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Abstract
This paper concerns a continuous-time, finite horizon, optimal irreversible invest-

ment problem with maintenance expenditure of a firm under uncertainty. We assume
that the firm can make irreversible investments to expand its production capacity
and spend maintenance expenditure to achieve better performance of the productiv-
ity. The objective of the firm is to construct optimal investment and maintenance
policies to maximize its expected total profit over a finite horizon. Mathematically,
it is a singular stochastic control problem whose value function satisfies a parabolic
variational inequality with gradient constraint. The problem gives rise to two free
boundaries which stand for the optimal investment and maintenance strategies, re-
spectively. We investigate behaviors of free boundaries, study regularities of the value
function, and give optimal investment and maintenance policies. As we know, this
is a first integral result for an investment-maintenance problem with a finite time
horizon due to use of partial differential equation (PDE) technique.
Key Words: irreversible investment, maintenance, finite horizon, singular stochastic
control, variational inequality, gradient constraint, free boundary problem

1 Introduction

This paper concerns a continuous-time, finite horizon, optimal irreversible investment
problem with maintenance expenditure of a firm under uncertainty. Optimal invest-
ment problems have been studied widely in the last years. Bertola [1] considered an
optimal investment problem under uncertainty of a firm and characterized the optimal
investment-disinvestment policy. Dai and Yi [6][7] concerned an optimal investment
problem with transaction costs on a finite time. In [6][7], the behaviors of the free
boundary is characterized and the regularity of the value function is proved. Several
Authors studied the firm’s optimal problem of irreversible investment (see [5], [20],
[18], [4] and [9]). In particular, Chiarolla and Ferrari [4][9] derived a new integral
equation for the free boundary of the infinite and finite horizon, respectively.

∗The project is supported by NNSF of China(11271143, 11371155, 11471276 and 11326123), and
Foundation for Distinguished Young Talents in High Education of Guangdong (2014KQNCX181).
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Yet there is an increasing effort to incorporate maintenance in the core of invest-
ment theory. The incorporation of maintenance cost in macroeconomic models of
investment has truly started with the illuminating work of McGrattan and Schmitz
[16]. They are the first to exploit a Canadian survey and to highlight why and how
investment theory can account for these costs. Since then, several research projects
have been launched on the topic. Kalaitzidakis and Kalyvitis[12][13] considered how
maintenance of public capital affects long-term growth and how to fix optimal main-
tenance expenditures. In [3], the Authors studied investment and maintenance co-
movements without any postulated special depreciation function. One paper related
to the present work is Kawaguchi and Morimoto [11] where the Authors concerned
an infinite horizon investment problem with maintenance expenditure of a firm un-
der uncertainty. They achieved the optimal policy and proved the existence of the
optimal investment boundary point, but did not consider the optimal maintenance
boundary.

In this paper, we concern the model of [11] with a finite horizon, and aim to provide
a theoretical analysis of behaviors of optimal investment and maintenance boundaries,
respectively. It is challenging to take a finite horizon case into consideration since
the corresponding free boundaries (optimal policies) vary with time. We attack the
problem by virtue of a PDE approach.

Mathematically, it is a singular stochastic control problem whose value function
satisfies a parabolic variational inequality with gradient constraint. The problem
gives rise to two free boundaries which stand for the optimal investment and main-
tenance strategies, respectively. The main task is to characterize behaviors of the
two free boundaries. But it is not an easy task. First, the optimal investment
boundary lies between the domain {(z, τ) ∈ ΩT : ∂zu(z, τ) = p2e

z} and the do-
main {(z, τ) ∈ ΩT : ∂zu(z, τ) < p2e

z}, and u(z, τ) satisfies a variational inequality
with gradient constraint. However, it is intractable to study the free boundary from
the original variational inequality with gradient constraint. So we intend to reduce
the original problem to a standard variational inequality with function constraint,
but the variational inequality with function constraint is not a self-contained sys-
tem, which leads to difficulties to construct a connection between the above two
variational inequalities. Secondly, the optimal maintenance boundary is the bound-
ary between the region {(z, τ) ∈ ΩT : u(z, τ) − ∂zu(z, τ) − p1 > 0} and the re-
gion {(z, τ) ∈ ΩT : u(z, τ) − ∂zu(z, τ) − p1 < 0}. That is , it is a level set of
{(z, τ) ∈ ΩT : u(z, τ) − ∂zu(z, τ) − p1 = 0}, which is different to the free boundary
with function constraint or with gradient constraint. To the best of our knowledge
this is a complete novelty in the literature on singular stochastic control problems
with a finite horizon.

The paper is organized as follows. In section 2, we present the model formulation.
Section 3 is devoted to studying regularities of solution to problem (2.9) with a
known u(z, τ). In section 4, we exploit the auxiliary condition with which problem
(2.9) can be transformed the self-contained problem A and prove that the problem
A has a solution by the Schauder fixed point theorem. In addition, we obtain a
classical solution to problem (2.7) and construct a connection between problem (2.7)
and (2.9). The behaviors of the optimal investment and maintenance boundaries are
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investigated in Section 5 and section 6, respectively. We give the optimal investment
and maintenance policies in Section 7. Section 8 concludes the paper.

2 Problem formulation

We consider an optimal investment problem with maintenance expenditure of a firm
under uncertainty with a finite horizon. As in [11], the firm faces uncertain future
changes in the productivity of the capital stock, which are modeled by diffusion
processes, and makes irreversible investments in capital goods. The maintenance
expenditure can improve the productivity of the existing capital stock. We assume T
is maturity time. For any time 0 ≤ t ≤ T , the measure of capital productivity Xs of
the firm and the capital stock Ys at time s ≥ t are given by the stochastic differential
equation {

dXs = μXsds+ σXsdBs, Xt = x > 0, t < s ≤ T,

dYs = −λYsds, Yt = y > 0, t < s ≤ T,

on a complete probability space (Ω,F , P ), carrying a one-dimensional standard Brown
motion {Bt}, endowed with the natural filtration Fs generated by {Bτ , τ ≤ s}, where
μ ≥ 0 and σ > 0 are diffusion constants and λ > 0 is a depreciation rate.

The firm can make irreversible investments to expand its production capacity and
spend the maintenance expenditure to achieve better performance of the productivity.
Let I = {Is} be the capital invested in the firm up to time s, which is right-continuous,
nonnegative, and nondecreasing {Fs} -adapted stochastic process with I0 = 0. The
dynamics of productivity can be controlled by the policy m = {ms}, for maintenance
expenditure p1msXsds at time s, which is an {Fs} -adapted process such that 0 ≤
ms ≤ M for all s ≥ 0, whereM > 0 is an upper bound for maintenance. Given (I,m),
the capital productivity process {Xs} and the firm’s capital stock process {Ys} evolve
according to{

dXs = μXsds+ σXsdBs +msXsds, Xt = x > 0, t < s ≤ T,

dYs = −λYsds+ dIs, Yt = y > 0, t < s ≤ T.
(2.1)

A policy (I,m) is called admissible if

E
[ ∫ T

t

e−α(s−t)(Xsds+ dIs)
]
< ∞, (2.2)

for a discount factor α > 0. We denote by At(x, y) the class of all admissible policies.
The objective is to find an optimal policy (I∗,m∗) = {I∗t ,m∗

t} ∈ At(x, y) so as to
maximize the expected total profit over finite horizon. We define the value function:

V (x, y, t) = sup
(I,m)∈At

E
[ ∫ T

t

e−α(s−t)F (Xs, Ys)ds− p1

∫ T

t

e−α(s−t)msXsds

−p2

∫ T

t

e−α(s−t)dIs
∣∣Xt = x, Yt = y

]
, (x, y, t) ∈ R+ ×R+ × [0, T ], (2.3)
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where p1 > 0, p2 > 1 are given constants and

F (x, y) = x1−γyγ , (0 < γ < 1), (2.4)

denotes the Cobb-Douglas production function which leads to a profit function. The
associated Hamilton-Jacobi-Bellman variational inequality is given by (cf. [10], [17],
[21]):⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂yV (x, y, t) ≤ p2, x > 0, y > 0, 0 ≤ t < T,

∂tV + L1V +Mx(∂xV − p1)
+ + F (x, y) ≤ 0, x > 0, y > 0, 0 < t < T,

(p2 − ∂yV )[∂tV + L1V +Mx(∂xV − p1)
+ + F (x, y)] = 0, x > 0, y > 0, 0 < t < T,

V (x, y, T ) = 0, x > 0, y > 0,

(2.5)
where

L1V =
1

2
σ2x2∂xxV + μx∂xV − λy∂yV − αV.

Problem (2.5) gives rise to two free boundaries that correspond to the optimal in-
vestment and maintenance strategies. The optimal investment boundary lies between
the domain {(x, y, t) : ∂yV (x, y, t) = p2} and the domain {(x, y, t) : ∂yV (x, y, t) < p2}.
The optimal maintenance boundary is the boundary between the region {(x, y, t) :
∂xV (x, y, t) = p1}and the region {(x, y, t) : ∂xV (x, y, t) < p1}. That is , it is the level
set of {(x, y, t) : ∂xV (x, y, t) = p1}. So, our purpose is to investigate behaviors of the
two free boundaries. In addition, we are interested in regularities of the solution to
problem (2.5).

Since problem (2.5) is both two-dimensional and backward variational inequality,
we change the variable by

z = ln
y

x
, τ = T − t, u(z, τ) = V (x, y, t)/x, (2.6)

then (2.5) is easily reduced to a one-dimensional variational inequality with gradient
constraint:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂zu ≤ p2e
z, z ∈ R, 0 ≤ τ < T,

∂τu− Lu−M(u− ∂zu− p1)
+ − eγz ≥ 0, z ∈ R, 0 < τ < T,

(p2e
z − ∂zu) [∂τu− Lu−M(u− ∂zu− p1)

+ − eγz] = 0, z ∈ R, 0 < τ < T,

u(z, 0) = 0, z ∈ R,

(2.7)
where r = μ+ λ, β = α− μ, and

Lu =
1

2
σ2∂zzu− (

1

2
σ2 + r)∂zu− βu.

It can be shown the problem has a unique viscosity solution (cf. [10], [17], [21]). As
it is intractable to study the free boundaries directly from the variational inequality
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with gradient constraint, following [6] and [7], we attempt to reduce problem (2.7) to
a standard variational inequality with function constraint. We set

v = ∂zu.

Formally we have

∂

∂z
Lu =

1

2
σ2∂zzv − (

1

2
σ2 + r)∂zv − βv

≡ Lv

and

∂z(M(u− ∂zu− p1)
+ + eγz) = MH(u− v − p1)(v − ∂zv) + γeγz,

where

H(ξ) =

{
1, ξ > 0,

0, ξ ≤ 0.
(2.8)

Then we postulate that v is a solution to the following standard variational inequality:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

v ≤ p2e
z, (z, τ) ∈ ΩT ,

∂τv − Lv −MH(u− v − p1)(v − ∂zv)− γeγz ≤ 0, (z, τ) ∈ ΩT ,

(p2e
z − v) [∂τv − Lv −MH(u− v − p1)(v − ∂zv)− γeγz] = 0, (z, τ) ∈ ΩT ,

v(z, 0) = 0, z ∈ R.

(2.9)
ΩT = R× [0, T ].

We will see later that it is rather straightforward to analyze behaviors of free
boundaries in terms of problem (2.9). So it is important to prove a connection between
problem (2.7) and (2.9), which indicates a connection between a singular control
problem and an optimal stopping problem. But we would like to emphasize that it is
not an easy task to establish the connection. One of main difficulties is that problem
(2.9) contains u, which leads problem (2.9) to be not a self-contained system.

3 Problem (2.9) with a known u(z, τ ).

In this section, we study problem (2.9) with known u(z, τ) which is assumed to possess
the following properties:

|u(z, τ)| ≤ K1 + p2e
z, (3.10)

0 ≤ ∂zu ≤ p2e
z, (3.11)

|∂τu| ≤ K2(1 + ez), (3.12)

u(z, 0) = 0, (3.13)
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where K1 and K2 are positive constants to be determined.
Owing to the unboundedness of ΩT , we confine problem (2.9) to the bounded

domain Ωn
T = (−n, n)× [0, T ] with n > 0:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vn ≤ p2e
z, (z, τ) ∈ Ωn

T ,

∂τv
n − Lvn −MHn(u− vn − p1)(v

n − ∂zv
n)− γeγz ≤ 0, (z, τ) ∈ Ωn

T ,

(p2e
z − vn) [∂τv

n − Lvn −MHn(u− vn − p1)(v
n − ∂zv

n)− γeγz] = 0, (z, τ) ∈ ΩT ,

∂zv
n(−n, τ)− vn(−n, τ) = 0, 0 ≤ τ ≤ T,

∂zv
n(n, τ) + vn(n, τ) = 0, 0 ≤ τ ≤ T,

vn(z, 0) = 0, z ∈ [−n, n],

(3.14)
where Hn(ξ) satisfies

Hn(ξ) ∈ C1(−∞,∞), H ′
n(ξ) ≥ 0, (3.15)

and

Hn(ξ) =

⎧⎪⎨⎪⎩
1, ξ ≥ 1/n,

↗,−1/n ≤ ξ ≤ 1/n,

0, ξ ≤ −1/n.

(3.16)

In order to prove existence of solution to problem (3.14), we consider a penalty
approximation :⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂τv

n,ε − Lvn,ε −MHn(u− vn,ε − p1)(v
n,ε − ∂zv

n,ε)− γeγz + βε(v
n,ε − p2e

z) = 0, (z, τ) ∈ Ωn
T ,

∂zv
n,ε(−n, τ)− vn,ε(n, τ) = 0, 0 ≤ τ ≤ T,

∂zv
n,ε(n, τ) + vn,ε(n, τ) = 0, 0 ≤ τ ≤ T,

vn,ε(z, 0) = 0, z ∈ [−n, n],

(3.17)
where βε(t) satisfies

βε(t) ∈ C2(−∞,+∞), βε(t) ≥ 0, t ∈ R,

βε(t) = 0 if t ≤ −ε, βε(0) = C0, C0 = (γ − γ2)(
γ2

(r + β)p2
)

γ
1−γ ,

β′
ε(t) ≥ 0, β′′

ε (t) ≤ 0, (3.18)

and

lim
ε→0+

βε(t) =

{
0, t < 0,

+∞, t > 0.
(3.19)

Lemma 3.1. For a given u(z, τ) satisfying (3.10)-(3.13), problem(3.17) has a solu-
tion vn,ε ∈ W 2,1

p (Ωn
T ), 1 < p < ∞, and

0 ≤ vn,ε ≤ p2e
z. (3.20)
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Proof. By using the fixed point theorem [8], we can show that problem (3.17) has
a solution vn,ε ∈ W 2,1

p (Ωn
T ). We now prove (3.20). Let us first consider the left-hand

side inequality. Set v1 = 0, then⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂τv1 − Lv1 −MHn(u− vn,ε − p1)(v1 − ∂zv1)− γeγz + βε(v1 − p2e
z)

= −γeγz + βε(−p2e
z) = −γeγz, (if ε < p2e

−n), (z, τ) ∈ Ωn
T ,

∂zv1(−n, τ)− v1(−n, τ) = 0, 0 ≤ τ ≤ T,

∂zv1(n, τ) + v1(n, τ) = 0, 0 ≤ τ ≤ T,

v1(z, 0) = 0, z ∈ [−n, n].

In terms of the maximum principle [8], we then deduce vn,ε ≥ 0 in Ωn
T .

Now we turn to the proof of the right-hand side inequality of (3.20). Set v2 = p2e
z,

which satisfying⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂τv2 − Lv2 −MHn(u− vn,ε − p1)(v2 − ∂zv2)− γeγz + βε(v2 − p2e
z)

= (r + β)p2e
z − γeγz + βε(0) ≥ −C0 + C0 = 0, (C0 is defined by (3.18)), (z, τ) ∈ Ωn

T ,

∂zv2(−n, τ)− v2(−n, τ) = 0, 0 ≤ τ ≤ T,

∂zv2(n, τ) + v2(n, τ) = 2p2e
z > 0, 0 ≤ τ ≤ T,

v2(z, 0) = p2e
z > 0, z ∈ [−n, n].

Again, applying the maximum principle yields the desired result. Therefore, the proof
is complete. �

Lemma 3.2. For a given u(z, τ) satisfying (3.10)-(3.13), problem (3.14) has a solu-
tion vn ∈ W 2,1

p (Ωn
T ), 1 < p < +∞, and

0 ≤ vn ≤ p2e
z, (3.21)

−p2e
z ≤ ∂zv

n ≤ vn ≤ p2e
z. (3.22)

Proof. Owing to (3.20), we infer 0 ≤ βε(v
n,ε − p2e

z) ≤ βε(0) = C0. Applying W 2,1
p

estimate, we have

|vn,ε|W 2,1
p (Ωn

T ) ≤ C(|βε(0)|Lp(Ωn
T ) + |eγz|Lp(Ωn

T ) + |vn,ε|Lp(Ωn
T )) ≤ Cn,

where Cn is independent of ε. Let ε → 0, there exists vn such that

vn,ε ⇀ vn weakly in W 2,1
p (Ωn

T ) and strongly in C(Ω
n

T ).

We immediately get (3.21). Now we prove (3.22). Let us first consider the right-hand
side inequality. Clearly

∂zv
n = vn = p2e

z if vn = p2e
z.

So we need only show ∂zv
n ≤ vn in N , where

N = {(z, τ) ∈ Ωn
T |vn(z, τ) < p2e

z}.
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Denote w = ∂zv
n, then

∂τw − Lw −MHn(u− vn − p1)∂z(v
n − w)−MH ′

n(u− vn − p1)(∂zu− w)(vn − w)

−γ2eγz = 0 in N .

It is not hard to verify

∂τ (v
n − w)− L(vn − w)−MHn(u− vn − p1)(v

n − w) +MHn(u− vn − p1)∂z(v
n − w)

+MH ′
n(u− vn − p1)(∂zu− w)(vn − w) = (γ − γ2)eγz ≥ 0 in N .

Apparently (vn − w) ≥ 0 on ∂N ∩ ({z = −n} ∪ {z = n} ∪ {τ = 0}). Applying the
maximum principle, we then deduce ∂zv

n ≤ vn in N .
In the following, we turn to the proof of the left-hand side inequality of (3.22).

Clearly
−p2e

z ≤ ∂zv
n = p2e

z if vn = p2e
z.

Next we will prove −p2e
z ≤ ∂zv

n in N . Denote w = ∂zv
n and w1 = −p2e

z, then

∂τw − Lw −MHn(u− vn − p1)(w − ∂zw) +MH ′
n(.)(v

n − w)w

= γ2eγz +MH ′
n(.)∂zu(v

n − w) in N ,

and

∂τw1 − Lw1 −MHn(u− vn − p1)(w1 − ∂zw1) +MH ′
n(.)(v

n − w)w1

= −(r + β)p2e
z −MH ′

n(.)(v
n − w)p2e

z in N .

Then it is not hard to verify

∂τ (w − w1)− L(w − w1)−MHn(u− vn − p1)[(w − w1)− ∂z(w − w1)]

+MH ′
n(.)(v

n − w)(w − w1)

= γ2eγz +MH ′
n(.)∂zu(v

n − w) + (r + β)p2e
z +MH ′

n(.)(v
n − w)p2e

z

≥ 0 in N .

It is clear that w ≥ −p2e
z on ∂N ∩ ({z = −n}∪ {z = n}∪ {τ = 0}). Again, in terms

of the maximum principle, we then deduce w ≥ −p2e
z in N . Therefore, the proof is

complete. �

Theorem 3.1. For a given u(z, τ) satisfying (3.10)-(3.13), problem (2.9) has a so-
lution v ∈ W 2,1

p,loc(ΩT ) ∩ C(ΩT ), (1 < p < ∞), and

0 ≤ v ≤ p2e
z, (3.23)

−p2e
z ≤ ∂zv ≤ v ≤ p2e

z. (3.24)

Proof. Notice

(∂τ − L)(p2ez) = (r + β)p2e
z,
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then problem (3.14) can be rewritten as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂τv

n − Lvn −MHn(u− vn − p1)(v
n − ∂zv

n) = f(z, τ), (z, τ) ∈ Ωn
T ,

∂zv
n(−n, τ)− vn(n, τ) = 0, 0 ≤ τ ≤ T,

∂zv
n(n, τ) + vn(n, τ) = 0, 0 ≤ τ ≤ T,

vn(z, 0) = 0, z ∈ [−n, n],

where f(z, τ) = X{vn=p2ez}(r+β)p2e
z+X{vn<p2ez}γe

γz and XA is the indicator function
on set A. Hence, for any m < n, we have

|vn|W 2,1
p (Ωm

T ) ≤ C(|f |Lp(Ωm
T ) + |vn|Lp(Ωm

T )) ≤ Cm,

where Cm is independent of n. Let n → ∞, there exists vm such that

vn ⇀ vm weakly in W 2,1
p (Ωm

T ) and strongly in C(Ωm
T ).

Define v(z, τ) = vm(z, τ) if (z, τ) ∈ Ωm
T for each m > 0, it is clear that v(z, τ) is

reasonable defined in ΩT and v ∈ W 2,1
p,loc(ΩT ) ∩ C(ΩT ) is the solution of (2.9). We

immediately get (3.23) and (3.24). This completes the proof. �

Thanks to the inequality in (3.24), we infer that ∂z(v − p2e
z) ≤ 0. Thus, if there

exists (z0, τ0) ∈ ΩT such that v(z0, τ0) = p2e
z0 , then for any z ≤ z0, we have

0 ≥ v(z, τ0)− p2e
z ≥ v(z0, τ0)− p2e

z0 = 0.

This indicates that we can define the free boundary

hu(τ) = sup
z∈R

{z|v(z, τ) = p2e
z}, τ ∈ (0, T ], (3.25)

such that

{(z, τ) ∈ ΩT |v(z, τ) = p2e
z} = {(z, τ) ∈ ΩT |z ≤ hu(τ)}.

Lemma 3.3. Denote z0 =
1

1−γ
ln γ

(r+β)p2
, then

hu(τ) ≤ z0, (3.26)

moreover
hu(0) = lim

τ→0+
hu(τ) = −∞. (3.27)

Proof. Let us prove (3.26) first. Note that for any z ≤ hu(τ), v(z, τ) = p2e
z, then,

by (2.9), we have

∂τ (p2e
z)− L(p2ez)−MHn(u− p2e

z − p1)(p2e
z − ∂z(p2e

z))− γeγz ≤ 0,

from which we infer z ≤ 1
1−γ

ln γ
(r+β)p2

. Then, by definition (3.25), we deduce hu(τ) ≤
z0. Owing to v ∈ C(ΩT ), combining to the initial condition of (2.9) v(z, 0) = 0, we
then deduce (3.27). The proof is complete. �
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4 Solution to problem (2.7)

In this section, we will exploit an auxiliary condition with which problem (2.9) can be
transformed a self-contained system, that is problem A. Then we prove existence of
the solution to problem A and construct the connection between problem (2.7) and
problem (2.9). At last, we prove a solution to problem (2.7) is classical solution.

Now let us exploit an auxiliary condition. Assumed that v = ∂zu is a solution
to problem (2.9) in ΩT . Due to Lemma 3.3, we expect that there exists a function
h(τ) : (0, T ) → (−∞, z0) such that

{(z, τ) ∈ ΩT |v(z, τ) = p2e
z} = {(z, τ) ∈ ΩT |z ≤ h(τ)}.

So, we have u(z, τ) = p2e
z + f(τ), z ≤ h(τ), τ > 0, where f(τ) is to be determined.

Then we conjecture

u(z, τ) = u(h(τ), τ) +

∫ z

h(τ)

v(ξ, τ)dξ

= p2e
h(τ) + f(τ) +

∫ z

h(τ)

v(ξ, τ)dξ for any (z, τ) ∈ ΩT ,

and f(0) = 0. It is expected that v(., τ) ∈ C1 and u(., τ) ∈ C2. Thus, we should have

∂zu(h(τ), τ) = p2e
h(τ), ∂zzu(h(τ), τ) = p2e

h(τ),

which yields

f ′(τ) = ∂τu(h(τ), τ) = Lu+M(u− ∂zu− p1)
+ + eγz|z=h(τ)

= −(r + β)p2e
h(τ) − βf(τ) +M(f(τ)− p1)

+ + eγh(τ).

This is the auxiliary condition with which we want to combine the problem (2.9). In
other words, we plan to study the following problem.

Problem A: Find u(z, τ), v(z, τ) and h(τ) : (0, T ) → (−∞, z0), such that

(i) {(z, τ) ∈ ΩT |v(z, τ) = p2e
z} = {(z, τ) ∈ ΩT |z ≤ h(τ)};

(ii) v(z, τ), (z, τ) ∈ ΩT satisfies (2.9) in which

u(z, τ) = f(τ) + p2e
h(τ) +

∫ z

h(τ)

v(ξ, τ)dξ,

where f(τ) satisfying{
f ′(τ) = −(r + β)p2e

h(τ) − βf(τ) +M(f(τ)− p1)
+ + eγh(τ), τ ∈ (0, T ],

f(0) = 0.
(4.28)

Theorem 4.1. Problem A has a unique solution (u(z, τ), v(z, τ), h(τ)) satisfying
(3.10)-(3.13), (3.23)-(3.24) and (3.26)-(3.27).
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Proof. In the following, We will prove the existence of a solution by virtue of the
Schauder fixed point theorem [8]. Firstly, let us confine ourselves to the bounded

domain ΩR
T = (−R,R)× (0, T ]. Consider Banach space B = C(Ω

R

T ) and define

D =
{
u(z, τ) ∈ B∣∣|u(z, τ)| ≤ K1 + p2e

z, 0 ≤ ∂zu ≤ p2e
z,

|∂τu(z, τ)| ≤ K2(1 + ez), u(z, 0) = 0
}
,

where K1, K2 are positive constants to be determined. Apparently D is a compact
subset of B.

For any u(z, τ) ∈ D given, let v(z, τ) be the solution of problem (3.14) confined
to ΩR

T , and let hu(τ) be the corresponding free boundary as given in (3.25). Define a
mapping F : D → B as follows:

Fu = ū(z, τ) = f(τ) + p2e
hu(τ) +

∫ z

hu(τ)

v(ξ, τ)dξ, (4.29)

where f(τ) satisfies (4.28).
In the following we shall prove ū(z, τ) ∈ D. By definition (4.29), we can infer

that ū(z, 0) = f(0) + p2e
h(0) +

∫ z

h(0)
v(ξ, 0)dξ = 0, ∂zū = v. Then, by (3.23), we have

0 ≤ ∂zū ≤ p2e
z. Combining with (4.29) and 0 ≤ v ≤ p2e

z, we can infer that

f(τ) + p2e
h(τ) ≤ ū(z, τ) ≤ f(τ) + p2e

z.

By the definition of f(τ) and (3.26), we deduce f(τ) is bounded. Then there exists a
positive constant K1, which is independent of R, such that |ū(z, τ)| ≤ K1 + p2e

z.
It remains to show that |∂τ ū| ≤ K2(1 + ez). By (4.29), we have

∂τ ū = f ′(τ) +
∫ z

h(τ)

∂τv(ξ, τ)dξ. (4.30)

If z ≤ h(τ), we have v(z, τ) = p2e
z, it is obvious that ∂τv(z, τ) = 0. Combining with

the boundedness of f(τ) and (3.26), we deduce that there is a positive constant K3 ,
which is independent of R, such that |∂τ ū| = |f ′(τ)| ≤ K3. If z > h(τ),

∂τ ū = f ′(τ) +
∫ z

h(τ)

∂τv(ξ, τ)dξ

= f ′(τ) +
∫ z

h(τ)

(Lv +MH(u− v − p1)(v − ∂zv) + γeγz)(ξ, τ)dξ

= f ′(τ) +
∫ z

h(τ)

∂

∂ξ
(Lū+ eγξ)dξ +

∫ z

h(τ)

MH(u− v − p1)(v − ∂zv)(ξ, τ)dξ

= Lū(z, τ) + eγz +M(f(τ)− p1)
+ +

∫ z

h(τ)

MH(u− v − p1)(v − ∂zv)(ξ, τ)dξ

=
1

2
σ2∂zv − (

1

2
σ2 + r)v − βū+ eγz +M(f(τ)− p1)

+

+

∫ z

h(τ)

MH(u− v − p1)(v − ∂zv)(ξ, τ)dξ.
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By (3.23)-(3.24) and the boundedness of f(τ), we can infer that there is a positive
constant K4 > 0, which is independent of R, such that |∂τ ū| ≤ K4(1 + ez). We then
choose K2 = K3+K4 to prove that |∂τ ū| ≤ K2(1+ez). So far we obtained F(D) ⊂ D.

Owing to the uniqueness of solution to problem (2.9), F must be a one-one map-
ping. Thanks to the compactness of D, we then infer that F is continuous. Applying
the Schauder fixes theorem we see that Problem A confined to ΩR

T allows a solution
(u(z, τ), v(z, τ), h(τ)). As K1 and K2 are positive constants and independent of R,
so we can extent the result to domain ΩT . �

In the following, we shall prove that the solution u(z, τ) in Problem A is the
solution to problem (2.7).

Define

IR = {(z, τ) : v(z, τ) = p2e
z}, the investment region,

NI = {(z, τ) : v(z, τ) < p2e
z}, the no− investment region.

Due to Theorem 4.1, we know the region IR can be rewritten as

IR = {(z, τ) : z ≤ h(τ)}.
Theorem 4.2. Problem (2.7) has a unique solution u(z, τ) ∈ C2,1(ΩT ). Moreover,
v = ∂zu satisfies problem (2.9), and

0 ≤ u(z, τ) ≤ K1 + p2e
z, (4.31)

0 ≤ ∂zu ≤ p2e
z, (4.32)

−p2e
z ≤ ∂zzu ≤ ∂zu ≤ p2e

z, (4.33)

0 ≤ ∂τu(z, τ) ≤ K2(1 + ez), (4.34)

where K1 and K2 are positive constants.

Remark: (4.33) implies that the value function V (x, y, t) defined in (2.3) is con-
cave in (x, y) on (0,∞)2.

Proof. Due to u(z, τ) is a solution to Problem A, therefore, to prove that u(z, τ)
satisfies problem (2.7), it suffices to show{

∂τu− Lu−M(u− ∂zu− p1)
+ − eγz ≥ 0 in IR,

∂τu− Lu−M(u− ∂zu− p1)
+ − eγz = 0 in NI.

(4.35)

Note that v = ∂zu satisfies problem (2.9), we have

∂

∂z
(∂τu− Lu−M(u− ∂zu− p1)

+ − eγz) ≤ 0, ∂zu = p2e
z if z ≤ h(τ)(i.e. in IR),

∂

∂z
(∂τu− Lu−M(u− ∂zu− p1)

+ − eγz) = 0, ∂zu < p2e
z if z > h(τ)(i.e. in NI).

According to the definition of f(τ), it is clear that

∂τu− Lu−M(u− ∂zu− p1)
+ − eγz|z=h(τ) = 0.
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Thus we deduce (4.35). So u(z, τ) in problem A is the solution to the problem (2.7),
and we immediately get the right-hand side of (4.31), (4.32), (4.33) and the right-hand
side of (4.34).

Now we will prove the left-hand side in inequality (4.31). We consider a penalty
approximation of problem (2.7) in the bounded domain Ωn

T = (−n, n) × (0, T ], n ∈
N\{0}:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂τuε,n − Luε,n −Mπε(uε,n − ∂zuε,n − p1)− eγz + e−zρε(p2e
z − ∂zuε,n) = 0 (z, τ) ∈ Ωn

T ,

∂zuε,n(−n, τ) = 0, τ ∈ (0, T ],

∂zuε,n(n, τ) = 0, τ ∈ (0, T ],

uε,n(z, 0) = 0, x ∈ [−n, n],

(4.36)
where ρε(t) satisfies

ρε(t) ∈ C2(−∞,+∞), ρε(t) ≤ 0 for all t ∈ R,

ρε(t) = 0 if t ≥ ε, ρ′ε(t) ≥ 0, ρ′′ε(t) ≤ 0,

moreover,

lim
ε→0+

ρε(t) =

{
0, t > 0,

−∞, t < 0,

and πε(t) satisfies

πε(t) =

{
t, t ≥ ε,

0, t ≤ −ε,

and πε(t) ∈ C∞, 0 ≤ π′
ε(t) ≤ 1, π′′

ε (t) ≥ 0, limε→0+ πε(t) = t+.
By applying the Schauder fixed theorem we can obtain the existence of the W 2,1

p

solution to the problem (4.36). The procedure is standard, we omit the details.
Denote u1 := 0, then

∂τu1 − Lu1 −Mπε(u1 − ∂zu1 − p1)− eγz + e−zρε(p2e
z − ∂zu1)

= −Mπε(−p1)− eγz + e−zρε(p2e
z)

= −eγz + e−zρε(p2e
z) ≤ 0.

⎧⎪⎪⎨⎪⎪⎩
∂zu1(−n, τ) = 0, τ ∈ (0, T ],

∂zu1(n, τ) = 0, τ ∈ (0, T ],

u1(z, 0) = 0, x ∈ [−n, n],

Thus the comparison principle claims that

uε,n ≥ u1 = 0.
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Using the similar way to Lemma 3.2 and Theorem 3.1, we can prove uε,n → u as
ε → 0 and n → ∞. This yields the left-hand side in (4.31).

Next, we prove the left-hand side in (4.34). For any small δ > 0, denote ũ(z, τ) =
uε,n(z, τ + δ), then by (4.36),⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂τ ũ− Lũ−Mπε(ũ− ∂zũ− p1)− eγz + e−zρε(p2e
z − ∂zũ) = 0 (z, τ) ∈ Ωn

T−δ,

∂zũ(−n, τ) = 0, τ ∈ (0, T − δ],

∂zũ(n, τ) = 0, τ ∈ (0, T − δ],

ũ(z, 0) ≥ 0, x ∈ [−n, n],

where ΩT−δ = R× (0, T − δ].
Applying the comparison principle with respect to the initial value of the varia-

tional inequality (see [8], Problem 5, P.80), we obtain

uε,n(z, τ + δ) = ũ(z, τ) ≥ uε,n(z, τ), (z, τ) ∈ R× (0, T − δ].

So, we have ∂τuε,n ≥ 0, (z, τ) ∈ ΩT . We then obtain the left-hand side in (4.34).
In the following, we shall prove u(z, τ) ∈ C2,1(ΩT ). By Theorem 3.1, v ∈ C1,0(ΩT ),

then u ∈ C2,0(ΩT ). What remains is to show ∂τu ∈ C(ΩT ).

∂τu = f ′(τ) + p2e
h(τ)h′(τ)− v(h(τ), τ)h′(τ) +

∫ z

h(τ)

∂τv(z, τ)dz

= f ′(τ) +
∫ z

h(τ)

∂τv(z, τ)dz

= f ′(τ) +
∫ max{z,h(τ)}

h(τ)

∂τv(z, τ)dz

= f ′(τ) +
∫ max{z,h(τ)}

h(τ)

(Lv +MH(u− v − p1)(v − ∂zv) + γeγz)dz

= f ′(τ) +
∫ max{z,h(τ)}

h(τ)

∂

∂z
(Lu+M(u− ∂zu− p1)

+ + eγz)dz

= f ′(τ) + Lu+M(u− ∂zu− p1)
+ + eγz)|z=max{z,h(τ)}

−(Lu+M(u− ∂zu− p1)
+ + eγz)|z=h(τ)

= (Lu+M(u− ∂zu− p1)
+ + eγz)|z=max{z,h(τ)},

which implies the continuity of ∂τu.
Finally we prove the uniqueness. Suppose that u1 and u2 are two W 2,1

p,loc(ΩT )
solutions satisfying (4.31) to the problem (2.7). Denote N = {(z, τ) ∈ ΩT : u1 >
u2} = N1 ∪ N2, where N1 := {u1 > u2, ∂zu1 ≥ ∂zu2}, N2 := {u1 > u2, ∂zu1 < ∂zu2}.
Suppose N 
= ∅. If N2 
= ∅, then⎧⎪⎨⎪⎩

∂τu1 − Lu1 −M(u1 − ∂zu1 − p1)
+ − eγz = 0, (z, τ) ∈ N2,

∂τu2 − Lu2 −M(u2 − ∂zu2 − p1)
+ − eγz ≥ 0, (z, τ) ∈ N2,

u1 = u2 or ∂zu1 = ∂zu2, (z, τ) ∈ ∂pN2.
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Thus applying the maximum principle, we know

u1 − u2 ≤ 0, (z, τ) ∈ N2,

which contradicts the definition of N2. Then N2 = ∅ and N = N1. Therefore

∂zu1 ≥ ∂zu2, (x, τ) ∈ N ,

which contradicts with

u1 = u2, (x, τ) ∈ ∂pN .

�

5 Behaviors of the optimal investment boundary

This section is devoted to studying behaviors of the optimal investment boundary. In
order to characterize its behaviors near z = −∞ conveniently, we change the variable
by

Z = ez, U(Z, τ) = u(z, τ).

Then, by (2.7), the function U(Z, τ) satisfies⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂ZU(Z, τ) ≤ p2, Z > 0, 0 ≤ t < T,

∂τU − L2U −M(U − Z∂ZU − p1)
+ − Zγ ≥ 0, Z > 0, 0 < τ < T,

(p2 − ∂ZU) [∂τU − L2U −M(U − Z∂ZU − p1)
+ − Zγ ] = 0, Z > 0, 0 < t < T,

U(Z, 0) = 0, Z > 0,

(5.1)
where

L2U =
1

2
σ2Z2∂ZZU − rZ∂ZU − βU.

At the same time, the optimal investment boundary z = h(τ), the investment region
and no-investment region can be rewritten as

Z = eh(τ) ≡ h̃(τ) = sup{Z > 0 : ∂zU(Z, τ) = p2},
IR = {(Z, τ) : ∂ZU(Z, τ) = p2} = {(Z, τ) : 0 ≤ Z ≤ h̃(τ)}
NI = {(Z, τ) : ∂ZU(Z, τ) < p2} = {(Z, τ) : Z > h̃(τ)},

Theorem 5.1. Let h(τ) be the optimal investment boundary, then

h(τ) > −∞, 0 < τ ≤ T. (5.2)
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Remark: h(τ) > −∞ means the investment region always exists for any 0 < τ ≤
T .
Proof. By (4.31)-(4.34), we deduce that the function U(Z, τ) satisfies

0 ≤ U(Z, τ) ≤ p2Z +K1, Z > 0, 0 ≤ τ ≤ T, (5.3)

0 ≤ ∂ZU(Z, τ) ≤ p2, Z > 0, 0 ≤ τ ≤ T, (5.4)

∂ZZU(Z, τ) ≤ 0, Z > 0, 0 ≤ τ ≤ T, (5.5)

∂τU(Z, τ) ≥ 0, Z > 0, 0 ≤ τ ≤ T, (5.6)

where K1 is a positive constant.
Now we shall prove (5.2). Suppose ∂ZU < p2 for all Z > 0. Then, by (5.1),

∂τU − L2U −M(U − Z∂ZU − p1)
+ − f(Z) = 0, Z > 0, 0 ≤ τ < T.

From (5.4)-(5.6), we have

f(Z) ≥ −∂τU +
1

2
σ2Z2∂ZZU − rZ∂ZU + f(Z) = βU −M(U − Z∂ZU − p1)

+.

Letting Z → 0, we get M(U(0, τ) − p1)
+ ≥ βU(0, τ). Combining with (5.3), we

deduce

U(0, τ) = 0, 0 ≤ τ ≤ T. (5.7)

Thus
U(Z, τ) < p2Z, Z > 0, 0 ≤ τ ≤ T. (5.8)

Denote

Ũ(Z, τ) = A(1− e−τ )Zγ ,

where A = 1/M̃, M̃ = max
{
1, eT − (1− eT )

(
1
2
σ2γ(γ− 1)− rγ− β

)}
. We will prove

Ũ is subsolution of (5.1).⎧⎪⎨⎪⎩
∂τ Ũ − L2Ũ − Zγ = AZγ

[
e−τ − (1− e−τ )

(
1
2
σ2γ(γ − 1)− rγ − β

)]− Zγ ,

≤ M̃AZγ − Zγ = 0,

Ũ(Z, 0) = 0.

(5.9)

Applying the comparison principle to (5.1) and (5.9), we have

Ũ(Z, τ) ≤ U(Z, τ), Z > 0, 0 ≤ τ ≤ T. (5.10)

This is contrary to (5.8). Therefore, there exists Z̃(τ) > 0, such that

∂ZU(Z̃(τ), τ) = p2, 0 < τ ≤ T.

By (5.4), (5.5) and the definition of h̃(τ), we conclude there exists h̃(τ) ≥ Z̃(τ) > 0,
such that

∂ZU(Z, τ) = p2, 0 < Z ≤ h̃(τ), 0 < τ ≤ T.

Thanks to h(τ) = ln h̃(τ), we deduce h(τ) > −∞, for any 0 < τ ≤ T . �

In the following, we shall study regularities of the optimal investment boundary.
To obtain regularities, we introduce a Lemma.

16



Lemma 5.1. Let v(z, τ) be solution to problem (2.9), then

∂τv ≥ 0. (5.11)

Proof. For any δ > 0, denote w(z, τ) = v(z, τ + δ), from (2.9), for any (z, τ) ∈ ΩT−δ,
w satisfies⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

w ≤ p2e
z,

∂τw − Lw −MH(u(z, τ + δ)− w − p1)(w − ∂zw)− γeγz ≤ 0,

(w − p2e
z) [∂τw − Lw −MH(u(z, τ + δ)− w − p1)(w − ∂zw)− γeγz] = 0,

w(z, 0) = v(z, δ) ≥ 0, z ∈ R,

(5.12)
where ΩT−δ = R × [0, T − δ]. We want to prove w ≥ v in ΩT−δ. Suppose not, we
assume that

K = {(z, τ)|w(z, τ) < v(z, τ)} 
= ∅, (5.13)

then⎧⎪⎨⎪⎩
∂τw − Lw −MH(u(z, τ + δ)− w − p1)(w − ∂zw)− γeγz = 0, in K,

∂τv − Lv −MH(u(z, τ)− v − p1)(v − ∂zv)− γeγz ≤ 0, in K,

w = v, on ∂pK,

thus

∂τ (w − v)− L(w − v)−MH(u(z, τ + δ)− w − p1)((w − v)− ∂z(w − v))

+M [H(u(z, τ)− v − p1)−H(u(z, τ + δ)− w − p1)](v − ∂zv)

≥ 0.

From (4.34), we have u(z, τ) ≤ u(z, τ + δ). Then

u(z, τ)− v − p1 ≤ u(z, τ + δ)− w − p1.

By the monotonicity of H(ξ), we have

H(u(z, τ)− v − p1)−H(u(z, τ + δ)− w − p1) ≤ 0.

Thus, by (3.24), we deduce{
∂τ (w − v)− L(w − v)−MH(u(z, τ + δ)− w − p1)((w − v)− ∂z(w − v)) ≥ 0 in K,

w = v, on ∂pK.

Applying comparison principle, we have

w ≥ v in K,

which contradicts with (5.13). So K = ∅, that is v(z, τ + δ) = w(z, τ) ≥ v(z, τ). Thus
we get

∂τv ≥ 0.

�
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Theorem 5.2. The optimal investment boundary (see Fig.1) h(τ) ∈ C[0, T ] and is
strictly increasing with

h(0) = lim
τ→0+

h(τ) = −∞, (5.14)

moreover,

−∞ < h(τ) ≤ z0, 0 < τ ≤ T, (5.15)

where

z0 =
1

1− γ
ln

γ

(r + β)p2
.

� z
z0

z = h(τ)

IR NI

Figure 1. Monotonic optimal investment boundary h(τ).

Proof. First, we will prove h(τ) is strictly increasing in (0, T ]. Assume h(τ1) = z1,
then v(z1, τ1) = p2e

z1 . From (5.11), we have, when τ ≥ τ1,

p2e
z1 = v(z1, τ1) ≤ v(z1, τ) ≤ p2e

z1 .

thus v(z1, τ) = p2e
z1 . By the definition of (3.25), we deduce

h(τ) ≥ z1 = h(τ1).

So h(τ) is increasing in (0, T ].
Next, we prove that h(τ) is strictly increasing in (0, T ]. Suppose not, there exists

τ2 < τ3, such that h(τ2) = h(τ3) = z2, and

v(z2, τ) = p2e
z2 , τ ∈ [τ2, τ3].

Then we have

∂τv(z2, τ) = 0, τ ∈ [τ2, τ3].

By (5.11), we know ∂τv obtains its minimum on z = z2, thus we have

∂zτv(z2, τ) > 0, τ ∈ [τ2, τ3]. (5.16)

On the other hand, because

v(z, τ) = p2e
z, z ≤ h(τ),
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∂zv(z, τ) = p2e
z, z ≤ h(τ),

combining ∂zv ∈ C(ΩT ), we have

∂zv(z2, τ) = p2e
z2 , τ ∈ [τ2, τ3].

Thus we deduce

∂zτv(z2, τ) = 0, τ ∈ [τ2, τ3],

which contradicts with (5.16).
In the following, we prove h(τ) is continuous in (0, T ]. Otherwise we assume h(τ)

is not continuous on the point τ4, then

z4 = lim
τ→τ−4

h(τ) < lim
τ→τ+4

h(τ) = z5 ≤ 1

1− γ
ln

γ

(r + β)p2
, (5.17)

and

v(z, τ4) = p2e
z, z ∈ [z4, z5]. (5.18)

Thus we conclude

∂zv(z, τ4) = p2e
z, ∂zzv(z, τ4) = p2e

z, z ∈ [z4, z5]. (5.19)

As v ≤ p2e
z, v obtains its maximum on the line τ = τ4, z ∈ [z4, z5], thus we have

∂τv(z, τ4) = 0, z ∈ [z4, z5]. (5.20)

By (2.9), we have

∂τv − Lv −MH(u− v − p1)(v − ∂zv) = γeγz, τ = τ4, z ∈ [z4, z5]. (5.21)

Substituting (5.18)-(5.20) into (5.21), we deduce

γeγz − (r + β)p2e
z = 0, z ∈ [z4, z5]. (5.22)

In fact, by (5.17), we infer γeγz − (r + β)p2e
z ≥ 0, z ∈ [z4, z5]. This contradicts with

(5.22). So the free boundary h(τ) is continuous. (5.14) and (5.15) have been proved
in Lemma 3.3 and Theorem 5.1. The proof is complete. �

6 Behaviors of the optimal maintenance boundary

This section is devoted to theoretical analysis of the optimal maintenance boundary.
We will first show that the free boundary can be expressed as a single-value function
of time τ . Then we will examine properties of the free boundary.

Denote

MR = {(z, τ) ∈ ΩT : u(z, τ)− ∂zu(z, τ)− p1 > 0}, maintenance region,
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NM = {(z, τ) ∈ ΩT : u(z, τ)− ∂zu(z, τ)− p1 ≤ 0}, no−maintenance region,

where ΩT = R× [0, T ].
Set

W (z, τ) = u(z, τ)− ∂zu(z, τ)− p1,

then, by (4.33), we deduce

∂zW ≥ 0, (6.1)

which indicates that W (z, τ) is monotonically increasing with respect to z. As a
consequence, if (z1, τ) ∈ NM, i.e. W (z1, τ) < 0, then for any z2 < z1,

W (z2, τ) ≤ W (z1, τ) < 0,

which means (z2, τ) ∈ NM. So we can define the optimal maintenance boundary

g(τ) = sup{z ∈ R|W (z, τ) < 0}, 0 ≤ τ ≤ T, (6.2)

such that

MR = {(z, τ) ∈ ΩT : z ≥ g(τ), τ ∈ (0, T ]},
NM = {(z, τ) ∈ ΩT : z < g(τ), τ ∈ (0, T ]}.

Theorem 6.1. Let g(τ) be the optimal maintenance boundary.
(i) If u(−∞, τ) < p1 for any τ ∈ (0, T ], then (see Fig.2)

h(τ) < g(τ) < +∞, τ ∈ (0, T ]. (6.3)

(ii) If there exists τ0 ∈ (0, T ], such that u(−∞, τ0) = p1, then (see Fig.3)

h(τ) < g(τ) < +∞, 0 < τ < τ0, (6.4)

g(τ) = −∞, τ0 ≤ τ ≤ T. (6.5)

(iii) g(τ) is continuous in the region {τ ∈ (0, T ] : g(τ) > h(τ)}, moreover

lim
τ→0+

g(τ) = +∞. (6.6)

�

�

z

τ
z = h(τ)

z = g(τ)
IR MR

NM ∩NI

Fig. 2. Optimal maintenance boundary g(τ)

with u(−∞, τ) < p1 for any τ ∈ [0, T ] .

�

�

z

τ

τ0

z = h(τ)

z = g(τ)
IR

MR

IR ∩MR

NM ∩NI

Fig. 3. Optimal maintenance boundary g(τ)

with u(−∞, τ0) = p1, τ0 ∈ [0, T ] .

Proof. First, we prove that g(τ) < +∞, τ ∈ (0, T ]. By (2.7) and (2.9), we conclude
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that W (z, τ) satisfies⎧⎪⎨⎪⎩
∂τW − LW −MW+ +MH(W )∂zW = −βp1 + (1− γ)eγz, z ≥ z0, 0 < τ ≤ T,

W (z0, τ) ≥ −P, 0 < τ ≤ T,

W (z, 0) = −p1, z ≥ z0,

(6.7)

where P = p2e
z0 + p1, z0 is defined by (5.15). Now, we intend to construct a subso-

lution to (6.7). Set

W2 = B(1− e−τ )eγz −N, (6.8)

where

B =
1− γ

2(2 + r + β +Mγ)
,

N = p1 + P + Beγz0 .

Then

∂τW2 − LW2 −MW+
2 +MH(W2)∂zW2 + βp1 − (1− γ)eγz

≤ ∂τW2 − LW2 +M∂zW2 + βp1 − (1− γ)eγz

= Be−τeγz − 1

2
σ2γ2B(1− e−τ )eγz + (

1

2
σ2 + r)γB(1− e−τ )eγz

+βB(1− e−τ )eγz − βN +MγB(1− e−τ )eγz + βp1 − (1− γ)eγz

≤ eγz[B(1 + 1 + r + β +Mγ)− (1− γ)]− βN + βp1

≤ 0,

and

W2(z0, τ) = B(1− e−τ )eγz0 −N ≤ Beγz0 −N ≤ −P,

W2(z, 0) = −N ≤ −p1.

Applying the comparison principle to W and W2, we have

W (z, τ) ≥ W2(z, τ), z ≥ z0, 0 ≤ τ ≤ T. (6.9)

From (6.8), we know, for any τ > 0, there exists z0 ≤ zτ < +∞, such that

W2(zτ , τ) > 0.

Combining with (6.9) and (6.1), we deduce

W (z, τ) ≥ W2(z, τ) ≥ W2(zτ , τ) > 0, z ≥ zτ , 0 < τ ≤ T, (6.10)

which implies

g(τ) < zτ < +∞, 0 < τ ≤ T.
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Next, we will examine the lower bound of g(τ). Since

∂zu = p2e
z, z ≤ h(τ),

then we have ∫ z

−∞
∂zudz =

∫ z

−∞
p2e

zdz, z ≤ h(τ),

that is

u(z, τ)− u(−∞, τ) = p2e
z, z ≤ h(τ), 0 < τ ≤ T. (6.11)

Hence,

W (z, τ) = u(z, τ)− ∂zu(z, τ)− p1

= u(−∞, τ) + p2e
z − p2e

z − p1

= u(−∞, τ)− p1, z ≤ h(τ), 0 < τ ≤ T. (6.12)

By (4.34), we have

∂τu(−∞, τ) ≥ 0, 0 < τ ≤ T.

Notice

u(−∞, 0)− p1 = −p1 < 0.

If

u(−∞, τ) < p1, τ ∈ (0, T ],

by (6.12), we have

W (z, τ) < 0, z ≤ h(τ), τ ∈ (0, T ].

Combining with (6.2), we get (6.3). Otherwise there exists τ0 ∈ (0, T ], such that
u(−∞, τ0) = p1, then

u(−∞, τ) < p1, 0 ≤ τ < τ0,

u(−∞, τ) ≥ p1, τ0 ≤ τ ≤ T.

From (6.12), we deduce

W (z, τ) < 0, z ≤ h(τ), 0 ≤ τ < τ0,

W (z, τ) ≥ 0, z ∈ R, τ0 ≤ τ ≤ T.

Thus we obtain (6.4) and (6.5) by the definition of g(τ).
In the following, we will prove g(τ) is continuous in region {τ ∈ (0, T ] : g(τ) >

h(τ)}. When g(τ) > h(τ), there exists a region Q such that

{(z, τ) : z = g(τ) > h(τ)} ⊂ Q ⊂ {(z, τ) : z > h(τ), τ ∈ [0, T ]}.
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Then, by (6.7), we have

∂τW − LW −MW+ +MH(W )∂zW = −βp1 + (1− γ)eγz, (z, τ) ∈ Q.

It then follows that

∂τWz −Dz(
1

2
σ2∂zWz −MH(W )Wz) +

1

2
(σ2 + r)Dz(Wz) + (β −MH(W ))Wz

= γ(1− γ)eγz > 0, (z, τ) ∈ Q, (6.13)

where Dz(·) denotes weak derivative of z. We will prove that

∂zW (z, τ) > 0, (z, τ) ∈ Q. (6.14)

Suppose not, there exists (z0, τ0) ∈ Q, such that ∂zW (z0, τ0) = 0. From (6.1), we
know ∂zW obtains its minimum on the point (z0, τ0). Notice that

β −MH(W )−Dz(−MH(W )) = β −MH(W ) +MH ′(W )∂zW,

combining with (2.8) and (6.14), we can infer that

β −MH(W )−Dz(−MH(W )) ≥ β −M.

By the strong maximum principle for weak solution [14], we have

∂zW (z, τ) ≡ 0, (z, τ) ∈ Q ∩ {τ ≤ τ0},

which contradicts with (6.13).
Since W (g(τ), τ) = 0, W and ∂zW is continuous in Q, ∂zW > 0 in Q, by implicit

function theorem, we conclude that g(τ) is continuous on {τ ∈ (0, T ] : g(τ) > h(τ)}.
At last, we prove (6.6). Since W (z, 0) = −p1 < 0, z ∈ R, and W ∈ C(ΩT ), which

implies (6.6). �

7 Optimal investment and maintenance policies

We recall the Skorohod Lemma proved in P. L. Lions and Snitzman [15].

Lemma 7.1. Given any initial state y ≥ 0 and any boundary H(t) ≥ 0, there exists
a unique adapted process Y ∗ , a nondecreasing process I∗, right-continuous, I∗t− = 0,
satisfying the Skorohod problem S(x, y,H(t)):

dX∗
s = μX∗

sds+ σX∗
sdBs +m∗

sX
∗
s , X∗

t = x > 0, t < s ≤ T, (7.1)

dY ∗
s = −λY ∗

s ds+ dI∗s , Y ∗
t− = y > 0, t < s ≤ T, (7.2)

Y ∗
s /X

∗
s ∈ [H(s),+∞) a.s., s ≥ t, (7.3)∫ T

t
XY ∗

s /X∗
s>H(s)dI

∗
s = 0. (7.4)

Moreover, if y/x ≥ H(t), then I∗ is continuous. when y/x < H(t), I∗t = xH(t)− y.

23



The condition (7.4) means that I∗ increases only when Y ∗
s /X

∗
s = H(s). The

α−potential of I∗ is finite, that is

E[

∫ T

t

e−αsdI∗s ] < ∞, (7.5)

see Chapter X in Revuz and Yor[19].

Theorem 7.1. Assume a function Ṽ (x, y, t) ∈ C2,1((−R,R)× (0, T ))∩C((−R,R)×
(0, T ]) is the solution to (2.5) and satisfies linear growth condition, then

Ṽ (x, y, t) ≥ V (x, y, t). (7.6)

Define

H(t) = eh(T−τ), τ ∈ [0, T ],

G(t) = eg(T−τ), τ ∈ [0, T ],

where h(τ) is the optimal investment boundary defined by (3.25), g(τ) is the optimal
maintenance boundary defined by (6.2), respectively. Given (x, y) ∈ R+ ×R+, let m∗

s

be a adapted process defined by

m∗
s = MXY ∗

s /X∗
s≥G(s), s ∈ [t, T ], (7.7)

and X∗
s is the solution to (7.1) with initial value X∗

t = x and control m∗
s. Let

(X∗
s , Y

∗
s , I

∗) be the solution to the Skorohod problem S(x, y,H(t)). Then we have

Ṽ (x, y, t) = E
[ ∫ T

t

e−α(s−t)F (X∗
s , Y

∗
s )ds− p1

∫ T

t

e−α(s−t)m∗
sX

∗
sds− p2

∫ T

t

e−α(s−t)dI∗s
]
.

(7.8)

Furthermore, we have V (x, y, t) = Ṽ (x, y, t).

Proof. Applying Itô formula with jump, we have

e−αT Ṽ (XT , YT , T )− e−αtṼ (x, y, t)

=

∫ T

t

e−αs(−αṼ ds+ ∂τ Ṽ ds+ ∂xṼ dXs + ∂yṼ dY c
s +

1

2
σ2X2

s∂xxṼ ds)

+
∑

t<s≤T

e−αs(Ṽ (Xs, Ys, s)− Ṽ (Xs, Ys−, s))

=

∫ T

t

e−αs[∂τ Ṽ + LṼ (Xs, Ys)]ds+

∫ T

t

e−αsmsXs∂xṼ ds+

∫ T

t

e−αsσXs∂xṼ dBs

+
∑

t<s≤T

e−αs∂yṼ (Xs, θYs + (1− θ)Ys−, s)(Ys − Ys−) (0 ≤ θ ≤ 1)

Taking expectation and combining with (2.5), we have

e−αtṼ (x, y, t)

24



≥ −E[

∫ T

t

e−αs[∂τ Ṽ + LṼ (Xs, Ys)]ds+

∫ T

t

e−αsmsXs∂xṼ ds+ p2

∫ T

t

e−αsdIs]

≥ E[

∫ T

t

e−αs[M(Xs(∂xṼ − p1)
+) + F (Xs, Ys)]ds−

∫ T

t

e−αsmsXs∂xṼ ds− p2

∫ T

t

e−αsdIs]

≥ E[

∫ T

t

e−αsF (Xs, Ys)]ds− p1

∫ T

t

e−αsmsXsds− p2

∫ T

t

e−αsdIs],

by the arbitrary of (I,m), we deduce Ṽ (x, y, t) ≥ V (x, y, t).
In the following, we will prove that the policy (m∗

s, I
∗
s ) is optimal policy to

maximize the expected total profit. By (7.5) and (7.7), we can easily infer that
((m∗

s, I
∗
s )) ∈ At(x, y), i.e. which satisfies (2.2). Next we will prove (m∗

s, I
∗
s ) satisfies

(7.8).
We first consider the case where y/x ≥ H(t). Then the process (X∗

s , Y
∗
s ,m

∗
s, I

∗
s )

are continuous. From (7.3), the definition of (3.25) and (2.5), for all s ≥ t, we have

∂tṼ (X∗
s , Y

∗
s , s) + L1Ṽ (X∗

s , Y
∗
s , s) +MX∗

s (∂xṼ (X∗
s , Y

∗
s , s)− p1)

+ + F (X∗
s , Y

∗
s ) = 0.

By applying the Itô’s formula to e−αsṼ (X∗
s , Y

∗
s , s) between t and T , we then obtain

E[e−αT Ṽ (X∗
T , Y

∗
T , T )]

= e−αtṼ (x, y, t) + E[

∫ T

t

e−αs(∂tṼ (X∗
s , Y

∗
s , s) + L1Ṽ (X∗

s , Y
∗
s , s))ds]

+E[

∫ T

t

e−αs∂xṼ (X∗
s , Y

∗
s , s)(σx

∗
sdBs +m∗

sX
∗
sds)] + E[

∫ T

t

e−αs∂yṼ (X∗
s , Y

∗
s , s)dI

∗
s ]

= e−αtṼ (x, y, t)− E[

∫ T

t

e−αs(MX∗
s (∂xṼ (X∗

s , Y
∗
s , s)− p1)

+ + F (X∗
s , Y

∗
s ))ds]

+E[

∫ T

t

e−αsm∗
sX

∗
s∂xṼ (X∗

s , Y
∗
s , s)ds] + E[

∫ T

t

e−αs∂yṼ (X∗
s , Y

∗
s , s)dI

∗
s ]. (7.9)

Thus, by (7.4), we have

E[

∫ T

t

e−αs∂yṼ (X∗
s , Y

∗
s , s)dI

∗
s ]

= E[

∫ T

t

e−αs∂yṼ (X∗
s , Y

∗
s , s)XY ∗

s /X∗
s>H(s)dI

∗
s ] + E[

∫ T

t

e−αs∂yṼ (X∗
s , Y

∗
s , s)XY ∗

s /X∗
s=H(s)dI

∗
s ]

= E[

∫ T

t

e−αs∂yṼ (X∗
s , Y

∗
s , s)XY ∗

s /X∗
s=H(s)dI

∗
s ]

= E[

∫ T

t

e−αsp2dI
∗
s ],

since ∂yṼ (X∗
s , Y

∗
s , s)|Y ∗

s /X∗
s=H(s) = p2. By substituting into (7.9), combining with

(7.7) and (2.5), we get

Ṽ (x, y, t)

25



= E[e−α(T−t)Ṽ (X∗
T , Y

∗
T , T )] + E[

∫ T

t

e−α(s−t)F (X∗
s , Y

∗
s )ds]

−E[

∫ T

t

e−α(s−t)p2dI
∗
s ] + E[

∫ T

t

e−α(s−t)X∗
s (M(∂xV − p1)

+ −m∗
s∂xṼ )ds]

= E[

∫ T

t

e−α(s−t)F (X∗
s , Y

∗
s )ds− p2

∫ T

t

e−α(s−t)dI∗s − p1

∫ T

t

e−α(s−t)m∗
sX

∗
sds].

Thus we obtain (7.8).
When y/x < H(t), and since I∗t = xH(t)− y, we have

E[

∫ T

t

e−α(s−t)F (X∗
s , Y

∗
s )ds− p1

∫ T

t

e−α(s−t)m∗
sX

∗
sds− p2

∫ T

t

e−α(s−t)dI∗s ]

= E[

∫ T

t

e−α(s−t)F (X∗
s , Y

xH(t)
s )ds− p1

∫ T

t

e−α(s−t)m∗
sX

∗
sds− p2

∫ T

t

e−α(s−t)dI∗s ]

−p2(xH(t)− y)

= Ṽ (x, xH(t), t)− p2(xH(t)− y) = Ṽ (x, y, t),

by recalling that ∂yṼ (x, y, t) = p2 in (0 < y < xH(t)) and we have (7.8).

From the definition of (2.3), (7.6) and (7.8), we deduce that V (x, y, t) = Ṽ (x, y, t).
�

8 Conclusion

This paper concerns a continuous-time, finite horizon, optimal irreversible investment
problem with maintenance expenditure of a firm under uncertainty. The objective
of the firm is to construct optimal investment and maintenance policies to maximize
its expected total profit over a finite horizon. Most of the previous work takes only
either an infinite time horizon or pure investment without maintenance expenditure
into consideration.

Mathematically, it is a singular stochastic control problem whose value function
satisfies a parabolic variational inequality with gradient constraint. The problem gives
rise to two free boundaries which stand for the optimal investment and maintenance
strategies, respectively. The main task is to characterize the behaviors of the two free
boundaries.

But it is not an easy task. First, Since it is intractable to study the free boundary
from the original variational inequality with gradient constraint, we intend to reduce
the original problem to a standard variational inequality with function constraint.
But the variational inequality with function constraint is not a self-contained sys-
tem, which leads to a difficulty to construct the connection between the above two
variational inequalities. Following [6], by exploiting an auxiliary condition, we study
the behaviors of the optimal investment boundary. In particular, we prove that the
optimal investment boundary is strictly increasing and characterize its asymptotic
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behavior. These behaviors are more accurate than that in [6]. The classical solution
is obtained as well.

Secondly, the optimal maintenance boundary is the level set of {(z, τ) ∈ ΩT :
u(z, τ) − ∂zu(z, τ) − p1 = 0}, which is different to the free boundary with function
constraint or with gradient constraint. We prove continuity of optimal maintenance
boundary and consider its possible situation. At last, we obtain the optimal invest-
ment and maintenance policies.
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