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Recently, Z.-W. Sun introduced two kinds of polynomials related to the Delannoy 
numbers, and proved some supercongruences on sums involving those polynomials. 
We deduce new summation formulas for squares of those polynomials and use them 
to prove that certain rational sums involving even powers of those polynomials are 
integers whenever they are evaluated at integers. This confirms two conjectures of 
Z.-W. Sun. We also conjecture that many of these results have neat q-analogues.
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1. Introduction

It is well known that, for any m, n � 0, the number

n∑
k=0

(
n

k

)(
m

k

)
2k =

n∑
k=0

(
n

k

)(
n + m− k

n

)
,

called a Delannoy number, counts lattice paths from (0, 0) to (m, n) in which only east (1, 0), north (0, 1), 
and northeast (1, 1) steps are allowed. Recently, Z.-W. Sun [15] introduced the following polynomials

dn(x) =
n∑

k=0

(
n

k

)(
x

k

)
2k,

sn(x) =
n∑

k=0

(
n

k

)(
x

k

)(
x + k

k

)
,

and established some interesting supercongruences involving dn(x) or sn(x), such as
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p−1∑
k=0

(2k + 1)dk(x)2 ≡

⎧⎪⎪⎨
⎪⎪⎩
−x (mod p2), if x ≡ 0 (mod p),
x + 1 (mod p2), if x ≡ −1 (mod p),
0 (mod p2), otherwise,

(1.1)

p−1∑
k=0

(2k + 1)sk(x)2 ≡ 0 (mod p2), (1.2)

where p is an odd prime and x is a p-adic integer.
Recall that a polynomial P (x) in x with real coefficients is called integer-valued, if P (x) ∈ Z for all 

x ∈ Z. In this paper, we shall prove the following generalizations of (1.1) and (1.2), which were originally 
conjectured by Z.-W. Sun (see [15, Conjectures 6.1 and 6.12]).

Theorem 1.1. Let m and n be positive integers. Then all of

x(x + 1)
2n2

n−1∑
k=0

(2k + 1)dk(x)2, 1
n

n−1∑
k=0

(2k + 1)dk(x)2m,
1
n

n−1∑
k=0

(−1)k(2k + 1)dk(x)2m,

1
2n2

n−1∑
k=0

(2k + 1)sk(x)2, 1
n

n−1∑
k=0

(2k + 1)sk(x)2m,
1
n

n−1∑
k=0

(−1)k(2k + 1)sk(x)2m

are integer-valued.

We shall also prove the following result, which will play an important role in our proof of Theorem 1.1.

Theorem 1.2. Let m and n be positive integers and let j, k be non-negative integers. Then

(n− k)(k + 1)
n

(
n + k

2k

)(
m + 1
k + 1

)(
m + k

k + 1

)

and

1
k + 1

(
n− 1
k

)(
n + k

k

)(
2k

j + k

)(
m + k

2k

)(
m

j

)(
m + j

j

)

are integers.

The paper is organized as follows. In the next section, we shall give a q-analogue of Theorem 1.2. In 
Section 3, we mainly give a single-sum expression for dn(x)2, a new expression for sn(x)2, and recall a 
recent divisibility result of Chen and Guo [3] concerning multi-variable Schmidt polynomials. The proof of 
Theorem 1.1 will be given in Section 4. We propose some related open problems in the last section.

2. A q-analogue of Theorem 1.2

Recall that the q-binomial coefficients are defined by

[
n

k

]
=

⎧⎪⎪⎨
⎪⎪⎩

k∏
i=1

1 − qn−k+i

1 − qi
, if 0 � k � n,

0, otherwise.

The following is our announced strengthening of Theorem 1.2.
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Theorem 2.1. Let m and n be positive integers and let j, k be non-negative integers. Then

(1 − qn−k)(1 − qk+1)
(1 − q)(1 − qn)

[
n + k

2k

][
m + 1
k + 1

][
m + k

k + 1

]
(2.1)

and
1 − q

1 − qk+1

[
n− 1
k

][
n + k

k

][
2k

j + k

][
m + k

2k

][
m

j

][
m + j

j

]
(2.2)

are polynomials in q with non-negative integer coefficients.

Proof of Theorem 2.1. It suffices to show that (2.1) and (2.2) are polynomials in q with integer coefficients, 
since the proof of the non-negativity is exactly the same as those in [7,8]. We shall accomplish this by 
decomposing q-binomial coefficients into cyclotomic polynomials.

It is well known that

qn − 1 =
∏
d|n

Φd(q),

where Φd(q) denotes the d-th cyclotomic polynomial in q. For any real number x, let �x� denote the largest 
integer less than or equal to x. Then

(1 − qn−k)(1 − qk+1)
(1 − q)(1 − qn)

[
n + k

2k

][
m + 1
k + 1

][
m + k

k + 1

]
=

max{m+k,n+k}∏
d=2

Φd(q)ed ,

with

ed = χ(d | n− k) + χ(d | k + 1) − χ(d | n) +
⌊
n + k

d

⌋
+

⌊
m + 1

d

⌋
+
⌊
m + k

d

⌋

−
⌊
n− k

d

⌋
−

⌊
2k
d

⌋
−
⌊
m− k

d

⌋
−

⌊
m− 1

d

⌋
− 2

⌊
k + 1
d

⌋
,

where χ(S) = 1 if S is true and χ(S) = 0 otherwise. The number ed is obviously non-negative, unless d | n, 
d � n − k and d � k + 1.

So, let us assume that d | n, d � n − k and d � k+ 1. Since one of k and k+ 1 is even, we must have d � 3. 
Let {x} = x − �x� denote the fraction part of x. We consider three cases: If 0 < {k

d} < 1
2 , then⌊

n + k

d

⌋
−

⌊
n− k

d

⌋
−
⌊

2k
d

⌋
=

⌊
d + k

d

⌋
−
⌊
d− k

d

⌋
−
⌊

2k
d

⌋
= 1.

Namely, ed is non-negative. If {k
d} � 1

2 and {m
d } � {k

d}, then noticing that d � k + 1, we have {m−1
d } �

1
2 − 1

3 > 0, and so ⌊
m + k

d

⌋
−

⌊
m− 1

d

⌋
−
⌊
k + 1
d

⌋
= 1.

That is, ed is also non-negative. If {k
d} � 1

2 and {m
d } < {k

d}, then {k+1
d } > {k

d} � 1
2 , and so {m+1

d } < {k+1
d }, 

i.e., ⌊
m + 1

d

⌋
−

⌊
m− k

d

⌋
−
⌊
k + 1
d

⌋
= 1,

which means that ed is still non-negative. This completes the proof of polynomiality of (2.1).
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Similarly, we have

1 − q

1 − qk+1

[
n− 1
k

][
n + k

k

][
2k

j + k

][
m + k

2k

][
m

j

][
m + j

j

]
=

max{n+k,m+k,m+j}∏
d=2

Φd(q)ed ,

with

ed = −χ(d | k + 1) +
⌊
n− 1
d

⌋
+

⌊
n + k

d

⌋
+
⌊
m + k

d

⌋
+

⌊
m + j

d

⌋
−
⌊n
d

⌋

−
⌊
n− k − 1

d

⌋
−
⌊
j + k

d

⌋
−
⌊
k − j

d

⌋
−

⌊
m− k

d

⌋
− 2

⌊
k

d

⌋
−
⌊
m− j

d

⌋
− 2

⌊
j

d

⌋
.

The number ed is obviously non-negative, unless d | k + 1.
Let d � 2 be a positive integer and d | k + 1. It is clear that {k

d} = d−1
d � 1

2 .

• If d � n, then 
⌊
n−1
d

⌋
−
⌊
n
d

⌋
= 0, and

⌊
m + k

d

⌋
−

⌊
m− k

d

⌋
− 2

⌊
k

d

⌋
�

⌊
2k
d

⌋
− 2

⌊
k

d

⌋
= 1. (2.3)

• If d | n, then 
⌊
n−1
d

⌋
−
⌊
n
d

⌋
= −1 and the inequality (2.3) still holds. We consider three subcases:

(i) For {m−k
d } � 2

d , there holds

⌊
m + k

d

⌋
−

⌊
m− k

d

⌋
− 2

⌊
k

d

⌋
= 2.

(ii) For {m−k
d } = 1

d , we have d | m. If d � j, then

⌊
m + j

d

⌋
−
⌊
m− j

d

⌋
− 2

⌊
j

d

⌋
�

⌊m
d

⌋
−
⌊
m− j

d

⌋
−
⌊
j

d

⌋
= 1,

while if d | j, then

⌊
n + k

d

⌋
−
⌊
n− k

d

⌋
−

⌊
j + k

d

⌋
−

⌊
k − j

d

⌋
=

⌊
2k
d

⌋
− 2

⌊
k

d

⌋
= 1. (2.4)

(ii) For {m−k
d } = 0, we have d | m + 1. If d � j, then

⌊
m + j

d

⌋
−
⌊
m− j

d

⌋
− 2

⌊
j

d

⌋
�

⌊
m + j

d

⌋
−
⌊m
d

⌋
−
⌊
j

d

⌋
= 1,

while if d | j, then the inequality (2.4) holds again.

Above all, we have proved that ed � 0 in any case. This completes the proof of polynomiality of (2.2). �
Remark. It was pointed out by the referee that a slightly shorter proof of ed � 0 can be given by noticing 
that we may assume that 0 � n, k, m < d.

It is easily seen that Theorem 1.2 follows from Theorem 2.1 by letting q → 1.
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3. Some auxiliary results

Z.-W. Sun [15, (1.7)] noticed that dn(−x − 1) = (−1)ndn(x), which is also demonstrated by a formula in 
[14, p. 31]. This encourages us to find the following identity for dn(x)2.

Lemma 3.1. Let n be a non-negative integer. Then

dn(x)2 =
n∑

k=0

(
n + k

2k

)(
x

k

)(
x + k

k

)
4k. (3.1)

Proof. Denote the right-hand side of (3.1) by Sn(x). Applying the Zeilberger algorithm (see [12,13]), we 
have

(n + 2)dn+2(x) = (2x + 1)dn+1(x) + (n + 1)dn(x), (3.2)

(n + 1)2Sn(x) − (n2 + 4n + 4x2 + 4x + 5) (Sn+1(x) + Sn+2(x)) + (n + 3)2Sn+3(x) = 0.

It follows from (3.2) that

(n + 2)2dn+2(x)2 = (2x + 1)2dn+1(x)2 + (n + 1)2dn(x)2 + 2(n + 1)(2x + 1)dn+1(x)dn(x), (3.3)

(n + 2)dn+2(x)dn+1(x) = (2x + 1)dn+1(x)2 + (n + 1)dn+1(x)dn(x). (3.4)

Substituting (3.3) twice into (3.4), and making some simplification, we immediately get

(n + 1)2dn(x)2 − (n2 + 4n + 4x2 + 4x + 5)
(
dn+1(x)2 + dn+2(x)2

)
+ (n + 3)2dn+3(x)2 = 0.

Namely, the polynomials dn(x)2 and Sn(x) satisfy the same recurrence. It is easy to see that dn(x)2 = Sn(x)
holds for n = 0, 1, 2. This completes the proof of (3.1). �
Remark. The hypergeometric form of (3.1) is as follows:

2F1

[
−n, −x

1
; 2
]2

= 4F3

[
−n, −x, n + 1, x + 1

1, 1, 1
2

; 1
]
. (3.5)

Wadim Zudilin (personal communication) pointed out that (3.5) is a special case of the following identity 
[14, p. 80, (2.5.32)]:

2F1

[
a, b

c
; z
]

2F1

[
a, c− b

c
; z
]

= (1 − z)−a
4F3

[
a, b, c− a, c− b

c, c
2 ,

c+1
2 ,

; −z2

4(1 − z)

]
,

by noticing the identity [14, p. 31, (1.7.1.3)]:

(1 − z)−a
2F1

[
a, b

c
;− z

1 − z

]
= 2F1

[
a, c− b

c
; z
]
.

Besides, the polynomial dn(x) is a particular case of classical Meixner orthogonal polynomials (see
http :/ /homepage .tudelft .nl /11r49 /askey /ch1 /par9 /par9 .html).

We also need the following new expression for sn(x)2, which is crucial in dealing with the last three 
polynomials in Theorem 1.1.

http://homepage.tudelft.nl/11r49/askey/ch1/par9/par9.html
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Lemma 3.2. Let n be a non-negative integer. Then

sn(x)2 =
n∑

k=0

(
n + k

2k

)(
x

k

)(
x + k

k

) k∑
j=0

(
2k

j + k

)(
x

j

)(
x + j

j

)
. (3.6)

Proof. From the Pfaff-Saalschütz identity [1, (1.4)], we deduce that (see the proof of [9, Lemma 4.2])

(
x

j

)(
x + j

j

)(
x

k

)(
x + k

k

)
=

j+k∑
r=k

(
j + k

j

)(
k

r − j

)(
r

k

)(
x

r

)(
x + r

r

)
.

Therefore, comparing the coefficients of 
(
x
r

)(
x+r
r

)
, we see that (3.6) is equivalent to

n∑
j=0

n∑
k=0

(
n

j

)(
n

k

)(
j + k

j

)(
k

r − j

)(
r

k

)
=

n∑
j=0

n∑
k=0

(
n + k

2k

)(
2k

j + k

)(
j + k

j

)(
k

r − j

)(
r

k

)
. (3.7)

Denote the left-hand side of (3.7) by An and the right-hand side of (3.7) by Bn. Then the multi-Zeilberger 
algorithm gives the following recurrences of order 3:

(n + 3)2(2n− r + 5)(2n− r + 6)An+3 − (12n4 − 4n3r + 3n2r2 + 110n3 − 17n2r

+ 14nr2 + 394n2 − 18nr + 17r2 + 650n + r + 414)An+2 + (12n4 + 4n3r + 3n2r2

+ 82n3 + 31n2r + 10nr2 + 226n2 + 74nr + 9r2 + 294n + 57r + 150)An+1

− (n + 1)2(2n + r + 2)(2n + r + 3)An = 0, (3.8)

(n + 3)(2n + 3)(2n− r + 5)(2n− r + 6)Bn+3 − (2n + 5)(4n3 + 4n2r + nr2 + 30n2

+ 17nr + r2 + 72n + 17r + 54)Bn+2 − (2n + 3)(4n3 − 4n2r + nr2 + 18n2 − 15nr

+ 3r2 + 24n− 13r + 10)Bn+1 + (n + 1)(2n + 5)(2n + r + 2)(2n + r + 3)Bn = 0. (3.9)

By induction on n, we may deduce from (3.8) and (3.9) that the numbers An and Bn also satisfy the same 
recurrence of order 2:

(n + 2)(2n− r + 3)(2n− r + 4)An+2 − (2n + 3)(4n2 + r2 + 12n + r + 10)An+1

+ (n + 1)(2n + r + 2)(2n + r + 3)An = 0.

Moreover, it is clear that A0 = B0 and A1 = B1 for any r. This proves that An = Bn holds for all n. �
Remark. If we apply the multi-Zeilberger algorithm to the right-hand side of (3.6) directly, then we will 
obtain a much more complicated recurrence of order 7. This is why we turn to consider the equivalent form 
(3.7) of the identity (3.6).

The following result can be easily proved by induction on n.

Lemma 3.3. Let n and k be non-negative integers with k � n. Then

n−1∑
m=k

(2m + 1)
(
m + k

2k

)
= n(n− k)

k + 1

(
n + k

2k

)
. (3.10)
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Let

Sn(x0, . . . , xn) =
n∑

k=0

(
n + k

2k

)(
2k
k

)
xk

be the multi-variable Schmidt polynomials. In order to prove Theorem 1.1, we also need the following result, 
which is a special case of [3, Theorem 1.1].

Lemma 3.4. Let m and n positive integers and ε = ±1. Then all the coefficients in

n−1∑
k=0

εk(2k + 1)Sk(x0, . . . , xk)m

are multiples of n.

4. Proof of Theorem 1.1

Applying the identities (3.1) and (3.10), we have

n−1∑
m=0

(2m + 1)dm(x)2 =
n−1∑
m=0

(2m + 1)
m∑

k=0

(
m + k

2k

)(
x

k

)(
x + k

k

)
4k

=
n−1∑
k=0

n(n− k)
k + 1

(
n + k

2k

)(
x

k

)(
x + k

k

)
4k.

Therefore,

x(x + 1)
2n2

n−1∑
m=0

(2m + 1)dm(x)2 =
n−1∑
k=0

(n− k)(k + 1)
2n

(
n + k

2k

)(
x + 1
k + 1

)(
x + k

k + 1

)
4k. (4.1)

We now assume that x is a positive integer in (4.1). Then by Theorem 1.2 the k-th summand in the 
right-hand side of (4.1) is an integer for k � 1, and is equal to 

(
x+1
2
)

for k = 0. This proves the first 
polynomial in Theorem 1.1 is integer-valued.

Similarly, applying (3.6) and (3.10), we have

1
n2

n−1∑
m=0

(2m + 1)sm(x)2 =
n−1∑
k=0

1
k + 1

(
n− 1
k

)(
n + k

k

)(
x + k

2k

) k∑
j=0

(
2k

j + k

)(
x

j

)(
x + j

j

)
, (4.2)

which by Theorem 1.2 is clearly integer-valued.
For any non-negative integer k, let

xk :=
(
x + k

2k

)
4k,

yk :=
(
x + k

2k

) k∑
j=0

(
2k

j + k

)(
x

j

)(
x + j

j

)
.

Then the identities (3.1) and (3.6) may be respectively rewritten as
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dn(x)2 =
n∑

k=0

(
n + k

2k

)(
2k
k

)
xk,

sn(x)2 =
n∑

k=0

(
n + k

2k

)(
2k
k

)
yk.

It is clear that the numbers x0, . . . , xn and y0, . . . , yn are all integers when x is an integer. By Lemma 3.4, 
we see that the other four polynomials in Theorem 1.1 are also integer-valued.

5. Concluding remarks and open problems

A special case of a well-known 3F2 transformation formula in [2, p. 142] gives:

3F2

[
−n, −x, x + 1

1, 1
; 1
]

= (x + 1)n
n! 3F2

[
−n, −x, −x

1, −x− n
; 1
]
,

i.e.,

sn(x) =
n∑

k=0

(
n

k

)(
x

k

)(
x + n− k

n

)
.

Let p � 5 be an odd prime. Z.-W. Sun [15, Conjecture 6.11] also conjectured that

p−1∑
k=0

(2k + 1)sk(x)2 ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3
4

(
−1
p

)
p2 (mod p4), if x = −1

2 ,

7
9

(
−3
p

)
p2 (mod p4), if x = −1

3 ,

13
16

(
−2
p

)
p2 (mod p4), if x = −1

4 ,

31
36

(
−1
p

)
p2 (mod p4), if x = −1

6 ,

(5.1)

where ( ·
p ) denotes the Legendre symbol modulo p.

It is easy to see that, for 0 � k � p − 1,
(
p− 1
k

)(
p + k

k

)
≡ (−1)k (mod p2).

Hence, letting n = p in (4.2) and applying Theorem 1.2, we immediately obtain

Theorem 5.1. Let p be a prime and x a p-adic integer. Then

p−1∑
k=0

(2k + 1)sk(x)2 ≡ p2
p−1∑
k=0

(−1)k

k + 1

(
x + k

2k

) k∑
j=0

(
2k

j + k

)(
x

j

)(
x + j

j

)
(mod p4). (5.2)

We believe that the congruence (5.2) can be utilized to prove Sun’s conjectural congruence (5.1). Unfor-
tunately, we are unable to accomplish this work. We hope that the interested reader can continue working 
on this problem.

An identity similar to (3.1) is Clausen’s identity [4]:
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2F1

[
a, b

a + b + 1
2

;x
]2

= 3F2

[
2a, 2b, a + b

2a + 2b, a + b + 1
2

;x
]
, |x| < 1. (5.3)

It is well known that Clausen’s identity (5.3) has three different q-analogues (see [6, (8.8.17) and (III.22)]
and [10,11]). It is natural to ask

Problem 5.2. Is there a q-analogue of the identity (3.1)?

Dziemiańczuk [5] considered weighted Delannoy numbers. The natural q-Delannoy numbers (see [5, p. 30]) 
are

Dq(m,n) :=
n∑

k=0

q
(k
2
)[n
k

][
n + m− k

n

]
.

It is easy to see that

Dq−1(m,n) = q−mn
n∑

k=0

q
(k+1

2
)[n
k

][
n + m− k

n

]
.

It seems that a possible q-analogue of the left-hand side of (3.1) should be qmnDq(m, n)Dq−1(m, n) rather 
than Dq(m, n)2. However, it is quite difficult to find the corresponding q-analogue of the right-hand side of 
(3.1).

The following conjecture is a q-analogue of (1.1) in the case where x is a positive integer.

Conjecture 5.3. Let p be an odd prime and m a positive integer. Then

p−1∑
k=0

1 − q2k+1

1 − q
Dq(m, k)Dq−1(m, k)q−k

≡

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 − q−2m

1 − q2 q (mod [p]2), if m ≡ 0 (mod p),

1 − q2m+2

1 − q2 q (mod [p]2), if m ≡ −1 (mod p),

0 (mod [p]2), otherwise,

where [p] = 1 + q + · · · + qp−1.

Furthermore, a fascinating q-analogue of the first three expressions in Theorem 1.1 seems to be true.

Conjecture 5.4. Let m, n, and r be positive integers. Then all of

n−1∑
k=0

(1 − qm)(1 − qm+1)(1 − q2k+1)
(1 − q2)(1 − qn)2 Dq(m, k)Dq−1(m, k)q−k,

n−1∑
k=0

1 − q2k+1

1 − qn
Dq(m, k)rDq−1(m, k)rq−k,

n−1∑
k=0

(−1)n−k−1 1 − q2k+1

1 − qn
Dq(m, k)rDq−1(m, k)rq

(k
2
)

are Laurent polynomials in q with non-negative integer coefficients.
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To prove Conjectures 5.3 and 5.4, perhaps we need to give a single-sum expression for Dq(m, n)Dq−1(m, n)
and a q-analogue of Lemma 3.4. The latter is relatively easy, while the former is rather difficult because 
our proofs of (3.1) cannot be extended to the q-analogue case directly. By the way, we did not find any 
q-analogue of the other three polynomials in Theorem 1.1.

Finally, based on numerical calculations, we propose the following conjecture.

Conjecture 5.5. Let m and n be positive integers. Then both

1
n

n−1∑
k=0

(2k + 1)dk(x)msk(x)m and 1
n

n−1∑
k=0

(−1)k(2k + 1)dk(x)msk(x)m

are integer-valued.
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