hence by semistrict quasi-
convexity of ϕf,z∗

0

ϕf,z∗
0

(
x0 + t(x− x0)

)
< max

{
ϕf,z∗

0 (x0), ϕf,z∗
0 (x)

}
= ϕf,z∗

0 (x0),

a contradiction. �
We will prove that if a certain variational inequality of Minty type is satisfied for all x ∈ A(f, x0), then 

f(x0) is a minimal element in f [X].
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Theorem 6.2. Let f : X → G(Z, C) be radially C−\{0}-l.s.c. and radially C−\{0}-semistrictly quasiconvex 
at x0 ∈ dom f . If there is a non-empty finite set M∗ ⊆ C−\{0} such that

∀x ∈ A(f, x0), ∃z∗ ∈ M∗: 0 ∈ int f↓
z∗(x, x0 − x) ∧ ϕf,z∗(x) 
= −∞ (6.1)

then f(x0) ∈ Min f [X].

Proof. If A(f, x0) = ∅ then f(x) ⊆ f(x0) for all x ∈ X, hence f(x0) = inf f [X] and especially f(x0) ∈
Min f [X].

Assume A(f, x0) 
= ∅ and fix x ∈ A(f, x0), z∗ ∈ C−\{0}. Since f is radially C−\{0}-semistrictly quasi-
convex at x0, Proposition 6.1 ensures that A(f, x0) ∪ {x0} is star-shaped at x0.

Since A(f, x0) ⊆ dom f Proposition 4.13 yields that for all m∗ ∈ M∗ the value

t
(
m∗) = max

{
t ∈ [0, 1]

∣∣ (ϕf,m∗)x0,x is non-increasing on [0, t]
}

is well defined, ϕf,m∗(x0 + t(m∗)(x −x0)) = inf ϕf,m∗ [x0, x] and for all t ∈ [0, t(m∗)] either ϕf,m∗(xt) = −∞
or ϕ↓

f,m∗(xt, x0 − xt) ≥ 0 where xt = x0 + t(x − x0). Since M∗ is finite, there exists m∗
0 ∈ M∗ such that

t
(
m∗

0
)

= t0 = min
{
t
(
m∗) ∣∣ m∗ ∈ M∗}.

For all m∗ ∈ M∗, either ϕf,m∗(xt0) = −∞, or ϕ↓
f,m∗(xt0 , x0 − xt0) ≥ 0. Since A(f, x0) ∪ {x0} is star-shaped 

at x0 the whole line segment between x and x0 belongs to A(f, x0) and therefore (6.1) is in force. The scalar-
ization of the Dini derivative (3.1) tells us that 0 ∈ int f↓

m∗(x, x0 − x) is equivalent to ϕ↓
f,m∗(x, x0 − x) < 0. 

Hence (6.1) implies t0 = 0.
Thus by Proposition 4.13 (ϕf,m∗

0 )x0,x is strictly increasing on [0, 1] which implies

ϕf,m∗
0 (x0) < ϕf,m∗

0 (x).

According to Remark 2.7(b) this verifies f(x0) � f(x) for all x ∈ A(f, x0). Finally, if x /∈ A(f, x0) then 
f(x) ⊆ f(x0), hence f(x0) is minimal in f [X]. �

We have proven that under the assumptions of Theorem 6.2, to any ray [x, x0] ⊆ dom f with [x, x0] ∩A 
= ∅
there exists a single element m∗ ∈ M∗ such that property (6.1) is satisfied for all xt = x0 + t(x − x0) with 
0 < t ≤ 1.

Remark 6.3. A sufficient condition for radial C−\{0}-semistrict quasiconvexity of f in Theorem 6.2 reads 
as follows. Let f : X → G(Z, C) be radially C−\{0}-l.s.c and radially C−\{0}-pseudoconvex at x0 ∈ dom f

such that dom f is star-shaped at x0. Then f is radially C−\{0}-semistrictly quasiconvex at x0. Indeed, in 
this case (ϕf,z∗)x0,x is semistrictly quasiconvex by Proposition 4.14 since, by Definition 4.17, it is l.s.c., pseu-
doconvex and dom(ϕf,z∗)x0,x ⊆ [0, 1] is an interval (including 0) because dom f = domϕf,z∗ is star-shaped 
at x0 by assumption. Hence f is radially C−\{0}-semistrictly quasiconvex.

The following example shows that the assumption M∗ ⊆ C−\{0} be finite cannot be relaxed.

Example 6.4. Define z∗i = − 1
i+1 (1, i)T ∈ (R2

+)−\{0} for all i ∈ N = {0, 1, 2, . . .}. Let f : R → G(R2, R2
+) be 

such that dom f = [0, 1] and f(x) =
⋂

i∈N
Lz∗

i
(−ϕz∗

i
(x)) for all x ∈ [0, 1] where

ϕz∗
i
(x) =

{−(i + 1) min{1 − x, ix} : if x ∈ [0, 1] and i ∈ N;

+∞ : elsewhere.
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Since ϕz∗
i

is a convex l.s.c function for all i ∈ N, graph f is closed and convex, hence f is l.s.c. and convex, 
and it is easy to see that f(0) = f(1) = R2

+. Defining zi(x) ∈ R2 by

∀i ∈ N\{0}:
{
zi(x)

}
=

{
z ∈ Z: z∗i−1(z) = ϕz∗

i−1
(x)

}
∩
{
z ∈ Z: z∗i (z) = ϕz∗

i
(x)

}
then f(x) = co{zi(x) | i ∈ N\{0}} + C is true for all x ∈ (0, 1). This implies that ϕf,z∗

i
(x) = ϕz∗

i
(x) is true 

for all x ∈ [0, 1] and all i ∈ N and therefore f(x) � f(0) is satisfied for all x ∈ (0, 1) and f(0) /∈ Min f [R].
On the other hand, for any given x ∈ (0, 1), there exists an i ∈ N\{0} such that x ∈ ( 1

i+1 , 1), hence 

ϕ↓
f,z∗

i
(x, 0 −x) = −(i +1) < 0 and −i ≤ ϕf,z∗

i
(x) 
= −∞. Hence the assumptions of Theorem 6.2 are satisfied 

for x0 = 0, replacing the finite set M∗ by C−\{0}, while f(0) /∈ Min f [R].

Remark 6.5. Recall that an element z∗ ∈ C−\{0} is an extreme direction of C− if for all z∗1 , z∗2 ∈ C−, 
z∗ = z∗1 + z∗2 implies z∗1 = tz∗ and z∗2 = sz∗ for some nonnegative t, s ∈ R, and the set of all extreme 
directions of C− is denoted by extdC−.

Let M∗ ⊆ extdC− be a nonempty, finite set with extdC− = coneM∗. If the assumptions of Theorem 6.2
are satisfied for this set M∗, then f(x0) ∈ Min f [X]. However we do not restrict the choice of the set M∗ to 
any specific subset of C−\{0} thus the result of Theorem 6.2 is true in a more general case, too. Notice that 
extdC− 
= ∅ is rather restrictive, as for example it excludes such cases where C− contains linear subspaces 
of Z∗.

Corollary 6.6. Let f : X → G(Z, C) and M ⊆ dom f be such that f is radially C−\{0}-l.s.c. and radially 
C−\{0}-semistrictly quasiconvex at every u ∈ M . Further, let M∗ ⊆ C−\{0} be a nonempty finite set. If 
for all u ∈ M and for all x ∈ X either f(x) ⊆ f(u) or

∃z∗ ∈ M∗: 0 ∈ int f↓
z∗(x, u− x) ∧ ϕf,z∗(x) 
= −∞

then f [M ] ⊆ Min f [X].

Proof. The assumptions guarantee that for each x ∈ X either x /∈ A(f, u) for all u ∈ M or x ∈ A(f, u) and 
the condition in (6.1) is satisfied. Theorem 6.2 produces the result. �

The next result provides a necessary condition for a minimizer in terms of the Dini directional derivative.

Theorem 6.7. Let f : X → G(Z, C) and x0 ∈ dom f be such that f(x0) ∈ Min(f [X]). Assume ϕf,z∗ satis-
fies (4.1) for all z∗ ∈ C−\{0}. Then

(a) for all x ∈ X there exists z∗ ∈ C−\{0} such that

0 ∈ f↓
z∗(x, x0 − x), (6.2)

(b) if, additionally, f is radially C−\{0}-l.s.c. and radially C−\{0}-pseudoconvex at x0, then for all x ∈ X

either f(x0) = f(x), or there exists z∗ ∈ C−\{0} such that

0 ∈ int f↓
z∗(x, x0 − x) ∧ ϕf,z∗(x) 
= −∞. (6.3)

Proof. (a) According to Remark 2.7(b), for each x ∈ X there exists z∗0 ∈ C−\{0} such that

max
{
ϕf,z∗

0 (x0), ϕf,z∗
0 (x)

}
= ϕf,z∗

0 (x).

Condition (4.1) now implies
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∀t ∈ [0, 1]: ϕf,z∗
0

(
x + t(x0 − x)

)
≤ ϕf,z∗

0 (x)

which in turn yields ϕ↓
f,z∗

0
(x, x0 − x) ≤ 0. Eq. (3.1) produces the result.

(b) Under the additional assumption, f is radially C−\{0}-semistrictly quasiconvex by Proposition 4.14, 
thus for all x ∈ X either f(x + t(x0 − x)) = f(x) for all t ∈ [0, 1], or there exists s ∈ (0, 1) and z∗0 ∈
C−\{0} such that ϕf,z∗

0 is strictly increasing on [x + s(x0 − x), x] ∩ dom f by Proposition 4.13. Hence 
ϕ↓
f,z∗

0
(x, x0 − x) < 0 by pseudoconvexity of ϕf,z∗

0 . �
Stating the assumptions of Theorem 6.7 for all elements of a set M ⊆ dom f , the following corollary is 

straightforward.

Corollary 6.8. Let f : X → G(Z, C) and ∅ 
= M ⊆ dom f be such that f [M ] ⊆ Min(f [X]). Assume that for 
all z∗ ∈ C−\{0} the function ϕf,z∗ satisfies (4.1) with x0 replaced by an arbitrary u ∈ M . Then

(a) for all u ∈ M and all x ∈ X there exists z∗ ∈ C−\{0} such that (6.2) is true.
(b) if, additionally, f is radially C−\{0}-l.s.c. and radially C−\{0}-pseudoconvex at u for all u ∈ M , then 

for u ∈ M and x ∈ X either f(u) = f(x), or (6.3) is true.

7. Conclusions

The combination of Theorem 5.4 and Corollary 6.6 produces the following sufficient condition for solutions 
of our basic set-valued optimization problem, i.e. of

minimize f subject to x ∈ X. (P)

Note that a set M ⊆ X is a solution of (P) if the infimum of f [X] is attained in M and f [M ] ⊆ Min(f [X]).

Theorem 7.1. Let M∗ ⊆ C−\{0} be a finite set, f : X → G(Z, C) be a uniformly l.s.c. function and ∅ 
=
M ⊆ dom f such that f is radially C−\{0}-semistrictly quasiconvex at u for all u ∈ M . Moreover, let

∀x ∈ X: 0 ∈
⋂

z∗∈C−\{0}
f̂(·,M)↓z∗(x,−x)

be satisfied and for u ∈ M and x ∈ X either f(x) ⊆ f(u) or

∃z∗ ∈ M∗: 0 ∈ int f↓
z∗(x, u− x) ∧ ϕf,z∗(x) 
= −∞.

Then, M is a solution of (P).

Proof. A uniformly l.s.c. function f : X → G(Z, C) is (uniformly) C−\{0}-l.s.c. by Proposition 2.9. The 
result follows from Theorem 5.4 and Corollary 6.6. �

Likewise, the combination of Theorem 5.8 and Corollary 6.8 produces a necessary optimality condition 
for solutions of (P).

Theorem 7.2. Let f : X → G(Z, C) and ∅ 
= M ⊆ dom f be such that M is a solution of (P). Assume that 
for all z∗ ∈ C−\{0} the function ϕf,z∗ satisfies (4.1) with x0 replaced by an arbitrary u ∈ M . Then

∀x ∈ X: 0 ∈
⋂

∗ −

f̂(·, coM)↓z∗(x,−x)

z ∈C \{0}
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is satisfied. Moreover, f̂(0, M) = f̂(0, coM) and

∀u ∈ M, ∃z∗ ∈ C−\{0}: 0 ∈ f↓
z∗(x, u− x).

If, additionally, f is radially C−\{0}-l.s.c. and radially C−\{0}-pseudoconvex at u for all u ∈ M , then 
for u ∈ M and x ∈ X either f(u) = f(x), or (6.3) is true.

Proof. This directly follows from Theorem 5.8 and Corollary 6.8. �
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