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In this paper, we first establish the existence and uniqueness of Lp (p > 1) so-
lutions for multidimensional backward stochastic differential equations (BSDEs) 
under a weak monotonicity condition together with a general growth condition in y
for the generator g. Then, we overview several conditions related closely to the 
weak monotonicity condition and compare them in an effective way. Finally, we put 
forward and prove a stability theorem and a comparison theorem of Lp (p > 1)
solutions for this kind of BSDEs.
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1. Introduction

Throughout this paper, let us fix a real number T > 0, and two positive integers k and d. Let R+ :=
[0, +∞) and let (Ω, F, P) be a probability space carrying a standard d-dimensional Brownian motion (Bt)t≥0, 
(Ft)t≥0 be the natural σ-algebra generated by (Bt)t≥0 and F = FT . For each subset A ⊂ Ω × [0, T ], let 
1A = 1 in case of (t, ω) ∈ A, otherwise, let 1A = 0. The Euclidean norm of a vector y ∈ R

k will be 
defined by |y|, and for a k × d matrix z, we define |z| =

√
Trzz∗, where z∗ is the transpose of z. Let 〈x, y〉

represent the inner product of x, y ∈ R
k. For each p > 1, we denote by Lp(Rk) the set of all Rk-valued and 

FT -measurable random vectors ξ such that E[|ξ|p] < +∞, and by Sp(0, T ; Rk) the set of Rk-valued, adapted 
and continuous processes (Yt)t∈[0,T ] such that

‖Y ‖Sp :=
(
E[ sup

t∈[0,T ]
|Yt|p]

)1/p

< +∞.
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Moreover, let Mp(0, T ; Rk×d) denote the set of (Ft)-progressively measurable Rk×d-valued processes 
(Zt)t∈[0,T ] such that

‖Z‖Mp :=

⎧⎪⎨
⎪⎩E

⎡
⎢⎣
⎛
⎝ T∫

0

|Zt|2 dt

⎞
⎠

p/2⎤⎥⎦
⎫⎪⎬
⎪⎭

1/p

< +∞.

Obviously, both Sp and Mp are Banach spaces for each p > 1.
In this paper, we are concerned with the following multidimensional backward stochastic differential 

equation (BSDE for short in the remaining):

yt = ξ +
T∫
t

g(s, ys, zs)ds−
T∫
t

zsdBs, t ∈ [0, T ], (1)

where ξ ∈ Lp(Rk) is called the terminal condition, T is called the time horizon, the random function

g(ω, t, y, z) : Ω × [0, T ] × R
k × R

k×d 	−→ R
k

is (Ft)-progressively measurable for each (y, z), called the generator of BSDE (1). This BSDE is usually 
denoted by the BSDE (ξ, T, g).

For convenience of the following discussion, we introduce the following definitions concerning solutions 
of BSDE (1).

Definition 1. A solution to BSDE (1) is a pair of (Ft)-progressively measurable processes (yt, zt)t∈[0,T ] with 
values in Rk × R

k×d such that dP – a.s., t 	→ yt is continuous, t 	→ zt belongs to L2(0, T ), t 	→ g(t, yt, zt)
belongs to L1(0, T ), and dP – a.s., (1) holds true for each t ∈ [0, T ].

Definition 2. Assume that (yt, zt) is a solution to BSDE (1). If (yt, zt) ∈ Sp(0, T ; Rk) × Mp(0, T ; Rk×d) for 
some p > 1, then it will be called an Lp solution of BSDE (1).

Nonlinear BSDEs were firstly introduced in 1990 by Pardoux and Peng [36], who established the existence 
and uniqueness for L2 solutions of BSDEs under the Lipschitz assumption of the generator g. Since then, 
BSDEs have been studied with great interest, and they have become a powerful tool in many fields above 
all financial mathematics, stochastic games and optimal control, non-linear PDEs and homogenization. See 
[4,9,10,14–16,29,34,35,37,38,42,41] and the references therein for applications of BSDEs to PDEs, optimal 
control, homogenization as well as in mathematical finances.

From the beginning, many authors attempted to improve the result of [36] by weakening the Lipschitz 
hypothesis on g, see [1,2,4,6–8,13–20,22–24,26–29,31–35,37,40,43,45,46], or the L2 integrability assumptions 
on ξ, see [5–7,11,21,23,38,44], or relaxing the finite terminal time T to a stopping time or infinity, see [12,
25,29,34,35,45]. From these results we can see that the case of one-dimensional BSDEs is easier to handle 
due to the presence of the comparison theorem of solutions (see [6–8,11,12,17–21,25,27–29,31,32,38]).

One of the main purposes of the present paper is to establish an existence and uniqueness of Lp (p > 1)
solutions for multidimensional BSDEs under weaker conditions on the generators. Here, we would like to 
mention the following several results on multidimensional BSDEs, which is related closely to our result. 
First of all, Mao [33] obtained an existence and uniqueness result of an L2 solution for (1) where g satisfies 
a particular non-Lipschitz condition in y called usually the Mao condition in the literature, and Fan and 
Jiang [23] investigated the existence and uniqueness of an Lp (p > 1) solution for (1) where g satisfies a new 
kind of non-Lipschitz condition in y. Second, Peng [37] first introduced a kind of monotonicity condition 
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in y for g, and under this monotonicity condition as well as a general growth condition in y for g, Pardoux 
[35] established an existence and uniqueness result of an L2 solution for (1). Using the same monotonicity 
condition and a more general growth condition in y for g, Briand et al. [5] investigated the existence and 
uniqueness of an Lp (p ≥ 1) solution for (1). Furthermore, Situ [40] put forward a kind of weak monotonicity 
condition in y for g and considered the existence and uniqueness of Lp (p ≥ 1) solutions for BSDEs with 
jumps, but the generator g is forced to also satisfy a linear growth condition in y. Recently, Fan and Jiang 
[22] and Xu and Fan [43] established the existence and uniqueness of an L2 solution for (1) under the weak 
monotonicity condition and the more general growth condition in y for the generator g, which really and 
truly unifies the Mao condition in y and the monotonicity condition with the general growth condition in y.

In this paper, we first establish the existence and uniqueness of Lp (p > 1) solutions for multidimensional 
BSDEs under the weak monotonicity condition together with the more general growth condition in y for 
the generator g (see Theorem 1 in Section 2 and its proof in Section 4), which extends some existing results 
including Theorem 4.2 in Briand et al. [5] and Theorem 1 in Fan and Jiang [23]. Then, we overview several 
conditions related closely to the weak monotonicity condition and compare them in an effective way (see 
Proposition 1 in Section 2 and its proof in Appendix A). Finally, we put forward and prove a stability 
theorem and a comparison theorem of Lp (p > 1) solutions for this kind of BSDEs (see Theorem 2 in 
Section 4 and Theorem 3 in Section 5).

This paper is organized as follows. In Section 2 we state the assumptions and the existence and uniqueness 
result for Lp (p > 1) solutions of multidimensional BSDEs and introduce several propositions, corollaries, 
remarks and examples to show that it generalizes some existing results. In Section 3, we establish two 
nonstandard a priori estimates for Lp (p > 1) solutions of multidimensional BSDEs, based on which we 
prove a stability theorem and the existence and uniqueness result in Section 4. Then, we put forward and 
prove a new comparison theorem for Lp (p > 1) solutions of one dimensional BSDEs in Section 5. Finally, 
the proof of the relations between the assumptions related closely to the weak monotonicity condition is 
provided in Appendix A.

2. An existence and uniqueness result

In this section, we will state the existence and uniqueness result for Lp (p > 1) solutions of multidi-
mensional BSDEs and introduce several propositions, corollaries, remarks and examples to show that it 
generalizes some existing results including Theorem 4.2 in Briand et al. [5] and Theorem 1 in Fan and Jiang 
[23]. Let us start with introducing the following assumptions:

(H1)p g satisfies the p-order weak monotonicity condition in y, i.e., there exists a nondecreasing and concave 
function ρ(·) : R

+ 	→ R
+ with ρ(0) = 0, ρ(u) > 0 for u > 0 and 

∫
0+

du
ρ(u) = +∞ such that 

dP × dt – a.e., ∀ y1, y2 ∈ R
k, z ∈ R

k×d,

|y1 − y2|p−1〈 y1−y2
|y1−y2|1|y1−y2|�=0, g(ω, t, y1, z) − g(ω, t, y2, z)〉 ≤ ρ(|y1 − y2|p);

(H2) dP × dt – a.e., ∀ z ∈ R
k×d, y 	−→ g(ω, t, y, z) is continuous;

(H3) g has a general growth with respect to y, i.e.,

∀ α > 0, φα(t) := sup
|y|≤α

|g(ω, t, y, 0) − g(ω, t, 0, 0)| ∈ L1([0, T ] × Ω);

(H4) g is Lipschitz continuous in z, uniformly with respect to (ω, t, y), i.e., there exists a constant λ̄ ≥ 0
such that dP × dt – a.e., ∀ y ∈ R

k, z1, z2 ∈ R
k×d,

|g(ω, t, y, z1) − g(ω, t, y, z2)| ≤ λ̄|z1 − z2|;
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(H5)p E 

⎡
⎣|ξ|p +

⎛
⎝ T∫

0

|g(ω, t, 0, 0)| dt

⎞
⎠

p⎤
⎦ < +∞.

The following Theorem 1 is one of the main results of this paper. It’s proof will be given in Section 4.

Theorem 1. Assume that p > 1, and assumptions (H1)p ∧ 2, (H2)–(H4) and (H5)p hold. Then, the BSDE 
(ξ, T, g) has a unique Lp solution.

It should be mentioned that Theorem 1 has been proved in Xu and Fan [43] for the case of p = 2. In 
addition, by Theorem 1 the following corollary is immediate.

Corollary 1. Assume that the generator g satisfies assumptions (H1)2 and (H2)–(H4). Then, if (H5)p holds 
for some p > 2, then the BSDE (ξ, T, g) has a unique Lp solution.

In the sequel, let us further introduce the following assumptions on g:

(H1a)p g satisfies the p-order one-sided Mao condition in y, i.e., there exists a nondecreasing and concave 
function ρ(·) : R

+ 	→ R
+ with ρ(0) = 0, ρ(u) > 0 for u > 0 and 

∫
0+

du
ρ(u) = +∞ such that 

dP × dt – a.e., ∀ y1, y2 ∈ R
k, z ∈ R

k×d,

〈 y1−y2
|y1−y2|1|y1−y2|�=0, g(ω, t, y1, z) − g(ω, t, y2, z)〉 ≤ ρ

1
p (|y1 − y2|p);

(H1b)p g satisfies the p-order one-sided Constantin condition in y, i.e., there exists a nondecreasing and 
concave function ρ(·) : R+ 	→ R

+ with ρ(0) = 0, ρ(u) > 0 for u > 0 and 
∫
0+

up−1

ρp(u)du = +∞ such 

that dP × dt – a.e., ∀ y1, y2 ∈ R
k, z ∈ R

k×d,

〈 y1−y2
|y1−y2|1|y1−y2|�=0, g(ω, t, y1, z) − g(ω, t, y2, z)〉 ≤ ρ(|y1 − y2|);

(H1*) g satisfies the one-sided Osgood condition in y, i.e., there exists a nondecreasing and concave function 
ρ(·) : R+ 	→ R

+ with ρ(0) = 0, ρ(u) > 0 for u > 0 and 
∫
0+

du
ρ(u) = +∞ such that dP × dt – a.e., 

∀ y1, y2 ∈ R
k, z ∈ R

k×d,

〈 y1−y2
|y1−y2|1|y1−y2|�=0, g(ω, t, y1, z) − g(ω, t, y2, z)〉 ≤ ρ(|y1 − y2|).

Remark 1. It is easy to see that the following statements are true.

• When ρ(x) = μx for some constant μ > 0, (H1)p, (H1a)p, (H1b)p and (H1*) are all the known mono-
tonicity condition for each p ≥ 1;

• In case of p = 1, (H1)p, (H1a)p and (H1b)p are all the same as (H1*);
• In case of p = 2, (H1)p, (H1a)p and (H1b)p are respectively the so-called weak monotonicity condition, 

one-sided Mao condition and one-sided Constantin condition put forward in Fan and Jiang [22].

With respect to the previous assumptions, we have the following important observation. It’s proof will 
be provided in Appendix A.

Proposition 1. For each 1 ≤ p ≤ q < +∞, we have

(i) (H1*) =⇒ (H1)p =⇒ (H1)q;

(ii) (H1b)q =⇒ (H1b)p =⇒ (H1*);

(iii) (H1a) ⇐⇒ (H1b) .
p p
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In addition, we can show that for each p ≥ 1, the concavity condition of ρ(·) in assumptions (H1a)p and
(H1b)p can be replaced with the continuity condition.

According to Theorem 1 and Proposition 1, the following corollaries follow immediately.

Corollary 2. Assume that the generator g satisfies assumptions (H1*) and (H2)–(H4). Then, if (H5)p holds 
for some p > 1, then the BSDE (ξ, T, g) has a unique Lp solution.

Corollary 3. Assume that p > 1, and assumptions (H1a)p (or (H1b)p), (H2)–(H4) and (H5)p hold. Then, 
the BSDE (ξ, T, g) has a unique Lp solution.

The following four assumptions (H1’)p, (H1a’)p, (H1b’)p and (H1’*) are respectively the stronger and 
two-sided versions of assumptions (H1)p, (H1a)p, (H1b)p and (H1*):

(H1’)p There exists a nondecreasing and concave function ρ(·) : R+ 	→ R
+ with ρ(0) = 0, ρ(u) > 0 for 

u > 0 and 
∫
0+

du
ρ(u) = +∞ such that dP × dt – a.e., ∀ y1, y2 ∈ R

k, z ∈ R
k×d,

|y1 − y2|p−1|g(ω, t, y1, z) − g(ω, t, y2, z)| ≤ ρ(|y1 − y2|p);

(H1a’)p g satisfies the p-order Mao condition in y, i.e., there exists a nondecreasing and concave function 
ρ(·) : R+ 	→ R

+ with ρ(0) = 0, ρ(u) > 0 for u > 0 and 
∫
0+

du
ρ(u) = +∞ such that dP × dt – a.e., 

∀ y1, y2 ∈ R
k, z ∈ R

k×d,

|g(ω, t, y1, z) − g(ω, t, y2, z)| ≤ ρ
1
p (|y1 − y2|p);

(H1b’)p g satisfies the p-order Constantin condition in y, i.e., there exists a nondecreasing and concave 
function ρ(·) : R+ 	→ R

+ with ρ(0) = 0, ρ(u) > 0 for u > 0 and 
∫
0+

up−1

ρp(u)du = +∞ such that 
dP × dt – a.e., ∀ y1, y2 ∈ R

k, z ∈ R
k×d,

|g(ω, t, y1, z) − g(ω, t, y2, z)| ≤ ρ(|y1 − y2|);

(H1’*) g satisfies the Osgood condition in y, i.e., there exists a nondecreasing and concave function ρ(·) :
R

+ 	→ R
+ with ρ(0) = 0, ρ(u) > 0 for u > 0 and 

∫
0+

du
ρ(u) = +∞ such that dP × dt – a.e., 

∀ y1, y2 ∈ R
k, z ∈ R

k×d,

|g(ω, t, y1, z) − g(ω, t, y2, z)| ≤ ρ(|y1 − y2|).

Remark 2. It is easy to see that the following statements are true.

• When ρ(x) = μx for some constant μ > 0, (H1’)p, (H1a’)p, (H1b’)p and (H1’*) are all the known 
Lipschitz condition for each p ≥ 1;

• In case of p = 1, (H1’)p, (H1a’)p and (H1b’)p are the same as (H1’*);
• In case of p = 2, (H1a’)p and (H1b’)p are respectively the known Mao condition and Constantin 

condition;
• For each p ≥ 1, we have (H1’)p =⇒ (H1)p, (H1a’)p =⇒ (H1a)p + (H2) + (H3), and (H1b’)p =⇒

(H1b)p + (H2) + (H3);
• Proposition 1 holds also true for assumptions (H1’)p, (H1a’)p, (H1b’)p and (H1’*).
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Remark 3. It follows from Remarks 1–2 and Proposition 1 that Theorem 1 and some of its corollaries all 
improve some existing results for Lp solutions of multidimensional BSDEs including Theorem 4.2 in Briand 
et al. [5] and Theorem 1 in Fan and Jiang [23].

Now, we give two examples of BSDEs which satisfy the assumptions in Corollary 2. In our knowledge, 
they are not covered by the previous works.

Example 1. Let k = 1, p̄ ≥ 1 and

g(ω, t, y, z) = h(|y|) − e|Bt(ω)|·y + (e−y ∧ 1) · |z| + 1
3
√
t
1t>0,

where

h(x) =

⎧⎪⎨
⎪⎩

−x| ln x|1/p̄ , 0 < x ≤ δ;
h′(δ−)(x− δ) + h(δ) , x > δ;
0 , other cases,

with δ > 0 small enough.
It is easy to see that g satisfies (H2)–(H4) with λ̄ = 1. Furthermore, we can prove that g satisfies (H1b)p̄

by verifying that e−βy with β ≥ 0 is decreasing in y, h(·) is concave and sub-additive on R+ and then the 
following inequality holds: dP × dt – a.e.,

∀ y1, y2, z, 〈 y1 − y2

|y1 − y2|
1|y1−y2|�=0, g(ω, t, y1, z) − g(ω, t, y2, z)〉 ≤ h(|y1 − y2|)

with
∫
0+

up̄−1

hp̄(u)du = +∞.

Thus, (H1*) holds for g by Proposition 1, and then from Corollary 2 we know that if ξ ∈ Lp(Rk) for some 
p > 1, then BSDE (ξ, T, g) has a unique Lp solution.

Example 2. Let y = (y1, · · · , yk) and g(t, y, z) = (g1(t, y, z), · · · , gk(t, y, z)), where for each i = 1, · · · , k,

gi(ω, t, y, z) := e−yi + h(|y|) + sin |z| + |Bt(ω)|,

and h(x) is defined in Example 1.
It is not hard to verify that this generator g satisfies (H1b)p̄, (H1*) and (H2)–(H4) with λ̄ = 1. It then 

follows from Corollary 2 that if ξ ∈ Lp(Rk) for some p > 1, then BSDE (ξ, T, g) has a unique Lp solution.

Finally, we would like to mention that the function h(x) defined in Example 1 satisfies that

∀ q > p̄,

∫
0+

uq−1

hq(u)du < +∞.

And, we can also prove that neither of the two generators g defined in Examples 1–2 satisfies (H1a)q or 
(H1b)q for each q > p̄, which means that the inverse version of (ii) of Proposition 1 does not hold.
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3. Two nonstandard a priori estimates

In this section, we will establish two nonstandard a priori estimates concerning Lp solutions of multi-
dimensional BSDE (1), which will play an important role in the proof of our main results. The following 
assumption on the generator g will be used:

(A1) dP × dt – a.e., ∀ (y, z) ∈ R
k × R

k×d,

〈y, g(ω, t, y, z)〉 ≤ μ|y|2 + λ|y||z| + |y|ft + ϕt,

where μ and λ are two non-negative constants, ft and ϕt are two non-negative and (Ft)-progressively 
measurable processes with

E

⎡
⎣
⎛
⎝ T∫

0

ft dt

⎞
⎠

p⎤
⎦ < +∞ and E

⎡
⎢⎣
⎛
⎝ T∫

0

ϕt dt

⎞
⎠

p/2⎤⎥⎦ < +∞.

Proposition 2. Assume that p > 0 and (A1) holds. Let (yt, zt)t∈[0,T ] be a solution of BSDE (1) such that 
yt belongs to Sp(0, T ; Rk). Then zt belongs to Mp(0, T ; Rk×d), and for each 0 ≤ u ≤ t ≤ T , we have

E

⎡
⎢⎣
⎛
⎝ T∫

t

|zs|2 ds

⎞
⎠

p/2∣∣∣∣∣∣∣Fu

⎤
⎥⎦ ≤ Cμ,λ,p,TE

[
sup

s∈[t,T ]
|ys|p

∣∣∣∣∣Fu

]
+ CpE

⎡
⎣
⎛
⎝ T∫

t

fs ds

⎞
⎠

p∣∣∣∣∣∣Fu

⎤
⎦

+ CpE

⎡
⎢⎣
⎛
⎝ T∫

t

ϕs ds

⎞
⎠

p/2∣∣∣∣∣∣∣Fu

⎤
⎥⎦ ,

where Cμ,λ,p,T is a nonnegative constant depending on (μ, λ, p, T ), and Cp is a nonnegative constant de-
pending only on p.

Remark 4. Note that the constant Cp does not depend on μ and λ. This fact will play an important role 
later.

Proof of Proposition 2. For each integer n ≥ 1, let us introduce the stopping time

τn = inf

⎧⎨
⎩t ∈ [0, T ] :

t∫
0

|zs|2 ds ≥ n

⎫⎬
⎭ ∧ T.

Applying Itô’s formula to |yt|2 leads the equation

|yt∧τn |2 +
τn∫

t∧τn

|zs|2 ds = |yτn |2 + 2
τn∫

t∧τn

〈ys, g(s, ys, zs)〉 ds− 2
τn∫

t∧τn

〈ys, zsdBs〉, t ∈ [0, T ].

It follows from (A1) that for each s ∈ [t ∧ τn, τn],

2〈ys, g(s, ys, zs)〉 ≤ 2(μ + λ2)|ys|2 + |zs|2 + 2|ys|fs + 2ϕs.
2
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Thus, we have

1
2

τn∫
t∧τn

|zs|2 ds ≤ 2[(μ + λ2)T + 1] sup
s∈[t∧τn,T ]

|ys|2 +

⎛
⎝ T∫

t∧τn

fs ds

⎞
⎠

2

+ 2
T∫

t∧τn

ϕs ds + 2

∣∣∣∣∣∣
τn∫

t∧τn

〈ys, zsdBs〉

∣∣∣∣∣∣ ,
and the inequality (a + b)p/2 ≤ 2p(ap/2 + bp/2) yields the existence of a constant cp > 0 depending only on p

such that ⎛
⎝ τn∫

t∧τn

|zs|2 ds

⎞
⎠

p/2

≤ cp[(μ + λ2)T + 1]p/2 sup
s∈[t∧τn,T ]

|ys|p + cp

⎛
⎝ T∫

t∧τn

fs ds

⎞
⎠

p

+ cp

⎛
⎝ T∫

t∧τn

ϕs ds

⎞
⎠

p/2

+ cp

∣∣∣∣∣∣
τn∫

t∧τn

〈ys, zsdBs〉

∣∣∣∣∣∣
p/2

. (2)

Furthermore, the Burkholder–Davis–Gundy (BDG) inequality yields that there exists a constant dp > 0
depending only on p such that for each 0 ≤ u ≤ t ≤ T ,

cpE

⎡
⎢⎣
∣∣∣∣∣∣

τn∫
t∧τn

〈ys, zsdBs〉

∣∣∣∣∣∣
p/2
∣∣∣∣∣∣∣Fu

⎤
⎥⎦ ≤ dpE

⎡
⎢⎣
⎛
⎝ τn∫

t∧τn

|ys|2|zs|2 ds

⎞
⎠

p/4
∣∣∣∣∣∣∣Fu

⎤
⎥⎦

≤
d2
p

2 E

[
sup

s∈[t∧τn,T ]
|ys|p

∣∣∣∣∣Fu

]
+ 1

2E

⎡
⎢⎣
⎛
⎝ τn∫

t∧τn

|zs|2 ds

⎞
⎠

p/2
∣∣∣∣∣∣∣Fu

⎤
⎥⎦ .

Finally, taking the conditional mathematical expectation with respect to Fu in both sides of (2) and using 
the above inequality together with Fatou’s lemma and Lebesgue’s dominated convergence theorem yields 
the desired result. The proof is completed. �

Let us further introduce the following assumption on the generator g:

(A2) dP × dt – a.e., ∀ (y, z) ∈ R
k × R

k×d,

|y|p−1〈 y
|y|1|y|�=0, g(ω, t, y, z)〉 ≤ ψ(|y|p) + λ|y|p−1|z| + |y|p−1ft,

where λ is a non-negative constant, ft is a non-negative and (Ft)-progressively measurable process 
with

E

⎡
⎣
⎛
⎝ T∫

0

ft dt

⎞
⎠

p⎤
⎦ < +∞,

and ψ(·) : R+ 	→ R
+ is a nondecreasing and concave function with ψ(0) = 0.

Proposition 3. Assume that p > 1 and (A2) holds. Let (yt, zt)t∈[0,T ] be an Lp solution of BSDE (1). Then, 
there exists a nonnegative constant Cλ,p,T depending only on λ, p and T such that for each 0 ≤ u ≤ t ≤ T ,

E

[
sup

s∈[t,T ]
|ys|p

∣∣∣∣∣Fu

]
≤ Cλ,p,T

⎧⎨
⎩E[ |ξ|p|Fu] +

T∫
ψ(E[ |ys|p|Fu]) ds + E

⎡
⎣
⎛
⎝ T∫

fs ds

⎞
⎠

p∣∣∣∣∣∣Fu

⎤
⎦
⎫⎬
⎭ .
t t
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Proof. It follows from Corollary 2.3 in Briand et al. [5] that, with c(p) = p[(p − 1) ∧ 1]/2,

|yt|p + c(p)
T∫
t

|ys|p−21|ys|�=0|zs|2 ds

≤ |ξ|p + p

T∫
t

|ys|p−21|ys|�=0〈ys, g(s, ys, zs)〉 ds− p

T∫
t

|ys|p−21|ys|�=0〈ys, zsdBs〉.

Assumption (A2) yields that, with probability one, for each t ∈ [0, T ],

|yt|p + c(p)
T∫
t

|ys|p−21|ys|�=0|zs|2 ds

≤ |ξ|p + p

T∫
t

[ψ(|ys|p) + λ|ys|p−1|zs| + |ys|p−1fs] ds− p

T∫
t

|ys|p−21|ys|�=0〈ys, zsdBs〉.

First of all, in view of the fact that ψ(·) increases at most linearly since it is a nondecreasing concave 
function and ψ(0) = 0, we deduce from the previous inequality that

T∫
0

|ys|p−21|ys|�=0|zs|2 ds < +∞, dP – a.s.

Moreover, it follows from the inequality ab ≤ (a2 + b2)/2 that

pλ|ys|p−1|zs| = p

( √
2λ√

(p− 1) ∧ 1
|ys|

p
2

)(√
(p− 1) ∧ 1

2 |ys|
p−2
2 1|ys|�=0|zs|

)

≤ pλ2

(p− 1) ∧ 1 |ys|
p + c(p)

2 |ys|p−21|ys|�=0|zs|2.

Thus, for each t ∈ [0, T ], we have

|yt|p + c(p)
2

T∫
t

|ys|p−21|ys|�=0|zs|2 ds ≤ Xt − p

T∫
t

|ys|p−21|ys|�=0〈ys, zsdBs〉, (3)

where

Xt = |ξ|p + dλ,p

T∫
t

|ys|p ds + p

T∫
t

ψ(|ys|p) ds + p

T∫
t

|ys|p−1fs ds

with dλ,p = pλ2/[(p− 1) ∧ 1] > 0.
It follows from the BDG inequality that {Mt :=

∫ t

0 |ys|p−21|ys|�=0〈ys, zsdBs〉}t∈[0,T ] is a uniformly inte-
grable martingale. In fact, Young’s inequality yields

E

[
〈M,M〉1/2T

]
≤ E

⎡
⎢⎣ sup
s∈[0,T ]

|ys|p−1 ·

⎛
⎝ T∫

|zs|2 ds

⎞
⎠

1/2⎤⎥⎦

0
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= E

⎧⎪⎪⎨
⎪⎪⎩
(

sup
s∈[0,T ]

|ys|p
) p−1

p

·

⎡
⎢⎣
⎛
⎝ T∫

0

|zs|2 ds

⎞
⎠

p/2⎤⎥⎦
1
p

⎫⎪⎪⎬
⎪⎪⎭

≤ (p− 1)
p

E

[
sup

s∈[0,T ]
|ys|p

]
+ 1

p
E

⎡
⎢⎣
⎛
⎝ T∫

0

|zs|2 ds

⎞
⎠

p/2⎤⎥⎦
< +∞.

Thus, for each 0 ≤ u ≤ t ≤ T , taking the conditional mathematical expectation with respect to Fu in both 
sides of the inequality (3) yields both

c(p)
2 E

⎡
⎣ T∫

t

|ys|p−21|ys|�=0|zs|2 ds

∣∣∣∣∣∣Fu

⎤
⎦ ≤ E[Xt|Fu] (4)

and

E

[
sup

s∈[t,T ]
|ys|p

∣∣∣∣∣Fu

]
≤ E[Xt|Fu] + kpE

[
(〈M,M〉T − 〈M,M〉t)1/2

∣∣∣Fu

]
, (5)

where we have used the BDG inequality in (5), and kp is a constant depending only on p.
On the other hand, it follows from Young’s inequality that for each 0 ≤ u ≤ t ≤ T ,

kpE
[
(〈M,M〉T − 〈M,M〉t)1/2

∣∣∣Fu

]
≤ kpE

⎡
⎢⎣ sup

s∈[t,T ]
|ys|p/2 ·

⎛
⎝ T∫

t

|ys|p−21|ys|�=0|zs|2 ds

⎞
⎠

1/2∣∣∣∣∣∣∣Fu

⎤
⎥⎦

≤ 1
2E

[
sup

s∈[t,T ]
|ys|p

∣∣∣∣∣Fu

]
+

k2
p

2 E

⎡
⎣ T∫

t

|ys|p−21|ys|�=0|zs|2 ds

∣∣∣∣∣∣Fu

⎤
⎦ .

It then follows from inequalities (4) and (5) that there exists a constant k′p > 0 depending only on p such 
that

E

[
sup

s∈[t,T ]
|ys|p

∣∣∣∣∣Fu

]
≤ k′pE[Xt|Fu].

For each 0 ≤ u ≤ t ≤ T , applying once again Young’s inequality we get, with k′′p is another constant 
depending only on p,

pk′pE

⎡
⎣ T∫

t

|ys|p−1fs ds

∣∣∣∣∣∣Fu

⎤
⎦ ≤ pk′pE

⎡
⎣ sup

s∈[t,T ]
|ys|p−1

T∫
t

fs ds

∣∣∣∣∣∣Fu

⎤
⎦

= E

⎡
⎢⎣
(

p

2(p− 1) sup
s∈[t,T ]

|ys|p
) p−1

p

·

⎡
⎣pk′′p

2

⎛
⎝ T∫

t

fs ds

⎞
⎠

p⎤
⎦

1
p

∣∣∣∣∣∣∣Fu

⎤
⎥⎦

≤ 1
2E

[
sup

s∈[t,T ]
|ys|p

∣∣∣∣∣Fu

]
+

k′′p
2 E

⎡
⎣
⎛
⎝ T∫

fs ds

⎞
⎠

p∣∣∣∣∣∣Fu

⎤
⎦ ,
t
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from which we deduce, combing back to the definition of Xt, that

E

[
sup

s∈[t,T ]
|ys|p

∣∣∣∣∣Fu

]
≤ 2k′pE

⎡
⎣ |ξ|p + dλ,p

T∫
t

|ys|p ds + p

T∫
t

ψ(|ys|p) ds

∣∣∣∣∣∣Fu

⎤
⎦ + k′′pE

⎡
⎣
⎛
⎝ T∫

t

fs ds

⎞
⎠

p∣∣∣∣∣∣Fu

⎤
⎦ .

Letting

ht = E

[
sup

s∈[t,T ]
|ys|p

∣∣∣∣∣Fu

]

in the previous inequality and using Fubini’s Theorem and Jensen’s inequality yields, in view of the concavity 
of ψ(·), that for each 0 ≤ u ≤ t ≤ T ,

ht ≤ 2k′pE[ |ξ|p|Fu] + 2pk′p

T∫
t

ψ(E[ |ys|p|Fu]) ds + k′′pE

⎡
⎣
⎛
⎝ T∫

t

fs ds

⎞
⎠

p∣∣∣∣∣∣Fu

⎤
⎦ + 2k′pdλ,p

T∫
t

hs ds.

Finally, Gronwall’s inequality yields that for each t ∈ [0, T ],

ht ≤ e2k′
pdλ,p(T−t)

⎧⎨
⎩2k′pE[ |ξ|p|Fu] + 2pk′p

T∫
t

ψ(E[ |ys|p|Fu]) ds + k′′pE

⎡
⎣
⎛
⎝ T∫

t

fs ds

⎞
⎠

p∣∣∣∣∣∣Fu

⎤
⎦
⎫⎬
⎭ ,

which completes the proof of Proposition 3. �
4. A stability theorem and the proof of Theorem 1

In this section, we shall put forward and prove a stability theorem for Lp (p > 1) solutions to multidi-
mensional BSDEs with generators satisfying (H1)p ∧ 2 and (H4). Based on this result, we shall further give 
the proof of Theorem 1 in Section 2.

The following lemma will be used, which comes from Fan and Jiang [17].

Lemma 1. Assume that κ(·) : R+ 	→ R
+ is a nondecreasing and concave function with κ(0) = 0. Then, it 

increases at most linearly, i.e., there exists a constant A > 0 such that

κ(x) ≤ A(x + 1), ∀ x ≥ 0.

Furthermore, for each m ≥ 1, we have

κ(x) ≤ (m + 2A)x + κ( 2A
m + 2A ), ∀ x ∈ R

+.

In the sequel, let p > 1 and for each n ≥ 1, let (yt, zt)t∈[0,T ] and (ynt , znt )t∈[0,T ] be respectively an Lp

solution of the BSDE (ξ, T, g) and the following BSDE depending on parameter n:

ynt = ξn +
T∫
gn(s, yns , zns )ds−

T∫
zns dBs, t ∈ [0, T ].
t t
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Furthermore, we introduce the following assumptions:

(B1) ξn ∈ Lp(Rk) for each n ≥ 1 and all of gn satisfy assumptions (H1)p ∧ 2 and (H4) with the same ρ(·)
and λ̄.

(B2) lim
n→∞

E 

⎡
⎣|ξn − ξ|p +

⎛
⎝ T∫

0

|gn(s, ys, zs) − g(s, ys, zs)| ds

⎞
⎠

p⎤
⎦ = 0.

The following Theorem 2 is one of the main results of this section.

Theorem 2. Under assumptions (B1) and (B2), we have

lim
n→∞

E

⎡
⎢⎣ sup
s∈[0,T ]

|yns − ys|p +

⎛
⎝ T∫

0

|zns − zs|2 ds

⎞
⎠

p/2⎤⎥⎦ = 0. (6)

Proof. First, in view of (B1), by (i) of Proposition 1 we note that for each n ≥ 1,

(a) (H1)p holds true for each gn, together with a new and same function ρ̂(x);
(in case of 1 < p ≤ 2, ρ̂(x) ≡ ρ(x))

(b) (H1)2 holds also true for each gn, together with a new and same function ρ̄(x).
(in case of p ≥ 2, ρ̄(x) ≡ ρ(x))

In the sequel, for each n ≥ 1, let ŷn· = yn· − y·, ẑn· = zn· − z·, and ξ̂n = ξn − ξ. Then

ŷnt = ξ̂n +
T∫
t

ĝn(s, ŷns , ẑns ) ds−
T∫
t

ẑns dBs, t ∈ [0, T ], (7)

where for each (y, z) ∈ R
k × R

k×d,

ĝn(s, y, z) := gn(s, y + ys, z + zs) − g(s, ys, zs).

Note that

ĝn(s, y, z) = gn(s, y + ys, z + zs) − gn(s, ys, zs) + gn(s, ys, zs) − g(s, ys, zs). (8)

We can check by assumptions (B1) and (B2) together with (a) that the generator ĝn of BSDE (7) satisfies 
assumption (A2) with

ψ(x) = ρ̂(x), λ = λ̄, and ft = |gn(t, yt, zt) − g(t, yt, zt)|.

It then follows from Proposition 3 with u = 0 that there exists a constant Cλ̄,p,T > 0 depending only on 
λ̄, p and T such that for each n ≥ 1 and each t ∈ [0, T ],

E

[
sup

r∈[t,T ]
|ŷnr |p

]
≤ Cλ̄,p,TE

[
|ξ̂n|p

]
+ Cλ̄,p,T

T∫
t

ρ̂

(
E

[
sup

r∈[s,T ]
|ŷnr |p

])
ds

+ Cλ̄,p,TE

⎡
⎣
⎛
⎝ T∫

|gn(s, ys, zs) − g(s, ys, zs)| ds

⎞
⎠

p⎤
⎦ . (9)
0
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Furthermore, in view of (B2) and the fact that ρ̂(·) is of linear growth by Lemma 1, Gronwall’s inequality 
yields the existence of a constant M > 0 independent of n such that

E

[
sup

r∈[0,T ]
|ŷnr |p

]
≤ M.

Thus, in view of (B2), by taking the limsup in (9) with respect to n and using Fatou’s lemma, the mono-
tonicity and continuity of ρ̂(·) and Bihari’s inequality (see [3]) we can conclude that for each t ∈ [0, T ],

lim
n→∞

E

[
sup

s∈[t,T ]
|yns − ys|p

]
= 0. (10)

Furthermore, by (B2), (8), (b) and Lemma 1 we can also check that the generator ĝn of BSDE (7) satisfies 
assumption (A1) with

μ = m + 2A, λ = λ̄, ft = |gn(t, yt, zt) − g(t, yt, zt)| and ϕt = ρ̄( 2A
m + 2A )

for each m ≥ 1. It then follows from Proposition 2 with u = t = 0 that there exists a constant Cm,λ̄,p,T > 0
depending on m, λ̄, p and T , and a constant Cp depending only on p such that for each m, n ≥ 1,

E

⎡
⎢⎣
⎛
⎝ T∫

0

|ẑns |2 ds

⎞
⎠

p/2⎤⎥⎦ ≤ Cm,λ̄,p,TE

[
sup

t∈[0,T ]
|ŷnt |p

]
+ Cp

(
ρ̄( 2A

m + 2A ) · T
)p/2

+ CpE

⎡
⎣
⎛
⎝ T∫

0

|gn(s, ys, zs) − g(s, ys, zs)| ds

⎞
⎠

p⎤
⎦ .

Thus, in view of (10), (B2) and the fact that ρ̄(x) is continuous function with ρ̄(0) = 0, letting first n → ∞
and then m → ∞ in the previous inequality yields that

lim
n→∞

E

⎡
⎢⎣
⎛
⎝ T∫

0

|zns − zs|2 ds

⎞
⎠

p/2⎤⎥⎦ = 0.

Thus, we obtain (6). The proof of Theorem 2 is then complete. �
Now, we are in a position to prove Theorem 1.

Proof of Theorem 1. Assume that p > 1, and assumptions (H1)p ∧ 2 with ρ(x), (H2)–(H4) and (H5)p hold 
for the generator g. By (i) of Proposition 1 we note that (H1)2 holds also true for g, together with a new 
function ρ̄(x) (in case of p ≥ 2, ρ̄(x) ≡ ρ(x)).

The uniqueness part of Theorem 1 is an immediate corollary of Theorem 2. Now, let us prove the existence 
part. First, for each n ≥ 1, let qn(x) = xn/(|x| ∨ n) for x ∈ R

k, and

ξn := qn(ξ) and gn(t, y, z) := g(t, y, z) − g(t, 0, 0) + qn(g(t, 0, 0)). (11)

Note that for each n ≥ 1, assumptions (H1)2 with ρ̄(x), (H2)–(H4) hold true for each generator gn. Fur-
thermore, for each n ≥ 1,

|ξn| ≤ n dP – a.s. and |gn(t, 0, 0)| ≤ n dP× dt – a.e., (12)
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and by (H5)p we have

lim
m,n→∞

E

⎡
⎣|ξm − ξn|p +

⎛
⎝ T∫

0

|qm(g(s, 0, 0)) − qn(g(s, 0, 0))| ds

⎞
⎠

p⎤
⎦ = 0. (13)

By virtue of Theorem 1 in Xu and Fan [43] we can know that the BSDE (ξn, T, gn) has a unique L2 solution 
for each n ≥ 1, denoted by (ynt , znt )t∈[0,T ].

Since for each n ≥ 1, gn satisfies (H1)2 with ρ̄(x), and (H4), we can check that it also satisfies (A2) with

p = 2, ψ(x) = ρ̄(x), λ = λ̄ and ft = qn(g(t, 0, 0)).

Thus, Proposition 3 together with (12) yields that for each n ≥ 1, (ynt )t∈[0,T ] is a bounded process and then 
belongs to Sp(0, T ; Rk). Furthermore, by Lemma 1 we know that there exists a constant A > 0 such that

ρ̄(x) ≤ A(x + 1), ∀ x ≥ 0,

and then gn satisfies (A1) with

μ = A, λ = λ̄, ft = qn(g(t, 0, 0)) and ϕt = A,

and Proposition 2 together with (12) yields that for each n ≥ 1, (znt )t∈[0,T ] belongs to Mp(0, T ; Rk).
In the sequel, for each m, n ≥ 1, let

ξ̂m,n = ξm − ξn, ŷm,n
· = ym· − yn· , ẑm,n

· = zm· − zn· .

Then (ŷm,n
· , ̂zm,n

· ) is an Lp solution of the following BSDE depending on (m, n):

ŷm,n
t = ξ̂m,n +

T∫
t

ĝm,n(s, ŷm,n
s , ẑm,n

s ) ds−
T∫
t

ẑm,n
s dBs, t ∈ [0, T ], (14)

where for each (y, z) ∈ R
k × R

k×d,

ĝm,n(s, y, z) := gm(s, y + yns , z + zns ) − gn(s, yns , zns ).

Note by (11) that for each m, n ≥ 1,

ĝm,n(t, y, z) = qm(g(t, 0, 0)) − qn(g(t, 0, 0)) + g(t, y + ynt , z + znt ) − g(t, ynt , znt ).

By the assumptions of the generator g together with (13) we can check that the generator ĝm,n of BSDE 
(14) satisfies (H1)p ∧ 2 and (H4) with ρ(·) and λ̄ for each m, n ≥ 1, and

lim
m,n→∞

E

⎡
⎣|ξ̂m,n − 0|p +

⎛
⎝ T∫

0

|ĝm,n(s, 0, 0) − g̃(s, 0, 0)| ds

⎞
⎠

p⎤
⎦ = 0,

where for each (y, z) ∈ R
k × R

k×d,

g̃(s, y, z) := 0.
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Thus, we can apply Theorem 2 for BSDE (14) to get that

lim
m,n→∞

E

⎡
⎢⎣ sup
s∈[0,T ]

|ŷm,n
s − 0|p +

⎛
⎝ T∫

0

|ẑm,n
s − 0|2 ds

⎞
⎠

p/2⎤⎥⎦ = 0,

which means that {(ynt , znt )t∈[0,T ]}∞n=1 is a Cauchy sequence in Sp(0, T ; Rk) × Mp(0, T ; Rk×d).
Finally, let (yt, zt)t∈[0,T ] be the limit process of the sequence {(ynt , znt )t∈[0,T ]}∞n=1 in the process space 

Sp(0, T ; Rk) × Mp(0, T ; Rk×d). We pass to the limit in the sense of uniform convergence in probability for 
BSDE (ξn, T, gn), thanks to (H2), (H3) and (H4), to see that (yt, zt)t∈[0,T ] solves the BSDE (ξ, T, g). Thus, 
we prove the existence part and finally complete the proof of Theorem 1. �
5. A comparison theorem

In this section, we restrict ourselves to the case k = 1 and prove the following comparison theorem of Lp

solutions for BSDEs with generators satisfying (H1)p and (H4).

Theorem 3. Let p > 1, ξ, ξ′ ∈ Lp(Rk), g and g′ be two generators of BSDEs, and (y·, z·) and (y′·, z′·) be 
respectively an Lp solution to the BSDE (ξ, T, g) and BSDE (ξ′, T, g′). If ξ ≤ ξ′, dP – a.s. and one of the 
following two statements holds true:

(i) g satisfies (H1)p and (H4), and

g(t, y′t, z′t) ≤ g′(t, y′t, z′t), dP× dt – a.e.;

(ii) g′ satisfies (H1)p and (H4), and

g(t, yt, zt) ≤ g′(t, yt, zt), dP× dt – a.e.,

then for each t ∈ [0, T ], we have

yt ≤ y′t, dP – a.s.

Proof. We first assume that ξ ≤ ξ′, dP – a.s., g satisfies (H1)p with ρ(x) and (H4), and g(t, y′t, z′t) ≤
g′(t, y′t, z′t), dP × dt – a.e.

Setting ŷt = yt − y′t, ẑt = zt − z′t, ξ̂ = ξ − ξ′, by the Itô–Tanaka formula (see Exercise VI.1.25 in Revuz 
and Yor [39] for details) we have that for each t ∈ [0, T ],

(ŷ+
t )p + p(p− 1)

2

T∫
t

|ŷs|p−21ŷs>0|ẑs|2 ds

= (ξ̂+)p + p

T∫
t

|ŷs|p−11ŷs>0[g(s, ys, zs) − g′(s, y′s, z′s)] ds− p

T∫
t

|ŷs|p−11ŷs>0ẑsdBs. (15)

Since g(s, y′s, z′s) − g′(s, y′s, z′s) is non-positive, we have

g(s, ys, zs) − g′(s, y′s, z′s) = g(s, ys, zs) − g(s, y′s, z′s) + g(s, y′s, z′s) − g′(s, y′s, z′s)

≤ g(s, ys, zs) − g(s, y′s, zs) + g(s, y′s, zs) − g(s, y′s, z′s)
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and we deduce, using (H1)p and (H4) for g together with a similar inequality before (3), that

p|ŷs|p−11ŷs>0[g(s, ys, zs) − g′(s, y′s, z′s)] ≤ pρ((ŷ+
s )p) + pλ̄|ŷ+

s |p−1|ẑs|

≤ pρ̄((ŷ+
s )p) + p(p− 1)

4 |ŷs|p−21ŷs>0|ẑs|2, (16)

where

ρ̄(u) := ρ(u) + dλ̄,pu

with dλ̄,p = λ̄2/(p − 1) is again a nondecreasing and concave function with ρ̄(0) = 0 and ρ̄(u) > 0 for u > 0. 
Thus, in view of ξ ≤ ξ′, it follows from (15) and (16) that for each t ∈ [0, T ],

(ŷ+
t )p ≤ p

T∫
t

ρ̄((ŷ+
s )p)ds− p

T∫
t

|ŷs|p−11ŷs>0ẑsdBs.

Note that (
∫ t

0 |ŷs|p−11ŷs>0ẑsdBs)t∈[0,T ] is a martingale by the BDG inequality, and ρ̄(u) is a concave func-
tion. It follows from Jensen’s inequality that for each t ∈ [0, T ],

E[(ŷ+
t )p] ≤ p

T∫
t

ρ̄(E[(ŷ+
s )p])ds. (17)

Furthermore, since ρ(·) is a concave function and ρ(0) = 0, we have ρ(u) ≥ ρ(1)u for each u ∈ [0, 1], and 
then for each 0 ≤ u ≤ 1,

1
ρ̄(u) = 1

ρ(u) + dλ̄,pu
≥ 1

ρ(u) + dλ̄,p

ρ(1)ρ(u)
= ρ(1)

ρ(1) + dλ̄,p
· 1
ρ(u) .

As a result,

∫
0+

du
ρ̄(u) = +∞.

Thus, in view of (17), Bihari’s inequality yields that for each t ∈ [0, T ],

E[(ŷ+
t )p] = 0

and then

yt ≤ y′t, dP – a.s.

Now, let us assume that ξ ≤ ξ′, dP – a.s., g′ satisfies (H1)p with ρ(x), and (H4), and g(t, yt, zt) ≤
g′(t, yt, zt), dP × dt – a.e. Since g(s, ys, zs) − g′(s, ys, zs) is non-positive, we have

g(s, ys, zs) − g′(s, y′s, z′s) = g(s, ys, zs) − g′(s, ys, zs) + g′(s, ys, zs) − g′(s, y′s, z′s)

≤ g′(s, ys, zs) − g′(s, y′s, zs) + g′(s, y′s, zs) − g′(s, y′s, z′s).
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Furthermore, using (H1)p and (H4) for g′, we know that the inequality (16) holds still true. Therefore, the 
same argument as above yields that for each t ∈ [0, T ],

yt ≤ y′t, dP – a.s.

The theorem is proved. �
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Appendix A

In this section, we will give the proof of Proposition 1 in Section 2. The following Lemma 2 will be used 
frequently, which comes from Lemma 6.1 in Fan and Jiang [22].

Lemma 2. Let f(·) be a nondecreasing continuous function on R+ with f(0) = 0. Then, the following two 
statements hold true:

(a) If f(·) is concave on R+, then f(x)/x, x > 0 is a non-increasing function.
(b) If f(x)/x, x > 0 is a non-increasing function on R+, then there exists a nondecreasing concave function 

p(·) defined on R+ such that for each x ≥ 0,

f(x) ≤ p(x) ≤ 2f(x).

Proof of Proposition 1. First, let us prove that for each 1 ≤ p < q,

(H1)p =⇒ (H1)q.

In fact, assume that g satisfies (H1)p with a nondecreasing concave function ρ(·). Then we have, dP ×dt – a.e., 
∀y1, y2 ∈ R

k, z ∈ R
k×d,

|y1 − y2|q−1〈 y1 − y2

|y1 − y2|
1|y1−y2|�=0, g(ω, t, y1, z) − g(ω, t, y2, z)〉 ≤ ρ̄(|y1 − y2|q),

where for each x ≥ 0,

ρ̄(x) = x1− p
q ρ(x

p
q ).

Obviously, ρ̄(·) is a nondecreasing continuous function with ρ̄(0) = 0 and ρ̄(x) > 0 for x > 0. It follows 
from (a) of Lemma 2 that

ρ̄(x)
x

= ρ(x
p
q )

x
p
q

is a non-increasing function on R+. Furthermore, by virtue of (b) of Lemma 2 we know that there exists a 
nondecreasing concave function κ(·) such that for each x ≥ 0,

ρ̄(x) ≤ κ(x) ≤ 2ρ̄(x).
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Then we have, dP × dt – a.e., ∀y1, y2 ∈ R
k, z ∈ R

k×d,

|y1 − y2|q−1〈 y1 − y2

|y1 − y2|
1|y1−y2|�=0, g(ω, t, y1, z) − g(ω, t, y2, z)〉 ≤ κ(|y1 − y2|q)

and
∫
0+

du
κ(u) ≥ 1

2

∫
0+

du
ρ̄(u) = 1

2

∫
0+

u
p
q−1

ρ(u
p
q )

du = q

2p

∫
0+

dx
ρ(x) = +∞.

Hence, g satisfies (H1)q with κ(·), and then (i) of Proposition 1 holds true.
Then, we prove that for each 1 ≤ p < q,

(H1b)q =⇒ (H1b)p.

Indeed, it suffices to show that for a nondecreasing concave function ρ(·) on R+ with ρ(0) = 0, if

∫
0+

uq−1

ρq(u)du = +∞,

then
∫
0+

up−1

ρp(u)du = +∞.

However, by (a) of Lemma 2 this statement follows easily from the following observation:

lim inf
u→0+

up−1

ρp(u)
uq−1

ρq(u)
= lim inf

u→0+

(
ρ(u)
u

)q−p

≥
(
ρ(1)
1

)q−p

> 0.

Hence, (ii) of Proposition 1 is also true.
In the sequel, we prove that for each p ≥ 1,

(H1a)p =⇒ (H1b)p.

In fact, assume that g satisfies (H1a)p with a nondecreasing concave function ρ(·). Then we have, dP ×
dt – a.e., ∀y1, y2 ∈ R

k, z ∈ R
k×d,

〈 y1 − y2

|y1 − y2|
1|y1−y2|�=0, g(ω, t, y1, z) − g(ω, t, y2, z)〉 ≤ ρ̄(|y1 − y2|),

where for each x ≥ 0,

ρ̄(x) = ρ
1
p (xp).

Obviously, ρ̄(·) is a nondecreasing continuous function with ρ̄(0) = 0 and ρ̄(x) > 0 for x > 0. It follows 
from (a) of Lemma 2 that

ρ̄(x) =
(
ρ(xp)

p

) 1
p

x x
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is a non-increasing function on R+. Furthermore, by virtue of (b) of Lemma 2 we know that there exists a 
nondecreasing concave function κ(·) such that for each x ≥ 0,

ρ̄(x) ≤ κ(x) ≤ 2ρ̄(x).

Then we have, dP × dt – a.e., ∀y1, y2 ∈ R
k, z ∈ R

k×d,

〈 y1 − y2

|y1 − y2|
1|y1−y2|�=0, g(ω, t, y1, z) − g(ω, t, y2, z)〉 ≤ κ(|y1 − y2|)

and ∫
0+

up−1

κp(u)du ≥ 1
2p

∫
0+

up−1

ρ̄p(u)du = 1
2p

∫
0+

up−1

ρ(up)du = 1
p2p

∫
0+

1
ρ(x)dx = +∞.

Hence, g satisfies (H1b)p with κ(·).
Furthermore, we prove that for each p ≥ 1,

(H1b)p =⇒ (H1a)p.

In fact, assume that g satisfies (H1b)p with a nondecreasing concave function ρ(·). Then we have, dP ×
dt – a.e., ∀y1, y2 ∈ R

k, z ∈ R
k×d,

〈 y1 − y2

|y1 − y2|
1|y1−y2|�=0, g(ω, t, y1, z) − g(ω, t, y2, z)〉 ≤ ρ̄

1
p (|y1 − y2|p),

where for each x ≥ 0,

ρ̄(x) = ρp(x
1
p ).

Obviously, ρ̄(·) is a nondecreasing continuous function with ρ̄(0) = 0 and ρ̄(x) > 0 for x > 0. It follows 
from (a) of Lemma 2 that

ρ̄(x)
x

=
(
ρ(x

1
p )

x
1
p

)p

is a non-increasing function on R+. Furthermore, by virtue of (b) of Lemma 2 we know that there exists a 
nondecreasing concave function κ(·) such that for each x ≥ 0,

ρ̄(x) ≤ κ(x) ≤ 2ρ̄(x).

Then we have, dP × dt – a.e., ∀y1, y2 ∈ R
k, z ∈ R

k×d,

〈 y1 − y2

|y1 − y2|
1|y1−y2|�=0, g(ω, t, y1, z) − g(ω, t, y2, z)〉 ≤ κ

1
p (|y1 − y2|p)

and ∫
0+

du
κ(u) ≥ 1

2

∫
0+

du
ρ̄(u) = 1

2

∫
0+

du
ρp(u

1
p )

= p

2

∫
0+

xp−1

ρp(x)dx = +∞.

Hence, g satisfies (H1a)p with κ(·), and then (iii) of Proposition 1 holds true.
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Finally, we prove that the concavity condition of ρ(·) in (H1b)p and (H1a)p can be replaced with the 
continuity condition.

Assume first that p ≥ 1 and g satisfies (H1b)p with ρ(·) : R+ 	→ R
+, which is a nondecreasing continuous 

(but not concave) function with ρ(0) = 0, ρ(u) > 0 for u > 0 and

∫
0+

up−1

ρp(u)du = +∞.

Then, there exists a P ⊂ Ω × [0, T ] with

dP× dt((Ω × [0, T ]) ∩ Pc) = 0

such that for each (ω, t) ∈ P, y1, y2 ∈ R
k and z ∈ R

k×d, we have

〈 y1 − y2

|y1 − y2|
1|y1−y2|�=0, g(ω, t, y1, z) − g(ω, t, y2, z)〉 ≤ ρ(|y1 − y2|). (18)

Now, for each r ∈ R
+, let

F (r) = sup
{
〈 y1−y2
|y1−y2|1|y1−y2|�=0, g(ω, t, y1, z) − g(ω, t, y2, z)〉 : (y1, y2) ∈ R

k × R
k,

|y1 − y2| ≤ r, (ω, t, z) ∈ P × R
k×d

}
.

It is clear that F (0) = 0. It follows from (18) that F (·) is well-defined, nondecreasing and for each r ≥ 0,

0 ≤ F (r) ≤ ρ(r).

Thus, in view of the continuity of ρ(·) and the fact ρ(0) = 0, we know that F (·) is right-continuous at 0. 
Furthermore, for r, s ≥ 0 and (y1, y2) ∈ R

k ×R
k with r ≤ |y1 − y2| ≤ r + s, it follows from the definition of 

F (·) that for each (ω, t) ∈ P, y1, y2 ∈ R
k and z ∈ R

k×d,

〈 y1 − y2

|y1 − y2|
1|y1−y2|�=0, g(ω, t, y1, z) − g(ω, t, y2, z)〉

= 〈 y1 − y2

|y1 − y2|
1|y1−y2|�=0, g(ω, t, y1, z) − g(ω, t, y1 + r

y2 − y1

|y2 − y1|
, z)〉

+ 〈 y1 − y2

|y1 − y2|
1|y1−y2|�=0, g(ω, t, y1 + r

y2 − y1

|y2 − y1|
, z) − g(ω, t, y2, z)〉

≤ F (r) + F (s)

so that, the case |y1 − y2| ≤ r being trivial, we conclude that F (·) is sub-additive. That is, for each r, s ≥ 0,

F (r + s) ≤ F (r) + F (s).

As a result, F (·) is a continuous modular function, and then there exists a nondecreasing and concave 
function ρ̄(·) : R+ → R

+ such that for each u ≥ 0,

F (u) ≤ ρ̄(u) ≤ 2F (u) ≤ 2ρ(u)

(see pages 499–500 in [30] for details). Thus, it follows from (18) and the definition of F (·) that dP ×dt – a.e., 
for each (y1, y2, z) ∈ R

k × R
k × R

k×d,
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〈 y1 − y2

|y1 − y2|
1|y1−y2|�=0, g(ω, t, y1, z) − g(ω, t, y2, z)〉 ≤ F (|y1 − y2|) ≤ ρ̄(|y1 − y2|) ≤ κ(|y1 − y2|),

where

κ(u) := ρ̄(u) + u.

Clearly, κ(·) is a nondecreasing and concave function with κ(0) = 0 and κ(u) > 0 for u > 0. Thus, for 
completing the proof that g satisfies (H1b)p, it suffices to show that

∫
0+

up−1

κp(u)du = +∞.

Indeed, if ρ̄(u) > 0 for each u > 0, since ρ̄(·) is concave on R+ with ρ̄(0) = 0, we have ρ̄(u) ≥ uρ̄(1) for each 
u ∈ (0, 1), and then

∫
0+

up−1

κp(u)du =
∫
0+

up−1

(ρ̄(u) + u)p du

≥ ρ̄p(1)
(1 + ρ̄(1))p

∫
0+

up−1

ρ̄p(u)du

≥ 1
2p · ρ̄p(1)

(1 + ρ̄(1))p

∫
0+

up−1

ρp(u)du

= +∞.

Otherwise,

∫
0+

up−1

κp(u)du =
∫
0+

up−1

(ρ̄(u) + u)p du =
∫
0+

du
u

= +∞.

Thus, in view of (iii) of Proposition 1, we have proved that the concavity condition of ρ(·) in (H1b)p and 
(H1a)p can be replaced with the continuity condition. The proof of Proposition 1 is then completed. �
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