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Homogenization results for micro-contact elasticity
problems

Anca Capatinaa, Claudia Timofteb,1,∗

aInstitute of Mathematics of the Romanian Academy, P.O. Box 1-764, RO-70700
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bUniversity of Bucharest, Faculty of Physics, Bucharest-Magurele, P.O. Box MG-11,
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Abstract

The asymptotic behavior of some elasticity problems, in a perforated domain,
is analyzed. We address here the case of an ε-periodic perforated structure, with
rigid inclusions of the same size as the period. The body occupying this domain
is considered to be clamped along a part of its outer boundary and subjected to
given tractions on the rest of the exterior boundary. Several nonlinear conditions
on the boundary of the rigid inclusions are considered. The approach we follow
is based on the periodic unfolding method, which allows us to deal with general
materials.

Keywords: homogenization, frictional contact, the periodic unfolding method.

1. Introduction

The behavior of heterogeneous materials, with inhomogeneities at a length
scale which is much smaller than the characteristic dimensions of the system,
is of huge interest in the theory of composite materials. The homogenization
theory was successfully applied for modeling the behavior of such materials,
leading to appropriate macroscopic continuum models, obtained by averaging
the rapid oscillations of the material properties. Besides, such effective models
have the advantage of avoiding extensive numerical computations arising when
dealing with the small scale behavior of the system.

This paper deals with the derivation of macroscopic models for some elas-
ticity problems in periodically perforated domains with rigid inclusions of the
same size as the period. This periodic structure is occupied by a linearly elastic
body which is considered to be clamped along a part of its outer boundary.
On the rest of the exterior boundary, surface tractions are given. The body is
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subjected to the action of given volume forces. Several nonlinear conditions on
the boundary of the rigid inclusions are considered. More precisely, we study
the case when a nonlinear Robin condition is imposed and, respectively, the
case when unilateral contact with given friction is taken into consideration. By
using the periodic unfolding method, introduced by Cioranescu, Damlamian &
Griso [3] and by Cioranescu, Donato & Zaki [6], [7] (see, also, [4]), we obtain
the corresponding macroscopic problems.

Similar problems have been addressed, using various tools and techniques,
by many authors. The macroscopic behavior of a composite material with two
elastic components is analyzed, in a formal way, by Léné & Leguillon in [17]
and [18]. The homogenization of a contact problem of Signorini type in elastic-
ity, by using the two-scale method, is, for the first time, addressed by Mikelić,
Shillor & Tapiéro in [22]. In [14], Iosif’yan studies the asymptotic behavior of
the solution of a classical problem in elasticity for a perforated body, clamped
along its outer boundary and with a Signorini condition imposed on the surface
of the cavities. A viscoelastic periodically perforated material with rigid inclu-
sions, for which the contact and the friction are described by linear conditions,
is considered by Gilbert, Panchenko & Xie in [12]. For an homogenized model
for acoustic vibrations of composite materials with internal friction, the inter-
ested reader is referred to Gilbert, Panchenko & Xie [12]. A system of linear
elasticity is considered in [14] for a periodically perforated domain in the case in
which a nonlinear Robin condition is imposed on the boundary of the inclusions.
Recently, Cioranescu, Damlamian & Orlik [5] perform the homogenization, via
the periodic unfolding method, of a contact problem for an elastic body with
closed and open cracks. Their problem involves the jump of the solution on
the oscillating interface. For elasticity problems involving jumps at imperfect
interfaces, see also Ene & Pasa [11], Lipton & Vernescu [19], [20], and Mei &
Vernescu [21].

In this paper, for the Robin problem, we extend, via the periodic unfolding
method, some of the results contained in [12] and [14], by considering general
nonlinearities in the condition imposed on the boundary of the inclusions. Also,
we establish an homogenization result for a Signorini problem with Tresca fric-
tion. The difficulties of this problem come from the fact that the unilateral
condition generates a convex cone of admissible displacements, and, especially,
from the fact that the friction condition involves a nonlinear functional con-
taining the norm of the tangential displacement on the boundary of the rigid
inclusions. As shown in Section 4, the macroscopic problem is different from the
one addressed in [5]. In particular, for the frictionless contact case, we regain
a result obtained, under more restrictive assumptions, in [14]. This friction-
less problem was also addressed in [15], by the two-scale convergence method,
for more general geometric structures of the inclusions on which the Signorini
conditions act.

The structure of the paper is as follows: in Section 2, we formulate our
microscopic problems, namely a nonlinear Robin problem and a Signorini-Tresca
one. Section 3 is devoted to the homogenization of the Robin problem. In
Section 4, we obtain the macroscopic behavior of the solution of the Signorini-

2



Tresca problem.

2. The microscopic problems

Let us consider a linearly elastic body occupying a bounded domain Ω ⊂
R

n, n ≥ 2 (the relevant physical cases are n = 2 or n = 3), with a Lipschitz
boundary Γ = Γ1 ∪ Γ2, where Γ1, Γ2 are open and disjoint parts of Γ, with
meas(Γ1) > 0.

The body is subjected to the action of a volume force of density f given in
Ω and a surface traction of density t applied on Γ2. The body is clamped on Γ1

and, so, the displacement vector u vanishes here.
Let Y = (0, 1)n be the representative cell and T , the rigid part, be an open

subset of Y , with a Lipschitz boundary ∂T and such that T̄ ⊂ Y . Let Y ∗ = Y \T̄
be the elastic part. We assume that the set of all translated images of T̄ of the
form ε(l+ T̄ ), with l ∈ Z

n, does not intersect the boundary ∂Ω. We denote by
Tε the set of the inclusions contained in Ω, i.e.

Tε =
⋃
l∈Kε

ε(l+ T ),

where Kε = {l ∈ Z
n/ε(l+ T̄ ) ⊂ Ω}.

We define the periodic perforated domain by

Ωε = Ω\T̄ε.

Also, we denote by e and σε the strain and, respectively, the stress tensor
related, in the framework of linear elasticity, by the constitutive law:

σε
ij = aεijkhekh(u

ε),

where

eij(u
ε) =

1

2

(
∂uε

i

∂xj
+

∂uε
j

∂xi

)
1 ≤ i, j ≤ n.

Here and below we adopt the usual summation convention. We suppose that

the fourth order elasticity tensor Aε = (aεijkh) is given by aεijkh(x) = aijkh

(x
ε

)
,

where the elasticity coefficients {aijkh}1≤i,j,k,h≤n are Y -periodic functions and
satisfy the usual symmetry and ellipticity conditions:

aijkh = ajihk = akhij ,
∃α > 0 such that aijkhξijξkh ≥ α|ξ|2 , ∀ξ = (ξij) ∈ R

n×n.
(2.1)

We use a classical decomposition in the normal and the tangential compo-
nents of the displacement vector and of the stress vector on ∂Ωε = ∂Ω ∪ ∂Tε:

uν = uiν
ε
i , uτ = u− uνν

ε ,
σν = σijν

ε
i ν

ε
j , στi = σijνj − σνν

ε
i ,

3



where νε is the exterior unit normal to ∂Ωε.
Under the previous notation, we first consider the following elasticity prob-

lem with a nonlinear Robin condition on the boundary of the inclusions ∂Tε:
Problem (P1ε): Find a displacement vector uε : Ωε → R

n such that⎧⎪⎪⎨
⎪⎪⎩

− divσε = f in Ωε,
uε = 0 on Γ1,
σε · νε = t on Γ2,
σε · νε = −ε(kε + h(uε)) on ∂Tε.

(2.2)

Here, kε = (kε1, . . . , k
ε
n) with kεi (x) = ki

(x
ε

)
, for i = 1, . . . , n, ki being a Y -

periodic function.
Also, in (2.2), h(uε) = (h1(u

ε
1), h2(u

ε
2), . . . , hn(u

ε
n)), where the function hi :

R → R, for i = 1, . . . , n, has the following properties:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

hi is continuously differentiable,
hi is non-decreasing,
hi(0) = 0,
there exist a positive constant C and a exponent q,

with 0 ≤ q ≤ ∞ if n = 2 and 0 ≤ q ≤ n

n− 2
if n > 2, such that

|h′
i(s)| ≤ C(1 + |s|q−1) ∀s ∈ R.

(2.3)

The second problem we address involves frictional contact on the boundary
of the inclusions. The contact is described by Signorini conditions and the
friction by a Coulomb law with given friction (Tresca friction).
Problem (P2ε): Find a displacement vector uε : Ωε → R

n such that⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

− divσε = f in Ωε,
uε = 0 on Γ1,
σε · νε = t on Γ2,
σε
ν ≤ 0 uε

ν ≤ 0 , σε
νu

ε
ν = 0 on ∂Tε,

|σε
τ | ≤ εgε and

{ |σε
τ | < εgε ⇒ uε

τ = 0
|σε

τ | = εgε ⇒ ∃λ ≥ 0, uε
τ = −λσε

τ
on ∂Tε,

(2.4)

where gε(x) = g
(x
ε

)
, with g a non negative Y -periodic function.

Our goal is to derive the macroscopic models corresponding to the above
problems. To this end, we shall use the periodic unfolding method which, in fact,
requiring no extension operators, allows us to transform any function defined on
Ωε or ∂Tε into a function defined on a fixed domain, Ω× Y ∗ and, respectively,
Ω× ∂T . We recall the definitions of the periodic unfolding operators Tε and T b

ε

for perforated domains and we briefly summarize some of their properties we
shall use in our approach. For more details, including complete proofs, we refer
the reader to [3], [4], [6], [7], and [8].

In the sequel, we shall use the notation ϕ̃ for the zero extension to the
whole of Ω of a Lebesgue measurable function ϕ defined on Ωε. As usual, for a
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measurable set ω in R
n, |ω| denotes its Leabesgue measure and Mω(ϕ) denotes

the mean value on ω of a Lebesgue measurable function ϕ, i.e.

Mω(ϕ) =
1

|ω|
∫
ω

ϕ(x) dx.

For any Lebesgue measurable function ϕ on Ωε, the periodic unfolding op-
erator Tε is the linear operator defined by

Tε(ϕ)(x, y) = ϕ̃

(
ε
[x
ε

]
Y

+ εy

)
a.e. (x, y) ∈ Ω× Y ∗.

Proposition 2.1. Let p ∈ [1,∞). The periodic unfolding operator Tε has the
following properties:

1) Tε(ϕφ) = Tε(ϕ)Tε(φ) , ∀ϕ, φ Lebesgue measurable functions on Ωε.
2) Tε is continuous from Lp(Ωε) to Lp(Ω× Y ∗).
3) Tε(ϕε)(x, y) = ϕ(y) a.e. (x, y) ∈ Ω × Y ∗ , ∀ϕ ∈ Lp(Y ∗) a Y-periodic

function with ϕε(x) = ϕ
(x
ε

)
.

4)

∫
Ω×Y ∗

Tε(ϕ)(x, y) dx dy =

∫
Ωε

ϕ(x) dx , ∀ϕ ∈ L1(Ωε).

5) If ϕ ∈ H1(Ωε), then Tε(ϕ) ∈ L2(Ω×H1(Y ∗)) and

∇yTε(ϕ) = εTε(∇xϕ).

6) If {ϕε}ε ⊂ L2(Ω) is such that ϕε → ϕ strongly in L2(Ω), then

Tε(ϕε) → ϕ strongly in L2(Ω× Y ∗).

7) Let ϕε ∈ H1(Ωε) , ∀ε > 0, be such that the sequence {ϕε}ε is bounded
in H1(Ωε). Then, there exist ϕ0 ∈ H1(Ω) and ϕ1 ∈ L2(Ω;H1

per(Y
∗)) with

MY ∗(ϕ1)(x) = 0 a.e. x ∈ Ω, such that, up to a subsequence,{ Tε(ϕε) ⇀ ϕ0 weakly in L2(Ω;H1(Y ∗)),
Tε(∇ϕε) ⇀ ∇ϕ0 +∇yϕ

1 weakly in L2(Ω× Y ∗).

In a similar way, we define the periodic unfolding operator on the boundary
of the inclusions ∂Tε. This operator allows us to treat the non-homogeneous
conditions on the boundary of the inclusions ∂Tε by transforming the surface
integrals into volume integrals.

For any Lebesgue measurable function ϕ defined on ∂Tε, the periodic bound-
ary unfolding operator T b

ε is defined by

T b
ε (ϕ)(x, s) = ϕ

(
ε
[x
ε

]
Y

+ εs

)
a.e. (x, s) ∈ Ω× ∂T.

We remark that if ϕ ∈ H1(Ωε), then T b
ε (ϕ) is the trace of Tε(ϕ) on ∂T .

The next proposition summarizes the main properties of the boundary un-
folding operator defined on the boundary of the inclusions ∂Tε.
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Proposition 2.2. The boundary unfolding operator T b
ε is linear. Moreover,

1) T b
ε (ϕφ) = T b

ε (ϕ)T b
ε (φ) , ∀ϕ, φ Lebesgue measurable functions on ∂Tε.

2) T b
ε is continuous from Lp(∂Tε) to Lp(Ω× ∂T ).

3) T b
ε (ϕ

ε)(x, s) = ϕ(s) a.e. (x, s) ∈ Ω × ∂T , ∀ϕ ∈ Lp(∂T ) a Y-periodic

function with ϕε(x) = ϕ
(x
ε

)
.

4)

∫
Ω×∂T

T b
ε (ϕ)(x, s) dx ds = ε

∫
∂Tε

ϕ(s) ds , ∀ϕ ∈ L1(∂Tε).

5) lim
ε→0

∫
Ω×∂T

T b
ε (ϕ)(x, s) dx ds = |∂T |

∫
Ω

ϕ(x) dx , ∀ϕ ∈ L1(Ω).

6) T b
ε (ϕ) → ϕ̃ strongly in L2(Ω× ∂T ) , ∀ϕ ∈ L2(∂Tε).

7) Let ϕε ∈ W 1,p(Ωε) , ∀ε > 0, and ϕ ∈ W 1,p(Ω) be such that

Tε(ϕε) ⇀ ϕ weakly in Lp
loc(Ω;W

1,p(Y ∗)) .

Then
T b
ε (ϕ

ε) ⇀ ϕ weakly in Lp
loc(Ω;W

1− 1
p ,p(∂T )) .

We end this section by recalling a result obtained in [15] for the limit of
some two-scale convergent sequences. Taking into account that, for bounded
sequences {ϕε}ε in Lp(Ω), the two-scale convergence of ϕε to a function ϕ is
equivalent with the weakly convergence of Tε(ϕε) to ϕ in Lp(Ω×Y ∗), the result
of [15] can be written in the following suitable form for our paper, which, in fact,
shows that the Signorini boundary conditions are preserved under the action of
the unfolding operator.

Lemma 2.1. Let {vε}ε ⊂ H1(Ω)n be a bounded sequence in H1(Ω)n such that

vε(x) · ν
(x
ε

)
≤ 0 on ∂Tε. Then, there exists v1 ∈ L2(Ω;H1

per(Y
∗))n such that

v1(x, y) · ν(y) ≤ 0 on ∂T and

Tε(ex(vε)) ⇀ ey(v
1) weakly in L2(Ω× Y ∗)n×n.

3. The Robin problem

This section is devoted to the homogenization of the problem (P1ε). We
start by introducing its variational formulation. Then, by using suitable a pri-
ori estimates and the periodic unfolding method, we obtain the macroscopic
problem.

We define the following Hilbert space:

V ε = {vε ∈ H1(Ωε)
n ; vε = 0 a.e. on Γ1}, (3.1)

endowed with the scalar product

(uε,vε)V ε =

∫
Ωε

eij(u
ε)eij(v

ε) dx ∀uε, vε ∈ V ε.
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We make the following regularity assumptions on the data:⎧⎨
⎩

f ∈ L2(Ω)n,
t ∈ L2(Γ2)

n,
aijkh ∈ L∞(Y ), i, j, k, h = 1, . . . , n,

(3.2)

ki ∈ L2(∂T ), M∂T (ki) 
= 0 , ∀i ∈ {1, . . . , n}. (3.3)

By using the hypotheses (2.3) and Krasnosel’skii lemma (see, e.g. [16]), it
follows that, for any i ∈ {1, . . . , n}, the function hi has the properties:⎧⎨

⎩
|hi(s)| ≤ C(1 + |s|q) ∀s ∈ R,
shi(s) ≥ 0 ∀s ∈ R,
hi(u)v ∈ L1(∂S) ∀S ⊂ Ω compact set, ∀u, v ∈ H1(Ω \ S) .

(3.4)

We are now in the position to write the weak formulation of problem (P1ε).
Problem (P1ε): Find uε ∈ V ε such that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
Ωε

Aεe(uε) e(vε) dx+ ε

∫
∂T ε

h(uε) · vε ds =

∫
Ωε

f · vε dx+

∫
Γ2

t · vε dx

−ε

∫
∂T ε

kε · vε ds ∀vε ∈ V ε .
(3.5)

Proposition 3.1. Under the above assumptions, there exists a unique solution
uε of problem (P1ε).

Proof. Since the operator h is monotone, from the ellipticity of the coefficients
aε and Korn inequality, one gets immediately the uniqueness of the solution of
the problem (P1ε). Using the continuity of the Nemytskii operator associated
to the function hi and Minty-Browder theorem (see, for instance, [1] and [8]),
we obtain the existence of a solution of (P1ε).

Now, taking vε = uε in (P1ε) and using Korn inequality, we obtain the
following a priori estimate:

‖uε‖V ε ≤ C, (3.6)

with C a positive constant independent on ε.
Applying Propositions 2.1, 2.2 and taking into account the definition of the

space V ε, it follows that the next result is true.

Proposition 3.2. There exist u0 ∈ V = {v ∈ H1(Ω)n; v = 0 a.e. on Γ1} and
u1 ∈ L2(Ω;H1

per(Y
∗))n with MY ∗(u1)(x) = 0 a.e. x ∈ Ω, such that, passing to

a subsequence, the following convergences hold:

Tε(uε) ⇀ u0 weakly in L2(Ω;H1(Y ∗))n,
Tε(e(uε)) ⇀ e(u0) + ey(u

1) weakly in L2(Ω× Y ∗)n×n,
(3.7)

T b
ε (h(u

ε)) ⇀ h(u0) weakly in Lq1
loc(Ω;W

1− 1
q ,q1(∂T ))n, (3.8)

where q1 =
2n

q(n− 2) + n
(see, also, [8] and [9]).
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The main result of this section is stated in the following theorem.

Theorem 3.1. Let uε ∈ V ε be the solution of Problem (P1ε). Then, there
exists u0 ∈ V = {v ∈ H1(Ω)n; v = 0 a.e. on Γ1} such that

Tε(uε) ⇀ u0 weakly in L2(Ω;H1(Y ∗))n, (3.9)

where u0 is the unique solution of the homogenized problem⎧⎨
⎩

− divσhom(u0) + |∂T |h(u0) = |Y ∗|f − |∂T |M∂T (k) in Ω,
u0 = 0 on Γ1,
σhom(u0) · ν = t on Γ2.

(3.10)

Here, ν is the outer unit normal to ∂Ω and

σhom(u0) = Ahome(u0),

Ahom = (ahomijkh) being the homogenized fourth order tensor defined by

ahomijkh =

∫
Y ∗

(
aijkh − aijlmelm(χkh)

)
dy, (3.11)

where, for k, h ∈ {1, . . . , n}, the vector-valued function χkh = (χkh
1 , . . . , χkh

n )
has the component χkh

l ∈ {v ∈ H1
per(Y

∗); MY ∗(v) = 0}, for l ∈ {1, . . . , n}, the
solution of the cell problem⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂

∂yj

(
aijlm

∂χkh
l

∂ym

)
=

∂aijkh
∂yj

in Y ∗, i = 1, . . . , n,

(
aijkh − aijlm

∂χkh
l

∂ym

)
νj = 0 on ∂T, i = 1, . . . , n.

(3.12)

Proof. By applying the corresponding unfolding operators Tε and T b
ε in each

term of (3.5), we get∫
Ω×Y ∗

Tε(Aε)Tε(e(uε)) Tε(e(vε)) dx dy +

∫
Ω×∂T

T b
ε (h(u

ε)) · T b
ε (v

ε) dx ds =

∫
Ω×Y ∗

Tε(f) · Tε(vε) dx dy +

∫
Γ2

t · vε ds−
∫

Ω×∂T

T b
ε (k

ε) · T b
ε (v

ε) dx ds ∀vε ∈ V ε.

(3.13)
Taking vε(x) = ϕ(x), with ϕ ∈ {v ∈ C1(Ω̄)n; v = 0 near Γ1}, in (3.13) and

passing to the limit, we get

∫
Ω×Y ∗

A(y)
(
e(u0)(x) + ey(u

1)(x, y)
)
e(ϕ)(x) dx dy +

∫
Ω×∂T

h(u0)(x)ϕ(x) dx ds =

∫
Ω×Y ∗

f(x)ϕ(x) dx dy +

∫
Γ2

t ·ϕ ds−
∫

Ω×∂T

k(s)ϕ(x) dx ds .

(3.14)

8



Hence, by density, it follows that∫
Ω×Y ∗

A(y)
(
e(u0)(x) + ey(u

1)(x, y)
)
e(ϕ)(x) dx dy + |∂T |

∫
Ω

h(u0)(x)ϕ(x) dx =

|Y ∗|
∫
Ω

f(x)ϕ(x) dx dy +

∫
Γ2

t ·ϕ ds− |∂T |M∂T (k)

∫
Ω

ϕ(x) dx ∀ϕ ∈ V .

(3.15)

Now, putting vε(x) = εψ
(
x,

x

ε

)
with ψ ∈ D(Ω;H1

per(Y
∗))n in (3.13), and

taking into account the convergences:

Tε(vε) → 0 strongly in L2(Ω;H1(Y ∗))n,
T b
ε (v

ε) → 0 strongly in L2(Ω× ∂T )n,
Tε(e(vε)) → ey(ψ) strongly in L2(Ω× Y ∗)n×n,

(3.16)

by passing to the limit and by using density arguments, we get∫
Ω×Y ∗

A(y)
(
e(u0)(x) + ey(u

1)(x, y)
)
ey(ψ)(x, y) dx dy = 0, (3.17)

for all ψ ∈ L2(Ω;H1
per(Y

∗))n. This relation gives

− ∂

∂y

(
A(y)ey(u

1)(x, y)
)
=

∂

∂y

(
A(y)e(u0(x)

)
in Ω× Y ∗. (3.18)

By standard arguments, this yields

u1(x, y) = −
n∑

k,h=1

χkh(y)ekh(u
0(x)) = −

n∑
k,h=1

χkh(y)
∂u0

k(x)

∂xh
, (3.19)

where χkh = (χkh
1 , . . . , χkh

n ), with χkh
l the solution of the local problem (3.12).

We replace now u1 given by (3.19) in (3.15) and we get

∫
Ω

Ahome(u0)(x)e(ϕ)(x) dx+ |∂T |
∫
Ω

h(u0)(x)ϕ(x) dx =

|Y ∗|
∫
Ω

f(x)ϕ(x) dx dy +

∫
Γ2

t ·ϕ ds− |∂T |M∂T (k)

∫
Ω

ϕ(x) dx ∀ϕ ∈ V ,

(3.20)
where Ahom = (ahomijkh) is given by (3.11). Therefore, taking ϕ ∈ D(Ω)n, we
obtain (3.10)1. Multiplying (3.10)1 with ϕ ∈ V , integrating over Ω, and using
(3.20), we get (3.10)3.

By standard arguments, it follows that the solution of Problem (3.20) is
unique, which implies that the convergence (3.9) holds true on the whole se-
quence.
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We notice that the homogenized elasticity tensor is the classical one appear-
ing in the linear problems and the homogenized equation contains two extra
terms generated by the given functions arising in the nonlinear condition on the
boundary of the inclusions.

Remark 3.1. It is not difficult to see that the above results are still true for
the case in which

h(uε) = (h1j(u
ε
j), h2j(u

ε
j), . . . , hnj(u

ε
j)),

with hij satisfying the conditions (2.3).
Also, we can work with

ki ∈ L∞(∂T ) and ki(y) ≥ λi > 0 , ∀y ∈ ∂T ,

which implies (3.3).

4. The Signorini-Tresca problem

This section is devoted to the homogenization of the Problem (P2ε). Let
Kε be the closed convex cone in V ε defined by

Kε = {vε ∈ V ε ; vεν ≤ 0 a.e. on ∂T ε},

where V ε is given by (3.1). In order to write the variational formulation of
Problem (P2ε), we assume that f , t and aijkh satisfy the regularity conditions
(3.2). In addition, we suppose that

g ∈ L∞(∂T ) with g ≥ 0. (4.1)

The weak formulation of Problem (2.4) is as follows.
Problem (P2ε): Find uε ∈ Kε such that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
Ωε

Aεe(uε) (e(vε)− e(uε)) dx+

∫
∂Tε

εgε(s)|vε
τ (s)| ds−

∫
∂Tε

εgε(s)|uε
τ (s)| ds

≥
∫
Ωε

f · (vε − uε) dx+

∫
Γ2

t · (vε − uε) ds ∀vε ∈ Kε.

(4.2)
By classical results for variational inequalities (see, e.g., [2] or [23]), it follows

that Problem (P2ε) has a unique solution. Moreover, taking vε = 2uε and
vε = 0 in (4.2), we deduce that∫

Ωε

Aεe(uε)e(uε) dx+

∫
∂Tε

εgε(s)|uτ (s)| ds =
∫
Ωε

f · uε dx+

∫
Γ2

t · uε ds .

Thus, we obtain the a priori estimate (3.6) and, as a consequence, the conver-
gences (3.7) hold true.
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The main result of this section gives the macroscopic behavior of the solution
of Problem (P2ε). As we shall see, once again, we obtain at the limit the
classical homogenized tensor. Moreover, the Signorini conditions imposed on
the boundary of the inclusions become unilateral restrictions defined almost
everywhere in the domain Ω.

Theorem 4.1. Let uε ∈ Kε be the solution of Problem (P2ε). Then, there
exists u0 ∈ K = {v ∈ H1(Ω)n; v = 0 a.e. on Γ1 , v(x) · ν(y) ≤ 0 a.e. x ∈
Ω , ∀y ∈ ∂T} such that

Tε(uε) ⇀ u0 weakly in L2(Ω;H1(Y ∗))n, (4.3)

where u0 is the unique solution of the homogenized problem

∫
Ω

Ahom(y)e(u0)(e(v)− e(u0)) dx+

∫
Ω×∂T

g(s)|vτ | dx ds−
∫

Ω×∂T

g(s)|u0
τ | dx ds

≥ |Y ∗|
∫
Ω

f · (v − u0) dx+

∫
Γ2

t · (v − u0) ds ∀v ∈ K,

(4.4)
with Ahom defined by (3.11).

Proof. Let u0 ∈ V = {v ∈ H1(Ω)n; v = 0 a.e. on Γ1} and u1 ∈ L2(Ω;H1
per(Y

∗))n

be given by Proposition 3.2, i.e. the convergences (3.7) hold. We first prove
that u0 ∈ K. Indeed, as uε ∈ Kε (i.e. uε

ν = uε · νε ≤ 0 on ∂Tε, where

νε(x) = ν
(x
ε

)
), then, for any δ ∈ C∞(∂T ) and ϕ ∈ D(Ω) such that δ ≥ 0,

ϕ ≥ 0, we have

0 ≥
∫

∂Tε

εδε(x)ϕ(x)uε
ν(x) dx

=

∫
Ω×∂T

T b
ε (δ

ε)(x, y)T b
ε (ϕ)(x, y)T b

ε (u
ε)(x, y)T b

ε (ν
ε)(x, y) dx dy,

with δε(x) = δ
(x
ε

)
. Here, we used the properties of the boundary unfolding

operator T b
ε . Passing to the limit, we get∫

Ω×∂T

u0(x)·ν(y)ϕ(x)δ(y) dx dy ≤ 0∀(ϕ, δ) ∈ D(Ω)×C∞(∂T ) with δ ≥ 0 , ϕ ≥ 0,

i.e. u0 ∈ K.
Now, by using Lemma 2.1, we deduce that there exists v1 ∈ L2(Ω, H1

per(Y
∗))n

such that v1(x, y) · ν(y) ≤ 0 on ∂T and Tε(ex(uε)) ⇀ ey(v
1) weakly in L2(Ω×

Y ∗)n×n. But taking into account that MY ∗(u1) = 0 a.e. on Ω, from the
convergence (3.7)2 and the connectedness of Y ∗, it results that there exists
a unique element v1 ∈ L2(Ω;H1((Y ∗))n with zero average on Y ∗ such that
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ey(v
1) = e(u0) + ey(u

1), namely yMe(u0) +u1 where yM = y−MY ∗(y) (see,
also, [4] or [10]). Hence, we have (yMe(u0)(x) + u1(x, y)) · ν(y) ≤ 0, for a.e.
x ∈ Ω and for any y ∈ ∂T .

By applying the corresponding unfolding operators in (4.2), we get∫
Ω×Y ∗

Tε(Aε)Tε(e(uε)) Tε(e(uε)) dx dy +

∫
Ω×∂T

T b
ε (g

ε)T b
ε (|uε

τ |) dx ds

≤
∫

Ω×Y ∗

Tε(Aε)Tε(e(uε)) Tε(e(vε)) dx dy +

∫
Ω×∂T

T b
ε (g

ε)T b
ε (|vε

τ |) dx ds

−
∫

Ω×Y ∗

Tε(f) · (Tε(vε)− Tε(uε) dx dy −
∫
Γ2

t · (vε − uε) ds .

(4.5)

Taking vε(x) = ϕ(x) + εψ
(
x,

x

ε

)
, with ϕ ∈ C1(Ω̄)n such that ϕ = 0 near

Γ1 and ϕ(x) · ν(y) ≤ 0, ∀(x, y) ∈ Ω× ∂T , and ψ ∈ D(Ω;H1
per(Y

∗))n such that
ψ(x, y) · ν(y) ≤ 0, ∀(x, y) ∈ Ω× ∂T in the last relation and taking into account
the convergences (3.7), we obtain∫
Ω×Y ∗

A(y)|e(u0) + ey(u
1)|2 dx dy +

∫
Ω×∂T

g(s)|u0
τ | dx ds

≤ lim inf
ε→0

∫
Ω×Y ∗

Tε(Aε)Tε(e(uε)) Tε(e(uε)) dx dy + lim inf
ε→0

∫
Ω×∂T

T b
ε (g

ε)T b
ε (|uε

τ |) dx ds

≤ lim sup
ε→0

⎛
⎝ ∫
Ω×Y ∗

Tε(Aε)Tε(e(uε)) Tε(e(uε)) dx dy +

∫
Ω×∂T

T b
ε (g

ε)T b
ε (|uε

τ |) dx ds
⎞
⎠

≤
∫

Ω×Y ∗

A(y)(e(u0) + ey(u
1))(e(ϕ) + ey(ψ)) dx dy +

∫
Ω×∂T

g(s)|ϕτ | dx ds

−
∫

Ω×Y ∗

f · (ϕ− u0) dx dy −
∫
Γ2

t · (ϕ− u0) ds .

(4.6)
Now, by taking ϕ = u0 and ψ = u1 + yMe(u0) + λθ, with λ > 0, θ ∈

D(Ω;H1
per(Y

∗))n and θ(x, y) · ν(y) = 0, ∀(x, y) ∈ Ω× ∂T , it follows that

λ

∫
Ω×Y ∗

A(y)
(
e(u0)(x) + ey(u

1)(x, y)
)
ey(θ)(x, y) dx dy+∫

Ω×Y ∗

A(y)
(
e(u0)(x) + ey(u

1)(x, y)
)
e(u0) dx dy ≥ 0 , ∀λ > 0

which implies∫
Ω×Y ∗

A(y)
(
e(u0)(x) + ey(u

1)(x, y)
)
ey(θ)(x, y) dx dy ≥ 0 (4.7)
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and ∫
Ω×Y ∗

A(y)
(
e(u0)(x) + ey(u

1)(x, y)
)
e(u0) dx dy ≥ 0. (4.8)

Putting θ = ±θ in (4.7), we get∫
Ω×Y ∗

A(y)
(
e(u0)(x) + ey(u

1)(x, y)
)
ey(θ)(x, y) dx dy = 0, (4.9)

which ensures that (3.17) holds true (see [22]). This implies that u1 is given by
(3.19).

Now, using (4.9) in the relation (4.6) and density arguments, we obtain:

∫
Ω×Y ∗

A(y)(e(u0) + ey(u
1))(e(ϕ)− e(u0)) dx dy +

∫
Ω×∂T

g(s)|ϕτ | dx ds

−
∫

Ω×∂T

g(s)|u0
τ | dx ds ≥

∫
Ω×Y ∗

f · (ϕ− u0) dx dy +

∫
Γ2

t · (ϕ− u0) ds ∀ϕ ∈ K.

Thus, by (3.19), it follows that u0 satisfies (4.4). Due to the uniqueness of the
solution of (4.4), all the above convergences hold true on the whole sequences
and this ends the proof.

Unfortunately, in this case, we can not decouple the variables in the term∫
Ω×∂T

g(s)|ϕτ (x, s)| dx ds

and, hence, we do not obtain a strong formulation of the homogenized prob-
lem as in [5], where the authors perform the homogenization, via the periodic
unfolding method, of a contact problem for an elastic body with closed and
open cracks. In their problem, since the unilateral contact and given friction
conditions involve the jumps of the solutions on the oscillating interface, one
can choose suitable test functions such that the nonlinear term, describing the
friction, does not appear explicitly in the macroscopic problem. However, a con-
tribution of the given friction is taken into account in the homogenized tensor.

Finally, let us notice that in the case in which g = 0, i.e. the frictionless
contact problem given by (2.4) with the condition (2.4)5 replaced by στ = 0,
Theorem 4.1 shows that the homogenized solution u0 ∈ K satisfies the following
inequality:∫
Ω

Ahome(u0) (e(v)−e(u0)) dx ≥
∫
Ω

f ·(v−u0) dx+

∫
Γ2

t ·(v−u0) ds ∀v ∈ K,

which is equivalent to⎧⎨
⎩

− divσhom(u0) = |Y ∗|f in Ω,
u0 = 0 on Γ1,
σhom(u0) · ν = t on Γ2.

(4.10)
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So, for t = 0, we regain the result obtained in [14].
This problem was also addressed in [15], by the two-scale convergence method,

for more general geometric structures of the inclusions on which the Signorini
conditions act.
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[1] H. Brézis, Problèmes unilatéraux, J. Math. Pures Appl. 51 (1972) 1-168,
1972.

[2] A. Capatina, Variational Inequalities and Frictional Contact Problems,
AMMA, 31, Springer, 2014.

[3] D. Cioranescu, A. Damlamian, G. Griso, Periodic unfolding and homoge-
nization, C.R. Acad. Sci. Paris, Ser. I 335 (2002) 99-104.

[4] D. Cioranescu, A. Damlamian, P. Donato, G. Griso, R. Zaki, The periodic
unfolding method in domains with holes, SIAM J. Math. Anal. 44 (2012)
718-760.

[5] D. Cioranescu, A. Damlamian, J. Orlik, Homogenization via unfolding in
periodic elasticity with contact on closed and open cracks, Asymptotic
Analysis 82 (2013) 201-232, 2013.

[6] D. Cioranescu, P. Donato, R. Zaki, Periodic unfolding and Robin problems
in perforated domains, C.R. Acad. Sci. Paris, Ser. VII 342 (2006) 469-474.

[7] D. Cioranescu, P. Donato, R. Zaki, The periodic unfolding method in per-
forated domains, Portugal. Math. 63 (2006) 467-496.

[8] D. Cioranescu, P. Donato, R. Zaki, Asymptotic behavior of elliptic prob-
lems in perforated domains with nonlinear boundary conditions, Aymptotic
Analysis 53 (2007) 209-235.

[9] C. Conca, J.I. Dı́az, C. Timofte, Effective chemical processes in porous
media, Math. Models Methods Appl. Sci. 13 (2003) 1437-1462.

[10] P. Donato, K.H. Le Nguyen, R. Tardieu, The periodic unfolding method
for a class of imperfect transmission problems, Journal of Mathematical
Sciences 6 (2011) 891-927.
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