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LIPSCHITZ-TYPE CONDITIONS ON HOMOGENEOUS BANACH
SPACES OF ANALYTIC FUNCTIONS

OSCAR BLASCO AND GEORGIOS STYLOGIANNIS.

ABSTRACT. In this paper we deal with Banach spaces of analytic func-
tions X defined on the unit disc satisfying that R; f € X forany ¢ > 0and
f € X, where R;f(z) = f(e'2). We study the space of functions in X
such that | P.(Df)||x = O(%), r— 17 where Df(z) =Y (n+
1)anz™ and w is a continuous and non-decreasing weight satisfying cer-
tain mild assumptions. The space under consideration is shown to coin-
cide with the subspace of functions in X satisfying any of the following
conditions: (a) [|R.f — fllx = Ow(t)), b) [[Prf — fllx = O(w(1— 1)),
© [[Anfllx = Ow(2™")), or @) |If = snfllx = O(w(n™")), where
Pof(2) = f(r2), saf(2) = S p_parz” and Anf = son f — syn1f. Our
results extend those known for Hardy or Bergman spaces and power
weights w(t) = t°.

1. INTRODUCTION

Let (D) be the Fréchet space of all analytic functions in the unit disk
D endowed with the topology of uniform convergence on compact subsets
of D. For f(2) = >0 axz* and 0 < r < 1 we write P, f and R;f for the
dilation and rotation operators, i.e. for0 <r < landt¢ e R

P, f(z) = f(rz) and Ry f(2) = f(e"2).
As usual, we use the notation s, f = Y_}_ax2*, Apf = son f — sgn-1 f and
onf = ol — nLH)aka for each f € H(D).
A Banach space X is said to be a Banach space of analytic functions (called
‘H-admissible in [BIPal1]) if

A(D) C X C H(D),
with continuous inclusions, where A(DD) stands for the disk algebra.
We shall write P for the subspace of polynomials and we shall denote
by Xp the closure of P under the norm in X, i.e. P = Xp or equivalently
A(D) = Xp. Of course Xp is also a Banach space of analytic functions and

(1.1) Xp C{feX: lim ||Rf — fllx =0}.
t—0t
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2 OSCAR BLASCO AND GEORGIOS STYLOGIANNIS

A Banach space of analytic functions X is said to be homogeneous (see
[BlPall, Definition 4.1]) whenever X also satisfies the following properties

(1.2) feX = R fe€Xand||Rfl|lx =||fl|x forevery ¢ € [0,27),

(1.3) feX= P.feXand|Pfl|lx <K|f||x forevery 0 <r < 1,

for some absolute constant K > 1.

Most of the classical spaces such as Hardy spaces H?, Bergman spaces
AP, BMOA, the Bloch space B and many others are homogeneous spaces
of analytic functions.

A basic fact holding for homogeneous spaces to be used in the sequel is
that for each f € X the map w — f,, where f,(z) = f(wz) forw € D
defines an Xp-valued analytic function i.e. F(w) = f, € H(D, Xp). In
particular

Mx(r, f) = ‘Sl‘lp | full x
is an increasing function of r and Mx (r, f) = || P f|| x-

Moreover the function F' belongs to A(ID, Xp), the space all vector-valued
bounded holomorphic functions F' : D — Xp with continuous extension to
the boundary equipped with the norm

1Ella.xp) = sup [[F(w)llx = sup [[F(Ollx = [|IF]lx-
w|<1 I¢l=1
Of course if X is a homogeneous Banach space of analytic functions, so it
is Xp. Actually, for homogeneous Banach spaces of analytic functions, (1.3)
together with the fact that P, f € A(ID) for each 0 < r < 1 and polynomials
are dense in A(ID) allow us to characterize Xp as

(14) Xp={feX: lm [[Pf - fllx =0},

The study of the subspace of Xp with a fixed rate of convergence to zero
in (1.1) goes back to the work of Hardy and Littlewood in the twenties for
the case X = HP?. Their fundamental contribution, proved in a series of
papers ([HaLi28a], [HaLi28b] and [HaLi32]), can be condensed in the fol-
lowing result.

Theorem (H-L) Let 1 <p < 00,0 < o < 1and f € HP. Then the following
statements are equivalent:

(@) |[Ref = fllue = O(t%), t — 0T,

(b) Myr(r, f)=O((1 —7)* 1), r = 1-.

Concerning the approximation given in (1.4) and X = H?, much later
Komatsu [Ko66] and independently Storozhenko [St82] showed that con-
ditions (a) and (b) are also equivalent to:
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@ 1P f = fllae = O((1 = 7)), r =17

Using also approximation by Fourier series, in 1989 Bourdon, Shapiro,
and Sledd [BoShSI189, Theorem 3.1] showed that, also for X = HP but with
the restriction 1 < p < oo, the condition (a) in the Hardy Littlewood Theo-
rem is equivalent to each of the following statements:

(@) ||Anfllae = O(27"%),n — o0,
) If = snfllge = O(n™%),n — 0.

It was only quite recently that the same problems were considered for
other Banach spaces of analytic functions. In [GaSiSt15, Theorem 4.1]) the
analogue of the equivalence between (a), (b) and (c) for Bergman spaces
X = AP was proved and finally in Blasco’s paper [Bl16] the above results
were generalized for a wide class of homogeneous Banach spaces of an-
alytic functions in the following result which recovers all the cases previ-
ously known.

Theorem A Let 0 < o < 1 and let X be a homogeneous Banach space
of analytic functions such that the dilation and translation semigroups are
strongly continuous on X, i.e lim, ,;- ||P-f — f||x = 0 and lim;_,+ ||R¢f —
fllx = 0 for every f € X. The following statements are equivalent:

() [|[Ref = fllx = O(t*), t = 07,
(i) [|Prf = fllx = O((1 = 7)), r =17,
(i4i) Mx(r,Df) = O((1 —r)*~1), r > 17

where D(f)(z) = (2f(2)) = > o g(n + 1)a, 2"

In this paper we shall extend the results previously known for homoge-
neous spaces with strongly continuous dilation and translation semigroups
(in particular for Hardy and Bergman spaces) to a wider class of homoge-
neous spaces and for approximation rates given by a weight more general
than w(t) = t“.

A weight w will stand for a continuous and non-decreasing function w :
[0, 7] — RT with w(0) = 0. In the sequel we shall need extra assumptions to
be assumed on the weights, namely the existence of constants m, Ci,Cy > 0
so that

(1.5) it YO oo
o<t<m t
*w(t)
0

(1.7) / %dt§02@f0r0<5<7r.
5



4 OSCAR BLASCO AND GEORGIOS STYLOGIANNIS

The paper is divided into three sections. In the first one we shall observe
that condition (1.3) follows from (1.2) if the map ¢ — R;f is assumed to
be measurable for any f € X. Using that we shall manage to show the
following result.

Theorem 1.1. Let X be a Banach space of analytic functions satisfying
RifeX, Vitelo,2m), VfelX.
Then

Xp={feX: lim |f —oufllx =0} ={f € X: lim |If = Rufx = 0},

In Section 3 we handle the equivalences (a), (b) and (¢) in our setting and
in last section we analyze the equivalences (d) and (e) where the condition
1 < p < oo is replaced by the fact that the Riesz projection is bounded.

Our main result, collecting the information from the whole paper, can be
stated as follows:

Theorem 1.2. Let X be a homogeneous Banach space of analytic functions such
that the polynomials are dense and the Riesz projection is bounded on X. Let
w : [0, 7] = RT be a weight satisfying (1.5), (1.6) and (1.7). Then the following
statements are equivalent:

i) [P f = fllx = O(w(l —r)), r =17,

Ez) |[R:f = fllx = O(w(t)), t — 0F,
(iii) Mx (r, Df) = O(=2), - 17,
(

(

i) [| A fllx = Ow(2)), 1 — o,
V) [|f = sufllx = O(w(n™1)), n— occ.

In what follows X is always assumed to be a Banach space of analytic
functions, w be a weight defined on [0, 7] and the letter C' will denote a
constant, whose value may change from line to line.

2. MEASURABILITY AND POLYNOMIAL DENSITY

We begin this section by exploiting some properties on the family of op-
erators { R: }+>0. Of course it can be extended in the whole real line R and it
admits the following group structure:

(i) Rg = I, the identity operator on X,

(ii) R, = Ry, forevery t > 0,

(iii) Rt o Rs = Ry4, forevery t,s € R.

If we assume (1.2) then R; : X — X is an isometry on X for every ¢t € R.

We first notice that due to the group structure of { R;} the measurability
oft - R;f from R — X for any f € X is actually equivalent to the strong
continuity of the semigroup.
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Lemma 2.1. Let X be a homogeneous Banach space. The following statements are
equivalent:

(2) Forany f € X there exists to > 0 such that t — R, f is right continuous at t.
(23) The map t — Ry f is continuous for every t € Rand any f € X.

(17i) The map t — Ry f is measurable on (0, o) for each f € X.

Proof. (i) = (i1) Since ||R¢f — Ry, fl|x = ||Ri—t, f — fl|x forall t; € R, it
suffices to show that ¢ — R, f is continuous at 0 for any f € X. Now for
eacht > 0

[Ref — fllx = [[R—ty(Revtof — Rio f)llx
= |[Rittof — Reo fllx-

Thus ||R:f — fllx — 0ast — 0" and since ||R.f — f||x = ||R-¢f — f||x for
every f € X we have that || R, f — f||[x =0 as t—0.

(i9) = (i17) Obvious.

(14i) = (i) Since t — R;f is measurable for every f € X, by [DuSc88,
Lemma 3 pp. 616] it follows that

lim HRtoJrEf - Rtof”X =0
e—0t

for every g € (0, 00). O
Proposition 2.2. Let X be a Banach space of analytic functions satisfying
(2.1) Rif e X, Vtel0,2m), VfelX.

If the map t — R, f is measurable on [0,27) for each f € X then X can be
renormed to become homogeneous.

Proof. Periodicity implies that R;f € X for any f € X and ¢ € R and that
t — R.f is measurable on (—oo, o) for each f € X. Moreover the closed
graph theorem implies that R; : X — X is abounded linear operator acting
on X for every t € R. It follows by the proof of [DuSc88, Lemma 3 pp.
616] that || R;|| is bounded on each interval [§,1/6], 6 > 0. Thus we have
sup{||R¢|| : t € R} = sup{||R¢|| : t € [0,27)} = sup{||R|| : ¢t € [2m,47)} =
Ky < 0.
To show (1.3) we use the formula

1 2m

22 fr2) = 5= | RPN

where P, (e') = m is the Poisson kernel.

Since t — R, f is measurable and bounded, we obtain that it is Bochner
integrable with respect to the probability measure dy,(t) = P,(e~%)dt and,
for each 0 < r < 1, we have that

27
Pof=— [ Rfdu(t)eX.
™ Jo
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Thus
2
1Pfllx < [ RSl xeint) < Kol
Now considering ||| f||| = supg<;<or [| B¢ f| x wehave that || f||x < [[|f[/| <
Kol f| x. For such a norm we have |||, f[|| = || f[/| and [|[|E-f([| < [|[]]] for
all f e X,teRand 0 < r < 1. Hence (X, ||| - |||) is homogeneous. O

As mentioned in the introduction for f(z) = > 7 ;a,2" € X, we denote
by o, f € Xp the polynomial defined by

onf(z) = i <1 - nf—l) a2,

k=0
or equivalently

1
T or

2
ouf(2) /0 Ri(f) () Knle)dt

where K, stands for Fejer Kernel

Kn(eit) _ Z (1 _ n|—]:i|1> eikt N 1 Sln( 2 )

= n+1 sin(%)

2

We are now ready to give a proof of Theorem 1.1 mentioned in the intro-
duction. We include also some other equivalent formulations in the next
result.

Theorem 2.3. Let X be a Banach space of analytic functions satisfying (2.1) and
let f € X. The following are equivalent:

(1) t = Ry f is measurable from [0, 00) — X,

(i) [|Ref — fllx — 0ast — 0T,

(731) |lonf — fllx = 0asn — oo,

(i) ||P-f — fllx — 0asr — 17,

(’U feXp.

Proof. (i) < (ii) It follows from Proposition 2.2 that X can be renormed
to be a homogeneous Banach space of analytic functions. Now Lemma 2.1
gives this equivalence.

(iv) < (v) It is formula (1.4).

(1) = (i17) Since t — R f is Bochner integrable with respect to any proba-
bility measure 4 (because it is bounded and measurable) then

1 2T )
(23) foouf=5 /0 (f = Bif)Kole™")dt.

makes sense as a Bochner integral with values in X.
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Givene > 0take 0 < § < wsuch that ||f — R, f|lx < e/dfor0 <t < é.
Therefore

0 . - '
If = onfllx <2 /0 |/ = Ref llx Fn(e™")dt +2 /5 I/ = Ref llxKn(e™™)dt

< 42)flx / Ko (et
2 5
e, 20l

—2 (n+1)8

where we have used that K,,(e”") < ﬁ Now selecting ng € N big
enough one has || f — o, f||x < € for n > ny.

(731) = (v) Obvious.

(v) = (i) Since Ry(p) — p ast — 07 for every polynomial p in the disk
algebra A(D) and A(D) C X continuously, it follows that lim; o+ || R:(p) —
p||x = 0 for every polynomial p. Lete > 0 and f € Xp be given and choose
a p polynomial such that || f — p||x < /4. By the triangular inequality

[Bef — fllx < 2[|f = pllx + [[Rep —plIx < &/2+ |[Rip — pl|x
and selecting ¢y so that || R;p — p||x < /2 for 0 < ¢t < top we obtain (ii). O

We can actually quantify the rate of convergence of || f — o, f|| x and || f —
P, f| x in terms of the rate of convergence of || f — R; f||x.

Lemma 2.4. Let X be a homogeneous Banach space of analytic functions satisfy-
ing (2.1) and f € Xp. Then there exist constants Cy, Cy > 0 such that

0 _ - B
Q@lv=ﬂﬂx<C(liTA|M—mﬂxﬁ+1TTAIf gﬁth

2.5)
’ 1
||f—0nf|X§Cg((n+1)/O |f_Rtf”th+n+1/5

foreach0 <r <1,0<é <mandn € N.

Tf - Rifllx
t2t dt)

Proof. From Theorem 2.3, denoting dy,(t) = P,(e~%)dt, we can write
1 2w
6 foPi=g [~ Ruf)duntt)
T Jo
From (2.6) and (2.3), denoting du, (t) = K, (e~%)dt, we have

If = Pfllx <2 /0 1F = Refllxedun(t)

and

I —oufllx <2 /0 "IF — Ref ).
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Sincesin(t) > 2¢for 0 < ¢t < /2 one has the well known upper estimates

1—1r

Pey<o— "
€ (1—r)2 442
and
K, (e~ < mi 1,
() < minfa+ 1, )
Therefore estimating P, (e=) < {2 for 0 < t < § and P, (e %) < %
for 6 < t < m we conclude that
4 T
17 =Pt <2 [ 1Bef = Fllxdie(®)+2 [ 1S = Fllxdn (0
c /[ 1 "R f — fllx
<2 . Y 2 B 11,977
<105 | = filar+ o -y [T g

Similarly
) s
Hf*%ﬂw§2/lmﬁfﬂmmm@+2/IWJfHMWAﬂ
0 )

9 T
¢ |[Ref — fllx
<2 1 — + 2 .
<2(n+ )/0 [|Ref — fllxdt - 1/5 2 dt

The proof is now complete. O

3. LIPSCHITZ-TYPE CONDITIONS

Let X be a Banach space of analytic functions satisfying (2.1). For each
f € X we write

3.1) wx (f,t) = ISI‘1<p||f—Rsf||x, 0<t<m.
s|<t
Notice thatin the case X = Xp, from Theorem 2.3 one has that wx (f, t) is
continuous and non-decreasing in [0, 7] with wx (f,0) = 0 for each f € X.
We compare the speed of convergence of wx(f,t) as t goes to 0 with the
way that f is approached by P, f as r goes to 1 or by o, f as n goes to cc.
The first result is an easy consequence of Lemma 2.4.

Theorem 3.1. Let X be a Banach space of analytic functions satisfying (2.1) and
w be a weight satisfying (1.7). If f € X and wx (f,t) = O(w(t)) ast — 0T then

(3.2) lf=Pfllx =0wl—r))asr—1".

(33) If = on(Fllx = O(W(%» a5 1 = 0.
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Proof. Since f € Xp, to show (3.2) we invoke (2.4) in Lemma 2.4 for§ = 1—r
to conclude due to (1.7) that

1—r
I£ = Pfllx < Copy [ 15 = Ref
—

1—r [ ||f -
rolr [ IR,
1

r 12

—r

SC’wX(f,l—7“)—0—0(1—1")/7r %dt

1—r

< Cw(l—r).

Similarly to show (3.3) we use now (2.5) in Lemma 2.4 for 6 = 7#1 to
conclude, using (1.7) again, that

1/(n+1)
If = onfllx < Ca(n+1) /0 If = Rufllxdt

1 g -
ot [1 SR,
’I’l+ ]. 1/(n+1) t

cot W)
< Cwx(f,1 1 ) gt
<Cux(r et [ 2

<Cw(l/(n+1)) <Cw(l/n).

O

Following the ideas of Hardy and Littlewood, our aim is to describe
functions such that wx (f,t) = O(w(t)) for a given continuous non-increasing
function with w(0) = 0 in terms of growth of Mx (r, D f) as r goes to 1. We
shall need some lemmas.

Lemma 3.2. Let X be a space of analytic functions satisfying (2.1). Then there
exists C' > 0 such that

(1=r)Mx(r, Df) < C(wx (f,1-r)+(1-) / "D g 1) o )

forall f € Xpand 0 <r < 1.

Proof. Let f € Xp and 0 < r < 1. We use Cauchy formula to obtain

(3.4) P.Df = — elldt.

21 J_. (et —1)?

1 /7r Githf*f
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Hence

Mx(r,Df) < i/

T 2m )

T e Ref — fllx

. dt
et — r[2

IN

1 T )
i ) 1R = P

! | / C(wx (£28) 41— €| x) By ().

~rx(1-72) Jo

Now use the same argument as the one used in the proof of (2.4) with
the choice of § = 1 — r to obtain

T 1—r 71'
/ wx (f, t)P(eM)dt < ¢ / wx (f,t)dt+ C(1— r)/ wx(f:t) dt
0 L=7Jo 1t
< Cwx(f,1—r)+C(1— 7’)/ thgf D .
1—r
On the other hand
™ ) ) C s t
1—e"|P(e")dt < / dt
fn-emenas 1= [ e
<coa [
<00 [
<C(l-r)lo (1+L)
= e Ao
Putting together the above estimates we obtain the result. O

Lemma 3.3. Let X be a Banach space of analytic functions satisfying (2.1). Then
there exists C' > 0 such that
1

(5 wx(f£)<O( | Mx(r.Df)dr+tMx(1—t.Df) +1t|f|x)

1t
forall f € Xpand 0 <t < 1.

Proof. Let f € Xp and 0 < ¢t < 1. Using the fundamental theorem of
calculus one has, foreach z € D,0 < ¢§ < land ¢ € [0, 7],

1 t 1

2f(z)=e"zf(e"z) = / Df(rz)zdr—/ Df(6zeis)5zieisds—/ Df(rze™)ze'dr.
1 0 s
Hence
. 1 t ) 1 '
f ~ ezthf = / PT(Df)dT — / RSP(;(Df)Z'(Se’LSdS _ / RtPr(Df)eltd’f‘.
1) 0 s

Therefore

) 1 t
If —e“Rifllx < 2/5 MX(r,Df)dr+/0 Mx (8, Df)ds.
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Now choosing § = 1 — ¢ we have
sup [/ = Ry lx < sup IS — € Ry fllx + 11— e[| Ry x
|s|<t |s|<t
1

<O : M (r, Df)dr 4+ tMx (1 —t,Df) +t]| f]|x).
—t

This finishes the proof. O

Theorem 3.4. Let X be a Banach space of analytic functions satisfying (2.1)
and f € Xp. Let w be a weight satisfying (1.5), (1.6) and (1.7). The following
conditions are equivalent:

(1) wx (f,t) = O(w(t)), t =07,

(i5) Mx(r, Df) = O(=m0y 5 1,

Proof. (i) = (ii) Note that conditions (1.5) and (1.7) give

1 Lo(t) w(9)
< | 2o <o, 2
mlog(é)_/é ) dt < Cy 5
Applying Lemma 3.2 we obtain
Tow()

(1 — 7)Mx(r, Df) < C(w(l )+ ~r)/

1—r

St w1 =) fllx)
< Cw(l—7).
(#7) = (i) Using now Lemma 3.3, (1.5) and (1.6) we have

wx(f,t) < c(/; ‘“’(%_r’")dr +ow(t) + %w(t))
< C(/Ot @ds —l—w(t))
< Cw(t).

O

We now compare the growth of Mx (r, Df) asr — 1~ with the behaviour
of ||f — P, fl||x for functions in Xp.

Lemma 3.5. Let X be a space of analytic functions satisfying (2.1), f € Xp and
0 <r <1 Then

1
(36) £ = Pflx <K [ (Mx(s D) + 171 )ds
where K is the constant in (1.3).

Proof. Since zf(z) = fol Df(sz)zds we conclude that f = fol Py(Df)ds. Tak-
ing into account that P, (D f) = D(P, f) we obtain

(3.7) f—rP.f= /01 P,Dfds — 7’/01 P, Dfds = /1 Py(Df)ds.
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Therefore
If =P fllx <|f—rPfllx + (1 —=r)|P-fllx

1
< / Mx (s, Df)ds + (1= 1)K fl|x

and (3.6) is shown. O

Lemma 3.6. Let X be a Banach space of analytic functions satisfying (2.1), f €
Xpand 0 <r < 1. Then
(3.8)

1

1
(=M (D) < K (IRl = [ 1P~ flxdst K- lx)

1—r
where K is the constant in (1.3).

Proof. We use (3.7) for P, f,0 < u < 1 and that P,Df = DP, f, to obtain

1
(1 r)P,Df = Pof — 1Puf — / (PuDPSf ) Pqu)ds.
Now using the fact

MX(Svf)

Mx(rs,Df) < T2

0<rs<1, (see [BlPall, Lemma 3.2])

we can write

(1 —=7r)Mx(u,Df) < Mx(u, f —rP.f) +/ Mx (u, D(Psf — f))ds

1 J—
§K||f—rPTf||X+/ Mx (\/u, Py f N,

1—u

1
< K(If = Bl + =K + 1o [ 1Pf =~ flxds

Choosing u = r we obtain (3.8). O

Theorem 3.7. Let X be a Banach space of analytic functions satisfying (2.1) and
[ € Xp. Let w be a weight satisfying (1.5) and (1.6). The following conditions
are equivalent

@) If = Prfllx = Olw(l — 7)), r =17,

- T
(i) Mx(r, Df) = O(=20y 5 1,

Proof. (i) = (it) Using first that w is non-decreasing and satisties (1.5), we
use Lemma 3.6 to obtain

(1= )Mx(r, Df) < K (w(l =)+ 1 ! - /0 (s)ds + K(1— nIflx)

< C’(w(l ) ol — ) w(l - r)||f|\X).
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(17) = (1) Using now that w satisfies (1.5) and (1.6) together with Lemma
3.5 we obtain

I Befllx < & ([ A as k- )
< (/ Y ot w1 - )fl1x)
w(l—r).

4. APPROXIMATION FOR PARTIAL SUMS AND WEIGHTS

In this section we shall try to extend the conditions (d) and (e) in the

introduction to the setting of homogeneous spaces of analytic functions and

for sequences more general than w, = -%.

Definition 4.1. Let (wy;,)72, be abounded sequence of real numbers. Define
oo
Bt)=t> wp(l-t)F0<t <1,
k=0

Observe that the function f(z) = > 2 w,2" converges absolutely in
|z| < 1. Hence @(t) it is well defined for any 0 < ¢ < 1 and it is continuous.

Proposition 4.2. Let (w,)%°, C R be a sequence such that w, > wy1 for all
n € Nand lim,, w, = 0. Then @ : (0,1] — R™" is a weight which satisfies (1.5)

and
1~ ~
/ ﬂdtgﬁlg%, 0<d<1.
5

~, n 1—t¢ n+1
4.1) (1—1) Zw WT < wy, + %wnﬂ.

In particular

4.2) nc_i_’llzwkﬁdf(n_li_l)SCz(n_li_lzwk-l-wnH)
0 k=0

Proof. Let us rewrite . We have

w(t) = wot + iwn<(1 )" —(1— t)"*l)

n=1
)

=wi + (wp — wy)t — Z (wn_l — wn) (1—6)".

n=2
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This shows that since w;, is a non-increasing sequence that & is a non-

. . . - (t o(t
decreasing function, lim;,o@(¢) = 0 and &(t) #
is non-increasing we have

Lo w©) [tdt _w(0), 1
dt < —— =.
/5 =g /5 TS Ty e

Finally (4.1) follows from the monotonicity of wy, and (4.2) uses that C' <

(1_n_+1)"<1 U

> wp. Using now that

Next result is contained in [BI92, Lemma 5.1] but we include its proof
here for the sake of completeness.

Proposition 4.3. Let w be a weight satisfying (1.6) and (1.7). Then there exists
C > 0 such that
w(t)

< CT’ 0<t<1
where O(t) =t Y 3% gw(mg) (1 — 1)k,

Proof. We notice first that condition (1.7) gives for s1 < s9

w(s2) <c/ dt<C/ dt<C wist).

51

&(t)

Hence condition (1.6) implies w(d) = 6‘”(5 < Cf6 ‘”gt dt < Cw(d) for any
0 < § < 1. Therefore

(4.3) w(s) %/ ﬂdt.
o ¢t
In particular
1
) < C’/ t”dt <C -1 t"dt
Sy 1 —t 01—t

Therefore

- C/O (u(1 - S)Jr )™
[ [




LIPSCHITZ-TYPE CONDITIONS ON HOMOGENEOUS BANACH SPACES 15

This completes the proof. O

Lemma 4.4. Let X be a Banach space of analytic functions satisfying (2.1) and
let f(z) =Y _}_,, axz® € P. Then

(4.4) [ fllx < Mx(r, f) < 7"||flx,
(4.5) (m+ DI[fllx <[[Dfllx < (n+ DI f]lx-

Proof. Due to Proposition 2.2 there is no lost of generality in assuming that
X is homogeneous. We now recall that (see [BoShSI89, Lemma 3.4] or
[MaPa82, Lemma 3.1])

(4.6) r™[¢lloc < Moo(r,¢) < 1[[¢][o0
and
m|[8]loo < |9 ]loo < nll¢lloo

for any polynomial ¢(z) = >} bi2*. In particular
(47) (m 4+ D[8lloo < |[D¢lloc < (1 + 1[[¢]|oc-

Let ®(2) = Y_7_, wxz" be the vector-valued polynomial with coefficients
rp = apur, € X where ap € C and ui(z) = 2F € X. Hence ®(z) =
> ohem @tz = f. € X and D®(z) = (Df).. Note that ||®[| s, x) = || f]|x
and [[D®|| o, x) = [|Df[|x. On the other hand

1@/ @) = sup sup | Y {ag, z*)2"]
llzx[|<Tlzl=1 1=,
and thus the proof of (4.4) and (4.5) follow directly from (4.6) and (4.7)
respectively. O

We now point out that for homogeneous spaces of analytic functions the
behaviour of s,, f is strongly connected with the growth of the dyadic blocks
A, f in any space X. Recall that Agf = ag + a1z and

27L

Anf = Z apz®, n>1.
k=2n—141

Proposition 4.5. Let r, = 1 — 27"~ for n € Nand let X be a Banach space of
analytic functions satisfying (2.1) and for any g € Xp

(4.8) ||Ang”X = O(MX(rnag))7 n — oo.

Let w be a weight satisfying (1.6), (1.7) and f € Xp. Then the following are
equivalent:

(@) N[Anfllx = OW(27")), n = oo,

(i) Mx(r,Df) = O(=2), r— 17,

r
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Proof. (i) = (ii). Consider &(t) = t Y07 jw(;37)(1 — )™ Since A, (Df) =

D(A, f) then making use of (4.4) and (4.5) we obtain

Mx(r,Df) <Y Mx(r,An(Df))

<CY rIDAW)Ix < C Y rF 2| AnflIx

n=0 n=0
o0 o0 l
2" on —-n k
§C’ZT 2"w(2 )SCZT w(k——f—l)
n=0 k=0
<c®l=-r
- 1—7r

Now use Proposition 4.3 to complete this implication.
(i) = (i) Using (4.8) and Lemma 4.4 for r, = 1 — 27"~! one concludes
that

Anfllx < C27M[D(Anf)llx = C2 " [|An(Df)l|x

< 02 "My (r,, Df) < 02 AL T0)

< 27™).
— = Cw(27™)

This finishes the result. O

Let us finally give another description using approximation by Fourier
series s, f. Note that the fact that ||f — s, f||lx — 0 asn — oo for each
f € X, in the case X = Xp is equivalent to assume that ||s,, f|| < C||f| for
all n € N, i.e. the Riesz projection being bounded on X.

Proposition 4.6. Let X be a Banach space of analytic functions satisfying (2.1)
such that the Riesz projection is bounded on X. Let (wy)n be a non-increasing
sequence of non-negative numbers such that lim,, w, = 0 and there exists C' > 0
such that

(4.9) wm < Cwa, mEN,
s w
(4.10) k_ZH ?’“ < Cwm, meN.

For f € Xp, the following statements are equivalent:
() [|An fllx = O(wan), n — oo,
(@) ||f — snfllx = Olwn), n — oco.

Proof. (i) = (ii) Given n € N consider k(n) such that 2¢(")~1 11 < pn <
2k(n) Now
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o0 n
Wf=safllx =1 > b= > aflx
k=2k(n)=141 k=2k(n)—141
<lsn(ArmHllx + D N1Anfllx
m>k(n)

<Ol Ak fllx + Y 1Anfllx

m>k(n)
SC Z wom

m>k(n)

Wr
<C > T
kZQk(”)
S CCL)Qk(n) S Cwn

(17) = (i) It follows trivially, since (4.9) implies
HARflIx < (If = sgr-1 fllx + [1f = s fllx < Cwar.
The proof is then complete. O

Remark 4.7. 1f there exist v, 3 > 0 such that k7w, and k’w;, are non-decreasing
and non-increasing respectively then (4.9) and (4.10) holds. Indeed, on the

@m)? o < Csy. On the other hand

mY
Z WEk kﬁUJk

ko k1+8
k>m+1 k>m+1

1
B §
< m wy, NN
k>m+1

one hand w,,, <

< Cwp,.

Proposition 4.8. Let X be a Banach space of analytic functions satisfying (2.1)
such that the Riesz projection is bounded on X. Let (wy)n be a non-increasing
sequence of non-negative numbers such that lim,, w, = 0 and there exists C > 0
such that

1 n
(4.11) > wp < Cwp, neN.
k=0

n+14

For f € X, the following statements are equivalent:
(Z) ||f - Sﬂf”X = O(w’ﬂ)7 n — oo,
(@) |[f = onfllx = Own), n = oo
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Proof. (i) = (ii) Since o, f = n#ﬂ > ko Skf this implication follows from
(4.11) and the inequality

17 = ondllx < % 7 = sl

(13) = (i) It follows from the estimate

f = snfllx <IF = onfllx +lsn(f —onf)llx < A+ lIsalDIlf — onfllx-
O
Theorem 4.9. Let X be a Banach space of analytic functions satisfying (2.1) such
that the polynomials are dense and the Riesz projection is bounded on X. Let

w : [0, 7] = RT be a weight satisfying (1.5), (1.6) and (1.7). Then the following
statements are equivalent:

(i) Mx(r, Df) = O(*{57), v =17,

(i) [[Anfllx = O(w(2™")), n — o0,

(itd) ||f = snfllx = O(w(n™1), n— oo,

() [|f = onfllx = Ow(n™)), n— .

Proof. We first notice that (4.8) is satisfied. Indeed by Lemma 4.4
||Anf||X =~ MX(Tm Anf) = ||An(Prnf)||X < CHPranX = OMX(rn,f)'

Hence the equivalence between (i ) and (iz) follows from Proposition 4.5.
Let us now show that w,, = w( 1) satisfies (4.9), (4.10) and (4.11).
Using (4.3) we have

L w(t)

m+

wm < C / Ldt
0

11 2 [F w(t) 1
PRI LD /L t<C/ < Cl(—=)

1
Fow( 1
< < .
E k:—i—l g / 7 dt C’/+1 dt C(n+ )w(n+1)
Hence the equlvalences (u) <= (t4i) and (7ii) <= (iv) follow from Propo-

sition 4.6 and Proposition 4.8 respectively. O

The reader needs to combine Theorems 3.4, 3.7 and 4.9 to complete all
the characterizations given in Theorem 1.2 in the introduction.
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