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Dissipative hyperbolic systems of regularity-loss have been recently received 
increasing attention. Extra higher regularity is usually assumed to obtain the 
optimal decay estimates, in comparison with the global-in-time existence of 
solutions. In this paper, we develop a new frequency-localization time-decay 
property, which enables us to overcome the technical difficulty and improve the 
minimal decay-regularity for dissipative systems. As an application, it is shown that 
the optimal decay rate of L1(R3)–L2(R3) is available for Euler–Maxwell equations 
with the critical regularity sc = 5/2, that is, the extra higher regularity is not 
necessary.

© 2016 Published by Elsevier Inc.

1. Introduction

In this paper, we are interested in compressible isentropic Euler–Maxwell equations in plasmas physics 
(see, for example, [4,17]), which are given by the form

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tn + ∇ · (nu) = 0,
∂t(nu) + ∇ · (nu⊗ u) + ∇p(n) = −n(E + u×B) − nu,

∂tE −∇×B = nu,

∂tB + ∇× E = 0,

(1.1)

with constraints

∇ · E = n∞ − n, ∇ ·B = 0 (1.2)
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for (t, x) ∈ [0, +∞) × R3. Here the unknowns n > 0, u ∈ R3 are the density and the velocity of electrons, 
and E ∈ R3, B ∈ R3 denote the electric field and magnetic field, respectively. The pressure p(n) is a given 
smooth function of n satisfying p′(n) > 0 for n > 0. For the sake of simplicity, n∞ is assumed to be a 
positive constant, which stands for the density of positively charged background ions. Observe that system 
(1.1) admits a constant equilibrium state (n∞, 0, 0, B∞), which is regarded as vector in R10. B∞ ∈ R3 is 
an arbitrary fixed constant vector. The main objective of the present paper is to investigate the large-time 
behavior for the corresponding Cauchy problem. For this purpose, system (1.1) is supplemented with the 
initial data

(n, u,E,B)|t=0 = (n0, u0, E0, B0)(x), x ∈ R3. (1.3)

It is not difficult to see that (1.2) can hold for any t > 0 if the initial data satisfy the following compatible 
conditions

∇ · E0 = n∞ − n0, ∇ ·B0 = 0, x ∈ R3. (1.4)

Set w = (n, u, E, B)� (� transpose) and w0 = (n0, u0, E0, B0)�. Then (1.1) can be written in the vector 
form

A0(w)wt +
3∑

j=1
Aj(w)wxj

+ L(w)w = 0, (1.5)

where the coefficient matrices are given explicitly as

A0(w) =

⎛⎜⎜⎜⎝
a(n) 0 0 0

0 nI 0 0
0 0 I 0
0 0 0 I

⎞⎟⎟⎟⎠ , L(w) =

⎛⎜⎜⎜⎝
0 0 0 0
0 n(I − ΩB) nI 0
0 −nI 0 0
0 0 0 0

⎞⎟⎟⎟⎠ ,

3∑
j=1

Aj(w)ξj =

⎛⎜⎜⎜⎝
a(n)(u · ξ) p′(n)ξ 0 0
p′(n)ξ� n(u · ξ)I 0 0

0 0 0 −Ωξ

0 0 Ωξ 0

⎞⎟⎟⎟⎠ .

Here, a(n) := p′(n)/n is the enthalpy function, I is the identity matrix of third order. For any ξ =
(ξ1, ξ2, ξ3) ∈ R3, Ωξ is the skew-symmetric matrix defined by

Ωξ =

⎛⎜⎝ 0 −ξ3 ξ2
ξ3 0 −ξ1
−ξ2 ξ1 0

⎞⎟⎠
such that ΩξE

� = (ξ ×E)� (as a column vector in R3).
Clearly, (1.5) is a symmetric hyperbolic system, since A0(w) is real symmetric and positive definite and 

Aj(w)(j = 1, 2, 3) are real symmetric. Generally, the main feature of (1.5) is the finite time blowup of 
classical solutions even when the initial data are smooth and small. In one dimensional space, Chen, Jerome 
and Wang [4] first constructed global weak solutions by using the Godunov scheme of the fractional step. 
By using the dissipative effect of damping terms, Peng Wang and Gu [28] established the global existence of 
smooth solutions in the periodic domain. Duan [7] analyzed the regularity-loss mechanism in the dissipation 
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part and constructed the global existence and time-decay estimates of smooth solutions. The first author 
[37] made the best use of the coupling structure of each equation in (1.5) and constructed global classical 
solutions in spatially critical Besov spaces. So far there are a number of efforts on the Euler–Maxwell system 
(1.1) with or without dissipation, see [9,11,12,23,24,32–34,41] and therein references.

For the Cauchy problem (1.1)–(1.3), in this paper, we focus on the quantitative decay estimates of 
solutions toward the equilibrium state w∞ = (n∞, 0, 0, B∞). Ueda, Wang and the second author [34] studied 
the dissipative structure of (1.5), which is weaker than the standard one characterized in [2,13,19–21,29,
35,38,39,43]. More precisely, the dissipative matrix L(w) is nonnegative definite, however, L(w) is not real 
symmetric, which leads to the regularity-loss not only in the dissipation part of the energy estimate but 
also in the decay estimate for the linearized system. To clarify it, let us reformulate (1.1) as the linearized 
perturbation form around the equilibrium state w∞:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂tn + n∞divυ = 0,
∂tυ + a∞∇n + E + υ ×B + υ = (divq2 + r2)/n∞,

∂tE −∇×B − n∞υ = 0,
∂tB + ∇× E = 0,

(1.6)

where υ = nu/n∞, a∞ = p′(n∞)/n∞,

q2 = −n2
∞υ ⊗ υ/n− [p(n) − p(n∞) − p′(n∞)(n− n∞)]I

and

r2 = −(n− n∞)E − n∞υ × (B −B∞).

We put z := (ρ, υ, E, h)�, where ρ = n − n∞ and h = B −B∞. The corresponding initial data are given by

z|t=0 = (ρ0, υ0, E0, h0)�(x) (1.7)

with ρ0 = n0 − n∞, υ0 = n0u0/n∞ and h0 = B0 −B∞. System (1.6) can be also rewrite in the vector form 
as

A0zt +
3∑

j=1
Ajzxj

+ Lz =
3∑

j=1
Qxj

+ R, (1.8)

where A0, Aj and L are the constant matrices in (1.5) with w = w∞, Q(z) = (0, qj2/n∞, 0, 0)� and R(z) =
(0, r2/n∞, 0, 0)�. Observe that Q(z) = O(|(ρ, υ)|2) and R(z) = O(ρ|E| + |υ||h|). The corresponding linear 
form reads as

A0∂tzL +
3∑

j=1
Aj∂xj

zL + LzL = 0, (1.9)

and the initial data z0 := (ρ0, υ0, E0, h0)� satisfy

divE0 = −ρ0, divh0 = 0. (1.10)

In [33], Ueda and the second author showed that the Fourier image of zL satisfies the following pointwise 
estimate
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|ẑL(t, ξ)| � e−c0η0(ξ)t|ẑ0| (1.11)

for any t ≥ 0, c0 > 0 and ξ ∈ R3, where the dissipative rate η0(ξ) := |ξ|2/(1 + |ξ|2)2. Furthermore, the decay 
estimate of zL was followed:

‖∂k
xzL‖L2 � (1 + t)−3/4−k/2‖z0‖L1 + (1 + t)−�/2‖∂k+�

x z0‖L2 , (1.12)

where k and � are non-negative integers.

Remark 1.1. The decay (1.12) is of the regularity-loss type, since (1 + t)−�/2 is created by assuming the 
additional �-th order regularity on the initial data. As a matter of fact, similar dissipative mechanisms 
also appear in the study of other dissipative systems which were investigated by the second author and 
his collaborators in recent several years, for instance, Timoshenko systems in [15,16,22], hyperbolic-elliptic 
systems of radiating gas in [14], a plate equation with rotational inertia effect in [31], hyperbolic systems of 
viscoelasticity in [5,6], as well as the Vlasov–Maxwell–Boltzmann system studied by Duan and Strain et al. 
(see for example, [8,10]).

Furthermore, based on the decay estimate (1.12) of linearized solutions, the decay estimates of Euler–
Maxwell equations (1.6)–(1.7) can be obtained by a combination of the time weighted energy method and 
the semigroup approach. To overcome the major difficulty arising from the weaker mechanism of regularity-
loss, the decay regularity index is usually needed to be sufficiently large, for instance, s ≥ 13 in [7], s ≥ 6
in [33] and therein references. Very recently, Tan, Wang and Wang [32] obtained various decay rates of the 
solution and its derivatives for (1.1)–(1.3) by a regularity interpolation trick. However, their decay results 
may be available in the price of higher regularity of initial data. In the present paper, we investigate a 
different but interesting problem in comparison with previous efforts. That is, which regularity index does 
characterize the minimal decay regularity for (1.1)–(1.3)? For this motivation, we formulate a definition on 
the “minimal decay regularity”.

Definition 1.1. If the optimal decay rate of L1(Rn)–L2(Rn) type is achieved under the lowest regular-
ity assumption, then the lowest index is called the minimal decay regularity for dissipative systems of 
regularity-loss, which is labelled as sD.

Obviously, following from Definition 1.1, we found sD ≤ 13 in [7] and sD ≤ 6 in [33]. Based on the recent 
works [37,41], in Besov space with the regularity 5/2, is it possible to get optimal decay rates in functional 
spaces with relatively lower regularity? The present paper attempts to seek the minimal decay regularity for 
(1.1)–(1.3) such that sD ≤ 5/2. To achieve it, actually, we need to develop a general frequency-localization 
time-decay inequality not only for the dissipative rate η0(ξ) = |ξ|2/(1 + |ξ|2)2, but also for more integer 
couple (a, b)-type: η(ξ) = |ξ|2a/(1 + |ξ|2)b which has appeared in other dissipative systems of regularity-loss, 
see [5,6,8,10,14–16,22,31]. Precisely, we have

Theorem 1.1. Let η(ξ) be a positive, continuous and real-valued function in Rn satisfying

η(ξ) ∼
{

|ξ|σ1 , |ξ| → 0;
|ξ|−σ2 , |ξ| → ∞;

(1.13)

for σ1, σ2 > 0.
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If f ∈ Ḃs+�
r,α (Rn) ∩ Ḃ−�

2,∞(Rn) for s ∈ R, 	 ∈ R and 1 ≤ α ≤ ∞ such that s + 	 > 0, then it holds that

∥∥∥2qs‖̂̇Δqfe
−η(ξ)t‖L2

∥∥∥
lαq

� (1 + t)−
s+�
σ1 ‖f‖Ḃ−�

2,∞︸ ︷︷ ︸
Low-frequency Estimate

+ (1 + t)−
�

σ2
+γσ2 (r,2)‖f‖Ḃs+�

r,α︸ ︷︷ ︸
High-frequency Estimate

, (1.14)

for � > n(1
r − 1

2)1 with 1 ≤ r ≤ 2, where γσ2(r, 2) := n
σ2

(1
r − 1

2 ) and lαq stands for the α-type summation 
over q ∈ Z.

Remark 1.2. Compared to (1.12), more general time-decay estimate (1.14) is endowed with some novelty. 
To the best of our knowledge, not only does the high-frequency part decay in time with algebraic rates 
of any order as long as the function is spatially regular enough, but also decay information related to the 
localized integrability r is available. Indeed, different values of r (for example, r = 1 or r = 2) enable us 
to obtain the desired minimal decay regularity for dissipative systems. Secondly, note that the embedding 
Lp(Rn) ↪→ Ḃ−�

2,∞(Rn)(	 = n(1/p − 1/2), 1 ≤ p < 2) in Lemma 2.3, it is shown that the low-frequency 
regularity is less restrictive than the usual Lp space. Additionally, the regularity index s ∈ R relaxes as the 
negative real constant rather than non-negative integers in (1.12) only.

For the convenience of reader, we give the direct consequence for the dissipative rate of (1, 2) type, i.e., 
σ1 = σ2 = 2 in the sense of (1.13).

Corollary 1.1. Let η(ξ) = |ξ|2/(1 + |ξ|2)2. If f ∈ Ḃs+�
r,α (Rn) ∩ Ḃ−�

2,∞(Rn) for s ∈ R, 	 ∈ R and 1 ≤ α ≤ ∞
such that s + 	 > 0, then it holds that∥∥∥2qs‖̂̇Δqfe

−η(ξ)t‖L2

∥∥∥
lαq

� (1 + t)−
s+�
2 ‖f‖Ḃ−�

2,∞︸ ︷︷ ︸
Low-frequency Estimate

+ (1 + t)− �
2+n

2 ( 1
r− 1

2 )‖f‖Ḃs+�
r,α︸ ︷︷ ︸

High-frequency Estimate

, (1.15)

for � > n(1
r −

1
2 ) with 1 ≤ r < 2, or � ≥ 0 with r = 2, where lαq stands for the α-type summation over q ∈ Z.

Recalling those results in [37,41], we have the global-in-time existence of classical solutions to (1.1)–(1.3)
in spatially critical Besov spaces.

Theorem 1.2. ([37,41]) Suppose that the initial data satisfy w0 −w∞ ∈ B
5/2
2,1 (R3) and compatible conditions 

(1.4). There exists a positive constant δ0 such that if

I0 := ‖w0 − w∞‖
B

5/2
2,1

≤ δ0, (1.16)

then the system (1.1)–(1.3) admits a unique global solution w(t, x) satisfying

w(t, x) ∈ C1([0,∞) × R3)

and

1 Let us remark that � ≥ 0 in the case of r = 2.
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w − w∞ ∈ C̃(B5/2
2,1 (R3)) ∩ C̃1(B3/2

2,1 (R3)).

Moreover, the following energy inequality holds

N0(t) + D0(t) � I0, (1.17)

where N0(t) := ‖w − w∞‖
L̃∞

t (B5/2
2,1 ) and D0(t) := ‖(n − n∞, u)‖

L̃2
t (B

5/2
2,1 ) + ‖E‖

L̃2
t (B

3/2
2,1 ) + ‖∇B‖

L̃2
t (B

1/2
2,1 ) for 

any t > 0.

The reader is referred to Sect. 2 for the Besov space notations. With such low regularity, some decay 
techniques used in [33] fail. For instance, Ueda and the second author performed the time-weighted energy 
estimate related to the norm

W⊥(t) := sup
0≤τ≤t

(1 + τ)‖(ρ, υ,E)‖W 1,∞

to eliminate the difficulty of regularity-loss in the semigroup approach. Consequently, higher regularity was 
needed to bound the norm according to Sobolev embedding theorems. In the present paper, we introduce 
a different strategy to get around the main obstruction. Based on the Littlewood–Paley pointwise energy 
estimate (4.6), we could skip the usual semigroup approach as in [33,39]. Here, localized energy estimates for 
(1.6)–(1.7) are mainly performed in terms of high-frequency and low-frequency decompositions. It is worth 
noting that the time-decay inequality in Corollary 1.1 does play the key role to overcome the weak dissipative 
mechanism of regularity-loss at the high-frequency. More precisely, we make the best of advantages of (1.15)
rather than (1.12). The high-frequency part is divided into two parts, and on each part, different values of r
are chosen to obtain desired decay estimates with the assumption regularity sc = 5/2, see, e.g., (4.11) and 
(4.13) for more details. One can now state the main result in this position.

Theorem 1.3. Assume that the initial data satisfy w0 − w∞ ∈ B
5/2
2,1 ∩ Ḃ

−3/2
2,∞ and (1.4). Set I1 := ‖w0 −

w∞‖
B

5/2
2,1 ∩Ḃ

−3/2
2,∞

. Then there exists a constant δ1 > 0 such that if I1 ≤ δ1, then the classical solution to 

(1.1)–(1.3) admits the optimal decay estimate

‖w − w∞‖L2 � I1(1 + t)−3/4. (1.18)

In Theorem 1.3, the low frequency regularity assumption is posted in Ḃ−3/2
2,∞ , which is less restrictive than 

the usual L1 space, so a direct consequence is available immediately by Lemma 2.3.

Corollary 1.2. Assume that the initial data satisfy w0−w∞ ∈ B
5/2
2,1 ∩L1. Set Ĩ1 := ‖w0−w∞‖

B
5/2
2,1 ∩L1 . Then 

there exists a constant δ1 > 0 such that if Ĩ1 ≤ δ1, then the classical solution to (1.1)–(1.3) satisfies the 
optimal decay estimate (1.18), where I1 is replaced by Ĩ1.

Remark 1.3. In the present paper, we achieve that sD ≤ 5/2, where the regularity 5/2 is the same as that 
for global solutions in [37,41]. Compared to [40], it’s the first time to show the optimal decay rate in critical 
Besov spaces, which gives a sharp minimal decay regularity for compressible Euler–Maxwell equations. Also, 
the assumptions for the regularity of the initial data are reduced heavily in comparison with previous works 
as [7,32,33] and therein references.

Remark 1.4. It is worth noting that Theorems 1.1–1.2 encourages us to investigate the minimal decay 
regularity for other dissipative systems with regularity-loss as in [5,6,8,10,14–16,22,31] in near future.
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Finally, would like to note that all physical parameters are normalized to be one in (1.1). If considered, 
there are rigorous justifications on the singular parameter limits for (1.1), such as the nonrelativistic limit, 
quasi-neutral limit as well as combined nonrelativistic and quasi-neutral limits in [25–27], diffusive relaxation 
limits in [42] and so on.

The rest of this paper unfolds as follows. In Sect. 2, we review Littlewood–Paley decomposition, Besov 
spaces and Chemin–Lerner spaces to make the context possibly self-contained. Sect. 3 is devoted to prove 
the frequency-localization time-decay inequality. Furthermore, in Sect. 4, we deduce the optimal decay 
estimate for (1.6)–(1.7) by employing energy approaches in terms of high-frequency and low-frequency 
decompositions.

Notations. Throughout the paper, f � g denotes f ≤ Cg, where C > 0 is a generic constant. f ≈ g

means f � g and g � f . Denote by C([0, T ], X) (resp., C1([0, T ], X)) the space of continuous (resp., 
continuously differentiable) functions on [0, T ] with values in a Banach space X. Also, ‖(f, g, h)‖X means 
‖f‖X + ‖g‖X + ‖h‖X , where f, g, h ∈ X.

2. Preliminary

In this section, we briefly review the Littlewood–Paley decomposition, Besov spaces and Chemin–Lerner 
spaces in Rn(n ≥ 1), see [1] for more details.

Firstly, we give an improved Bernstein inequality (see [36]), which allows the case of fractional derivatives.

Lemma 2.1. Let 0 < R1 < R2 and 1 ≤ a ≤ b ≤ ∞.

(i) If SuppFf ⊂ {ξ ∈ Rn : |ξ| ≤ R1λ}, then

‖Λαf‖Lb � λα+n( 1
a− 1

b )‖f‖La , for any α ≥ 0;

(ii) If SuppFf ⊂ {ξ ∈ Rn : R1λ ≤ |ξ| ≤ R2λ}, then

‖Λαf‖La ≈ λα‖f‖La , for any α ∈ R.

Let (ϕ, χ) is a couple of smooth functions valued in [0, 1] such that ϕ is supported in the shell C(0, 34 , 
8
3 ) =

{ξ ∈ Rn|34 ≤ |ξ| ≤ 8
3}, χ is supported in the ball B(0, 43 ) = {ξ ∈ Rn||ξ| ≤ 4

3} satisfying

χ(ξ) +
∑
q∈N

ϕ(2−qξ) = 1, q ∈ N, ξ ∈ Rn

and ∑
k∈Z

ϕ(2−kξ) = 1, k ∈ Z, ξ ∈ Rn \ {0}.

For f ∈ S ′ (the set of temperate distributions which is the dual of the Schwarz class S), define

Δ−1f := χ(D)f = F−1(χ(ξ)Ff), Δqf := 0 for q ≤ −2;

Δqf := ϕ(2−qD)f = F−1(ϕ(2−qξ)Ff) for q ≥ 0;

Δ̇qf := ϕ(2−qD)f = F−1(ϕ(2−qξ)Ff) for q ∈ Z,

where Ff , F−1f represent the Fourier transform and the inverse Fourier transform on f , respectively. 
Observe that the operator Δ̇q coincides with Δq for q ≥ 0.



JID:YJMAA AID:20763 /FLA Doctopic: Partial Differential Equations [m3L; v1.190; Prn:3/10/2016; 13:51] P.8 (1-18)
8 J. Xu, S. Kawashima / J. Math. Anal. Appl. ••• (••••) •••–•••
Denote by S ′
0 := S ′/P the tempered distributions modulo polynomials P. Furthermore, Besov spaces 

can be characterized by Littlewood–Paley decompositions.

Definition 2.1. For s ∈ R and 1 ≤ p, r ≤ ∞, the homogeneous Besov spaces Ḃs
p,r are defined by

Ḃs
p,r = {f ∈ S′

0 : ‖f‖Ḃs
p,r

< ∞},

where

‖f‖Ḃs
p,r

=

⎧⎨⎩
(∑

q∈Z
(2qs‖Δ̇qf‖Lp)r

)1/r
, r < ∞,

supq∈Z 2qs‖Δ̇qf‖Lp , r = ∞.

Similarly, one also has the definition of inhomogeneous Besov spaces.

Definition 2.2. For s ∈ R and 1 ≤ p, r ≤ ∞, the inhomogeneous Besov spaces Bs
p,r are defined by

Bs
p,r = {f ∈ S′ : ‖f‖Bs

p,r
< ∞},

where

‖f‖Bs
p,r

=

⎧⎨⎩
(∑∞

q=−1(2qs‖Δqf‖Lp)r
)1/r

, r < ∞,

supq≥−1 2qs‖Δqf‖Lp , r = ∞.

Besov spaces obey various inclusion relations. Precisely,

Lemma 2.2. Let s ∈ R and 1 ≤ p, r ≤ ∞, then

(i) If s > 0, then Bs
p,r = Lp ∩ Ḃs

p,r;
(ii) If s̃ ≤ s, then Bs

p,r ↪→ Bs̃
p,r. This inclusion relation is false for the homogeneous Besov spaces;

(iii) If 1 ≤ r ≤ r̃ ≤ ∞, then Ḃs
p,r ↪→ Ḃs

p,r̃ and Bs
p,r ↪→ Bs

p,r̃;

(iv) If 1 ≤ p ≤ p̃ ≤ ∞, then Ḃs
p,r ↪→ Ḃ

s−n( 1
p− 1

p̃ )
p̃,r and Bs

p,r ↪→ B
s−n( 1

p− 1
p̃ )

p̃,r ;
(v) Ḃ

n/p
p,1 ↪→ C0, B

n/p
p,1 ↪→ C0(1 ≤ p < ∞);

where C0 is the space of continuous bounded functions which decay at infinity.

In the recent work [30], Sohinger and Strain first introduced the Besov space of negative order to inves-
tigate the optimal time-decay rate of Boltzmann equation. Here, we give the simplification as follows.

Lemma 2.3. Suppose that 	 > 0 and 1 ≤ p < 2. It holds that

‖f‖Ḃ−�
r,∞

� ‖f‖Lp

with 1/p − 1/r = 	/n. In particular, this holds with 	 = n/2, r = 2 and p = 1.

Usually, Moser-type product estimates play an important role in the estimate of bilinear terms.
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Proposition 2.1. Let s > 0 and 1 ≤ p, r ≤ ∞. Then Ḃs
p,r ∩ L∞ is an algebra and

‖fg‖Ḃs
p,r

� ‖f‖L∞‖g‖Ḃs
p,r

+ ‖g‖L∞‖f‖Ḃs
p,r

.

Let s1, s2 ≤ n/p such that s1 + s2 > n max{0, 2p − 1}. Then one has

‖fg‖
Ḃ

s1+s2−n/p
p,1

� ‖f‖Ḃs1
p,1

‖g‖Ḃs2
p,1

.

In the analysis of decay estimates, we use the general form of Moser-type product estimates, which was 
shown by [44].

Proposition 2.2. Let s > 0 and 1 ≤ p, r, p1, p2, p3, p4 ≤ ∞. Assume that f ∈ Lp1 ∩ Ḃs
p4,r and g ∈ Lp3 ∩ Ḃs

p2,r

with

1
p

= 1
p1

+ 1
p2

= 1
p3

+ 1
p4

.

Then it holds that

‖fg‖Ḃs
p,r

� ‖f‖Lp1‖g‖Ḃs
p2,r

+ ‖g‖Lp3‖f‖Ḃs
p4,r

.

On the other hand, we need space–time mixed Besov spaces initiated by J.-Y. Chemin and N. Lerner 
in [3], which can be regarded as the refinement of the usual space–time mixed spaces Lθ

T (Ḃs
p,r) or Lθ

T (Bs
p,r).

Definition 2.3. For T > 0, s ∈ R, 1 ≤ r, θ ≤ ∞, the homogeneous Chemin–Lerner spaces L̃θ
T (Ḃs

p,r) are
defined by

L̃θ
T (Ḃs

p,r) := {f ∈ Lθ(0, T ;S ′
0) : ‖f‖L̃θ

T (Ḃs
p,r) < +∞},

where

‖f‖L̃θ
T (Ḃs

p,r) :=
(∑

q∈Z

(2qs‖Δ̇qf‖Lθ
T (Lp))r

) 1
r

with the usual convention if r = ∞.

Definition 2.4. For T > 0, s ∈ R, 1 ≤ r, θ ≤ ∞, the inhomogeneous Chemin–Lerner spaces L̃θ
T (Bs

p,r) are
defined by

L̃θ
T (Bs

p,r) := {f ∈ Lθ(0, T ;S ′) : ‖f‖L̃θ
T (Bs

p,r) < +∞},

where

‖f‖L̃θ
T (Bs

p,r) :=
( ∑

q≥−1
(2qs‖Δqf‖Lθ

T (Lp))r
) 1

r

with the usual convention if r = ∞.

We further define

C̃T (Bs
p,r) := L̃∞

T (Bs
p,r) ∩ C([0, T ], Bs

p,r)
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and

C̃1
T (Bs

p,r) := {f ∈ C1([0, T ], Bs
p,r)|∂tf ∈ L̃∞

T (Bs
p,r)},

where the index T will be omitted when T = +∞.
By Minkowski’s inequality, Chemin–Lerner spaces can be linked with Lθ

T (X) with X = Bs
p,r or Ḃs

p,r.

Remark 2.1. It holds that

‖f‖L̃θ
T (X) ≤ ‖f‖Lθ

T (X) if r ≥ θ; ‖f‖L̃θ
T (X) ≥ ‖f‖Lθ

T (X) if r ≤ θ.

3. The proof of Theorem 1.1

In the recent decade, harmonic analysis tools, especially for techniques based on Littlewood–Paley de-
composition and paradifferential calculus have proved to be very efficient in the study of partial differential 
equations, see for example [1]. It is well-known that the frequency-localization operator Δ̇qf (or Δqf) has 
a smoothing effect on the function f , even though f is quite rough. Moreover, the Lp-norm of Δ̇qf can be 
preserved if f ∈ Lp(Rn). However, so far there are few efforts on the time-decay property related to the 
block operator, so Theorem 1.1 seems to be a suitable candidate for the motivation, which enables us to 
overcome the outstanding difficulty of regularity-loss in Besov spaces with relatively lower regularity.

Proof. Indeed, we proceed the proof for the inequality (1.14) with the aid of Littlewood–Paley frequency-
localization techniques. It follows from the assumption (1.13) that there exist constants c0 > 0 and R0 > 0
such that

‖̂̇Δqfe
−η(ξ)t‖L2

≤ ‖̂̇Δqfe
−c0|ξ|σ1 t‖L2(|ξ|≤R0) + ‖̂̇Δqfe

−c0|ξ|−σ2 t‖L2(|ξ|≥R0). (3.1)

We set R0 = 2q0(q0 ∈ Z) without the loss of generality.
(i) If q ≥ q0, then |ξ| ∼ 2q ≥ R0, which leads to

‖̂̇Δqfe
−c0|ξ|−σ2 t‖L2(|ξ|≥R0)

=
∥∥∥|ξ|�|̂̇Δqf |

e−c0t|ξ|−σ2

|ξ|�
∥∥∥
L2(|ξ|≥R0)

≤ ‖|ξ|� ̂̇Δqf‖Lr′

∥∥∥e−c0t|ξ|−σ2

|ξ|�
∥∥∥
Lm(|ξ|≥R0)

( 1
r′

+ 1
m

= 1
2 , r′ ≥ 2

)
� 2q�‖Δ̇qf‖Lr

∥∥∥e−c0t|ξ|−σ2

|ξ|�
∥∥∥
Lm(|ξ|≥R0)

(1
r

+ 1
r′

= 1
)
, (3.2)

where the Hausdorff–Young’s inequality was used in the last line. By performing the change of variable, we 
can arrive at

∥∥∥e−c0t|ξ|−σ2

|ξ|�
∥∥∥
Lm(|ξ|≥R0)

� (1 + t)−
�

σ2
+ n

σ2
( 1
r− 1

2 ) (3.3)
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for � > n(1
r − 1

2 ). Besides, it can be also bounded by (1 + t)−
�
σ2 for � ≥ 0 if r = 2. Then it follows from 

(3.2)–(3.3) that

2qs‖̂̇Δqfe
−c0|ξ|−σ2 t‖L2 � 2q(s+�)(1 + t)−

�
σ2

+ n
σ2

( 1
r− 1

2 )‖Δ̇qf‖Lr . (3.4)

(ii) If q < q0, then |ξ| ∼ 2q ≤ R0, which implies that

‖̂̇Δqfe
−c0|ξ|σ1 t‖L2(|ξ|≤R0) � ‖̂̇Δqf‖L2e−c0(2q σ1

√
t)σ1

. (3.5)

Furthermore, we can obtain

2qs‖̂̇Δqfe
−c0|ξ|σ1 t‖L2 � ‖f‖Ḃ−�

2,∞
(1 + t)−

s+�
σ1 [(2q σ1

√
t)s+�e−c0(2q σ1

√
t)σ1 ] (3.6)

for s ∈ R, 	 ∈ R such that s + 	 > 0. Note that∥∥∥(2q σ1
√
t)s+�e−c0(2q σ1

√
t)σ1

∥∥∥
lαq

� 1, (3.7)

for any α ∈ [1, +∞]. Combining (3.4), (3.6)–(3.7), we conclude that∥∥∥2qs‖̂̇Δqfe
−η(ξ)t‖L2

∥∥∥
lαq

� ‖f‖Ḃ−�
2,∞

(1 + t)−
s+�
σ1 + ‖f‖Ḃs+�

r,α
(1 + t)−

�
σ2

+ n
σ2

( 1
r− 1

2 ), (3.8)

which is just the inequality (1.14). �
4. The proof of Theorem 1.2

Due to the dissipative mechanism of regularity-loss, extra higher regularity is usually needed to obtain 
the optimal decay rate for (1.1)–(1.3). To achieve the minimal decay regularity sD ≤ 5/2, we skip the 
usual semigroup approach as in [33,39]. Consequently, the nonlinear energy estimate in Fourier spaces for 
(1.6)–(1.7) is performed. We would like to mention that similar estimates were first given by the second 
author in [18] for the Boltzmann equation, then well developed in [21] for hyperbolic systems of balance 
laws. In the following, our decay analysis focuses on (1.6)–(1.7). As a matter of fact, by Theorem 1.2, we 
can obtain a similar global existence for the solution z to (1.6)–(1.7). For simplification, allow us to abuse 
the notations N0(t) and D0(t) a little, which means that the corresponding functional norms with respect 
to z is still labelled as N0(t) and D0(t). Then it follows that these norms can be bounded by ‖z0‖B5/2

2,1
.

Define

N(t) = sup
0≤τ≤t

(1 + τ) 3
4 ‖z(τ)‖L2 , (4.1)

D(t) = ‖(ρ, υ)‖
L2

t (B
5/2
2,1 ) + ‖E‖

L2
t (B

3/2
2,1 ) + ‖∇h‖

L2
t (B

1/2
2,1 ). (4.2)

The optimal decay estimate lies in a nonlinear time-weighted energy inequality, which is included in the 
following

Lemma 4.1. Let z = (ρ, υ, E, h)� be the global classical solutions, which is similar to that in Theorem 1.2. 
Additionally, if z0 ∈ Ḃ

−3/2
2,∞ , then it holds that

N(t) � ‖z0‖B5/2
2,1 ∩Ḃ

−3/2
2,∞

+ N(t)D(t) + N(t)2. (4.3)
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Proof. It follows from the nonlinear energy method in [40] that

d

dt
E [ẑ] + c1η0(ξ)E [ẑ] � (|ξ|2|Q̂|2 + |R̂|2), (4.4)

for c1 > 0, where η0(ξ) = |ξ|2/(1 + |ξ|2)2 and E [ẑ] ≈ |ẑ|2. As a matter of fact, the corresponding Littlewood–
Paley pointwise energy estimate is also available according to the derivation of (4.4):

d

dt
E [̂̇Δqz] + c1η0(ξ)E [̂̇Δqz] � (|ξ|2|̂̇ΔqQ|2 + |̂̇ΔqR|2), (4.5)

where E [̂̇Δqz] ≈ |̂̇Δqz|2. The standard Gronwall’s inequality implies that

|̂̇Δqz|2 � e−c1η0(ξ)t|̂̇Δqz0|2 +
t∫

0

e−c1η0(ξ)(t−τ)
(
|ξ|2|̂̇ΔqQ|2 + |̂̇ΔqR|2

)
dτ. (4.6)

It follows from Fubini and Plancherel theorems that

‖z‖2
L2 =

∑
q∈Z

‖Δ̇qz‖2
L2

�
∑
q∈Z

‖̂̇Δqz0e
− 1

2 c1η0(ξ)t‖2
L2

+
t∫

0

∑
q∈Z

(
‖|ξ|̂̇ΔqQe−

1
2 c1η0(ξ)(t−τ)‖2

L2 + ‖̂̇ΔqRe−
1
2 c1η0(ξ)(t−τ)‖2

L2

)
dτ

� J1 + J2 + J3. (4.7)

For J1, by taking r = α = 2, s = 0, 	 = 3/2 and � = 2 in Corollary 1.1, we arrive at

J1 =
( ∑

q<q0

+
∑
q≥q0

)(
· · ·

)
� ‖z0‖2

Ḃ
−3/2
2,∞

(1 + t)− 3
2 +

∑
q≥q0

22q‖Δ̇qz0‖2
L2(1 + t)−2

� ‖z0‖2
Ḃ

−3/2
2,∞

(1 + t)− 3
2 + ‖z0‖2

Ḃ2
2,2

(1 + t)−2

� ‖z0‖2
Ḃ

−3/2
2,∞ ∩B

5/2
2,1

(1 + t)− 3
2 , (4.8)

where we have used the embedding relation in Lemma 2.2. Next, we begin to bound nonlinear terms on the 
right-hand side of (4.7). For J2, it can be written as the sum of low-frequency and high-frequency:

J2 =
t∫

0

( ∑
q<q0

+
∑
q≥q0

)(
· · ·

)
� J2L + J2H . (4.9)

For J2L, by taking α = 2, s = 1, 	 = 3/2 in Corollary 1.1, we have
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J2L ≤
t∫

0

(1 + t− τ)− 5
2 ‖Q(τ)‖2

Ḃ
−3/2
2,∞

dτ

�
t∫

0

(1 + t− τ)− 5
2 ‖Q(τ)‖2

L1dτ

�
t∫

0

(1 + t− τ)− 5
2 ‖z⊥(τ)‖4

L2dτ

� N4(t)
t∫

0

(1 + t− τ)− 5
2 (1 + τ)−3dτ

� N4(t)(1 + t)− 5
2 , (4.10)

where we have used the embedding L1(R) ↪→ Ḃ
−3/2
2,∞ (R3) in Lemma 2.3 and the fact Q(z) = O(|z⊥|2) with 

z⊥ := (ρ, υ).
For the high-frequency part J2H , we need more elaborate decay analysis to achieve the aim of sD ≤ 5/2. 

To do this, we write

J2H =
( t/2∫

0

+
t∫

t/2

)(
· · ·

)
� J2H1 + J2H2.

For J2H1, taking r = α = 2, s = 1 and � = 3/2 in Corollary 1.1 gives

J2H1 =
t/2∫
0

∑
q≥q0

‖|ξ|̂̇ΔqQe−
1
2 c1η0(ξ)(t−τ)‖2

L2dτ

≤
t/2∫
0

(1 + t− τ)− 3
2 ‖Q(τ)‖2

Ḃ
5/2
2,2

dτ

≤
t/2∫
0

(1 + t− τ)− 3
2 ‖z⊥‖2

L∞‖z⊥‖2
B

5/2
2,1

dτ

≤ sup
0≤τ≤t/2

{(1 + t− τ)− 3
2 ‖z‖2

L∞}
t/2∫
0

‖(ρ, υ)‖2
B

5/2
2,1

dτ

� (1 + t)− 3
2 ‖z0‖2

B
5/2
2,1

D2(t)

� (1 + t)− 3
2 ‖z0‖4

B
5/2
2,1

, (4.11)

where we have used Proposition 2.1 and Lemma 2.2. Additionally, we would like to explain a little for the 
last step of (4.11). It follows from Remark 2.1 that

D(t) � D0(t) � ‖z0‖B5/2
2,1

, (4.12)

where the energy inequality (1.17) in Theorem 1.2 was used.
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By choosing α = 2, r = s = 1 and � = 3/2 in Corollary 1.1, I2H2 is proceeded as

J2H2 =
t∫

t/2

∑
q≥q0

‖|ξ|̂̇ΔqQe−
1
2 c1η0(ξ)(t−τ)‖2

L2dτ

≤
t∫

t/2

∑
q≥q0

22q( 3
2+1)‖Δ̇qQ‖2

L1(1 + t− τ)− 3
2+3(1− 1

2 )dτ

=
t∫

t/2

‖Q(τ)‖2
Ḃ

5/2
1,2

dτ. (4.13)

Recalling Q(z) = O(|z⊥|2), it follows from Proposition 2.2 that

‖Q(z)‖
Ḃ

5/2
1,2

≤ ‖Q(z)‖
Ḃ

5/2
1,1

� ‖z⊥‖L2‖z⊥‖
Ḃ

5/2
2,1

. (4.14)

Together with (4.13)–(4.14), we are led to

J2H2 ≤
t∫

t/2

‖z⊥(τ)‖2
L2‖z⊥(τ)‖2

Ḃ
5/2
2,1

dτ

� N(t)2
t∫

t/2

(1 + τ)− 3
2 ‖z⊥(τ)‖2

Ḃ
5/2
2,1

dτ

� N(t)2 sup
t/2≤τ≤t

{
(1 + τ)− 3

2

} t∫
t/2

‖(ρ, υ)‖2
B

5/2
2,1

dτ

� (1 + t)− 3
2N(t)2D(t)2. (4.15)

Hence, combine (4.11) and (4.15) to get

J2H � (1 + t)− 3
2 ‖z0‖4

B
5/2
2,1

+ (1 + t)− 3
2N(t)2D(t)2. (4.16)

Furthermore, it follows from (4.10) and (4.16) that

J2 � (1 + t)− 3
2 ‖z0‖4

B
5/2
2,1

+ (1 + t)− 3
2N(t)2D(t)2 + N(t)4(1 + t)− 5

2 . (4.17)

For J3, we can perform the similar decay estimates as J2. Firstly, we write

J3 =
t∫

0

( ∑
q<q0

+
∑
q≥q0

)(
· · ·

)
� J3L + J3H . (4.18)

Note that R(z) = O(ρ|E| + |υ||h|), by taking α = 2, s = 0 and 	 = 3/2 in Corollary 1.1, we obtain
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J3L =
t∫

0

(1 + t− τ)− 3
2 ‖R(τ)‖2

Ḃ
−3/2
2,∞

dτ

≤
t∫

0

(1 + t− τ)− 3
2 ‖R(τ)‖2

L1dτ

≤
t∫

0

(1 + t− τ)− 3
2 ‖z(τ)‖4

L2dτ

� N(t)4
t∫

0

(1 + t− τ)− 3
2 (1 + τ)−3dτ

= N(t)4(1 + t)− 3
2 , (4.19)

where Lemma 2.3 was well used. For the high-frequency part, we separate it into two parts

J3H =
( t/2∫

0

+
t∫

t/2

)(
· · ·

)
� J3H1 + J3H2.

For J3H1, taking r = α = 2, s = 0 and � = 3/2 in Corollary 1.1 gives

J3H1 �
t/2∫
0

(1 + t− τ)− 3
2 ‖R(τ)‖2

Ḃ
3/2
2,2

dτ. (4.20)

It follows from Lemma 2.1 and Proposition 2.1 that

‖R‖
Ḃ

3/2
2,2

≤ ‖R‖
Ḃ

3/2
2,1

� ‖(	, υ)‖L∞

(
‖E‖

Ḃ
3/2
2,1

+ ‖∇h‖
Ḃ

1/2
2,1

)
+ ‖(h,E)‖L∞‖(	, υ)‖

Ḃ
3/2
2,1

� ‖z‖L∞

(
‖(	, υ,E)‖

Ḃ
3/2
2,1

+ ‖∇h‖
Ḃ

1/2
2,1

)
. (4.21)

Therefore, substituting (4.21) into (4.20) gives

J3H1 �
t/2∫
0

(1 + t− τ)− 3
2 ‖z(τ)‖2

L∞

(
‖(	, υ,E)‖

Ḃ
3/2
2,1

+ ‖∇h‖
Ḃ

1/2
2,1

)2
dτ

� sup
0≤τ≤t/2

{
(1 + t− τ)− 3

2 ‖z(τ)‖2
L∞

}

×
t/2∫
0

(
‖(	, υ)‖2

B
5/2
2,1

+ ‖E‖2
B

3/2
2,1

+ ‖∇h‖2
B

1/2
2,1

)
dτ

� (1 + t)− 3
2 ‖z0‖2

B
5/2
2,1

D(t)2

� (1 + t)− 3
2 ‖z0‖2

B
5/2
2,1

, (4.22)

where we have used Lemma 2.2 and (4.12).
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On the other hand, by taking α = 2, r = 1, s = 0 and � = 3/2 in Corollary 1.1, we arrive at

J3H2 =
t∫

t/2

∑
q≥q0

23q‖Δ̇qR(τ)‖2
L1dτ

�
t∫

t/2

‖R(τ)‖2
Ḃ

3/2
1,2

dτ, (4.23)

where Lemma 2.1, Lemma 2.2 and Proposition 2.2 enable us to obtain

‖R‖
Ḃ

3/2
1,2

≤ ‖R‖
Ḃ

3/2
1,1

� ‖(	, υ)‖L2

(
‖E‖

Ḃ
3/2
2,1

+ ‖∇h‖
Ḃ

1/2
2,1

)
+ ‖(h,E)‖L2‖(	, υ)‖

Ḃ
3/2
2,1

� ‖z‖L2

(
‖(	, υ,E)‖

Ḃ
3/2
2,1

+ ‖∇h‖
Ḃ

1/2
2,1

). (4.24)

Together with (4.23)–(4.24), we are led to

J3H2 �
t∫

t/2

‖z(τ)‖2
L2

(
‖(	, υ,E)‖

Ḃ
3/2
2,1

+ ‖∇h‖
Ḃ

1/2
2,1

)2
dτ

� N(t)2
t∫

t/2

(1 + τ)− 3
2

(
‖(	, υ)‖2

B
5/2
2,1

+ ‖E‖2
B

3/2
2,1

+ ‖∇h‖2
B

1/2
2,1

)
dτ

� N(t)2 sup
t/2≤τ≤t

{
(1 + τ)− 3

2

}
D(t)2

� (1 + t)− 3
2N(t)2D(t)2. (4.25)

Then, it follows from inequalities (4.19), (4.22) and (4.25) that

J3 � (1 + t)− 3
2 ‖z0‖2

B
5/2
2,1

+ (1 + t)− 3
2N(t)2D(t)2 + (1 + t)−3N(t)4. (4.26)

Finally, combine (4.8), (4.17) and (4.26) to obtain

‖z‖2
L2 � (1 + t)− 3

2 ‖z0‖2
B

5/2
2,1 ∩Ḃ

− 3
2

2,∞

+ (1 + t)− 3
2N(t)2D(t)2 + (1 + t)−3N(t)4, (4.27)

where we have used the smallness of ‖z0‖B5/2
2,1

. This leads to the desired inequality (4.3). �
Proof of Theorem 1.3. Note that (4.12), we arrive at

D(t) � ‖z0‖B5/2
2,1

� I1. (4.28)

Then the inequality (4.3) can be solved as N(t) � I1 by the standard argument, provided that I1 is 
sufficiently small. Consequently, the desired decay estimate
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‖w − w∞‖L2 � I1(1 + t)− 3
4 (4.29)

follows immediately. Hence, the proof of Theorem 1.3 is complete. �
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