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Abstract

The nonlocal Fokker-Planck equations for a class of stochastic differential
equations with non-Gaussian α−stable Lévy motion in Euclidean space are
studied. The existence and uniqueness of weak solution are obtained with
rough drift. The solution is shown to be smooth on spatial variable if all
derivatives of the drift are bounded. Moreover, the solution is jointly smooth
on spatial and time variable if we assume further that the drift grows like a
power of logarithm function at infinity.
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1. Introduction

In this work, we consider the following nonlocal Fokker-Planck (NFP)
equation defined on Rn{

ut + Λαu+∇ · (a(x)u) = 0,
u(0, x) = u0(x),

(1.1)
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where a : Rn �→ Rn is a time independent function. The fractional Laplacian
Λα, α ∈ (0, 2), is defined by

Λαf(x) = cα,nP.V.

∫
Rn

f(x)− f(y)

|x− y|n+α
dy, (1.2)

where cα,n is a constant depending on n, α.
The NFP equation has attracted many people’s attention due to following

reasons. First of all, the probability density function of anomalous diffusion
in a given position can be affected by distant points in space. In this case,
Eq.(1.1) is more appropriate than the usual Fokker-Planck equation, see e.g.
[2, 3, 11]. Moreover, since Eq.(1.1) can be regraded as a linearized Quasi-
geostrophic (QG) equation, the study of (1.1) will help us understand the
evolution of QG [10, 12]. Finally, Eq. (1.1) is connected with a stochastic

differential equation with a random source denoted by X̂t and a drift term
given by a deterministic function a(x):

dXt = a(Xt)dt+ dX̂t, (1.3)

where X̂t is the α−stable Lévy process (non-Gaussian process), and the so-
lution of (1.1) is the probability density of Xt. For more background of
non-Gaussian process, we refer the readers to [6, 15].

The existence and regularity of solutions for (1.1) with bounded a(x)
were studied in [5, 9]. The heat kernel estimate of the semigroup generated
by the operator Λα +∇ · (a ·) was obtained in [1, 16] if a(x) belongs to some
Kato class. In particular, the drift a(x) is necessary to satisfy that

sup
x∈Rn

∫
B(x,1)

|a(x)|dx < ∞, (1.4)

where B(x, r) denotes the ball centered at x with radius r. In other words,
the average on a unit ball does not grow at infinity.

Recently, the solution of Eq.(1.1) with Ornstein-Uhlenbeck (OU) drift
a(x) = x was shown to be smooth in [17]. Note that the OU drift does not
satisfy (1.4). Motivated by this work, we are interested in the well posedness
and smoothing effect of (1.1) with general growing drift on the whole space
Rn. In section 2, we establish the existence and uniqueness of weak solution
of (1.1) in L2 under some regularity assumptions on a(x). In section 3, we
first show that the unique solution is smooth on x if the derivatives of a(x)
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of arbitrarily order are bounded. It should be noted that a(x) allows to be
growing like |x| at infinity. Second, the solution is jointly smooth on x and
t if we assume further that a(x) grows at most like a power of logarithm
function at infinity.

Before leaving this section, we say a few words about the notations. We
use Hs, Lp to denote the usual Sobolev spaces on Rn. The domain Rn

is also omitted for other function spaces in some places. We denote by
〈x〉 = (1 + |x|2)1/2. A � B means A ≤ CB for some absolute constant C,
A ∼ B means A � B and B � A, and A � B means A/B is very big, say
A/B ≥ 1000.

2. Well posedness

This section is devoted to the existence of weak solutions of (1.1) with
general potential function a(x). We assume that a(x) = (a1, a2, · · · , an)
satisfy the following conditions:

(A) aj ∈ L1
loc, ∂xi

aj ∈ Lp
u, p > max{1, n/α}, 1 ≤ i, j ≤ n.

Here Lp
u, 1 ≤ p < ∞, denotes the uniformly local Lp−integrable space con-

sisting of functions such that

‖f‖Lp
u
:= sup

x∈Rn

(∫
|x−y|<1

|f(y)|pdy
)1/p

< ∞.

Let 0 ≤ ϕ ≤ 1 be a smooth cutoff function such that ϕ = 1 if |x| ≤ 1 and
ϕ = 0 if |x| ≥ 2. Set ϕj = ϕ(x − j), j ∈ Z

n. Then it’s easy to see that Lp
u

has the following equivalent norm

‖f‖Lp
u
= sup

j∈Zn

‖ϕjf‖Lp .

For ε > 0, let ηε = ε−nϕ(x
ε
)/‖ϕ‖L1 . Then

∫
ηεdx = 1, ε > 0. The proof of

the following lemma is standard, we give it for completeness.

Lemma 2.1. If f ∈ Lp
u, then

lim
ε→0

‖ηε ∗ f − f‖Lp
u
= 0.
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Proof. The lemma follows if one can show

lim
ε→0

sup
j∈Zn

‖ϕj(x)(ηε ∗ f − f)‖Lp = 0. (2.5)

It’s well known that ηε is an approximate unity in Lp, note that ϕjf are
uniformly bounded in Lp we have

lim
ε→0

sup
j∈Zn

‖ηε ∗ (ϕjf)− ϕjf‖Lp = 0.

Now (2.5) is reduced to proving

lim
ε→0

sup
j∈Zn

‖ϕj(x)(ηε ∗ f)− ηε ∗ (ϕj(x)f)‖Lp = 0. (2.6)

In fact, since the support of ηε is contained in {x : |x| ≤ 2ε}, we have

ϕj(x)(ηε ∗ f)− ηε ∗ (ϕj(x)f)

=

∫
Rn

(ϕj(x)− ϕj(y))ηε(x− y)χ|y−j|≤2+2ε(y)f(y)dy, (2.7)

where χA is the characteristic function of the set A. Since ϕj is smooth and
ϕ′
j is bounded, we find

|(2.7)| �
∫
Rn

|∇ϕj|L∞ |x− y|ηε(x− y)χ|y−j|≤2+2ε(y)|f(y)|dy
� εηε ∗ (χ|·−j|≤2+2ε|f |).

Using Young’s inequality we obtain

‖ϕj(x)(ηε ∗ f)− ηε ∗ (ϕj(x)f)‖Lp � ε‖ηε‖L1‖χ|·−j|≤2+2ε|f |‖Lp � ε‖f‖Lp
u
→ 0

as ε goes to 0. Hence (2.6) follows, and the proof is complete.

From Lemma 2.1, we find smooth functions are dense in Lp
u. As an

application, we prove that, under the assumption (A), aj is a tempered dis-
tribution.

Lemma 2.2. Assume that (A) holds. Then for j = 1, 2, · · · , and R > 0

‖aj‖Lp(|x|≤R) � 〈R〉1+n
p .
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Proof. Set aεj = ηε ∗ aj, then aεj is smooth. Let |x0| ≤ 1, |x| ≤ R > 0, by
Taylor’s formulae, we have

aεj(x) = aεj(x0) + (x− x0) · ∇aεj(x0 + θ(x− x0))

for some θ ∈ (0, 1). Taking Lp(|x| ≤ R) norm with respect to x on both side
implies that

‖aεj(x)‖Lp(|x|≤R) � |aεj(x0)|R
n
p + 〈R〉‖∇aεj‖Lp(|x|≤R+1).

Integrating on {x0 : |x0| ≤ 1} with respect to x0, using Lemma 2.1 yield that

‖aεj(x)‖Lp(|x|≤R) � |aεj|L1(|x|≤1)R
n
p + 〈R〉‖ηε ∗ ∇aj‖Lp(|x|≤R+1)

� R
n
p + 〈R〉‖∇aj‖Lp(|x|≤R+1) � 〈R〉1+n

p

for ε > 0 small enough. Since aεj → aj in Lp(|x| ≤ R), it follows from Fatou’s
lemma that

‖aj‖Lp(|x|≤R) ≤ lim
ε→0

‖aεj‖Lp(|x|≤R) � 〈R〉1+n
p

as desired.

Lemma 2.3. Assume that (A) holds. Then for j = 1, 2, · · · , n

‖〈x〉−(n+1)aj‖L2 � 1.

Proof. Since p > 1, it follows from Lemma 2.2 that for j = 1, 2, · · · ,

‖aj‖Lp � 〈R〉n+1.

Note the implicit constant is independent of R, we find

‖〈x〉−(n+1)aj‖Lp � 1.

Also, thanks to the fact ∂iaj ∈ Lp
u, it is easy to see

‖〈x〉−(n+1)∂iaj‖Lp �
∑
k∈Zn

〈k〉−(n+1)‖∂iaj‖Lp
u
� 1.

Hence
‖〈x〉−(n+1)aj‖H1,p � 1.
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The lemma follows from Sobolev embedding theorems if we use the fact that
p > 1 when n ≤ 2 and p > n

α
, 0 < α < 2 when n ≥ 3.

It follows from Lemma 2.2 that aj ∈ L2
loc. Under the assumption (A), if

u ∈ L2
loc((0, T )×Rn) then aju ∈ L1

loc((0, T )×Rn), j = 1, 2, · · · . Thus we can
understand (1.1) in distribution sense. This leads to the following definition.

Definition 2.1. Assume that (A) holds. A function u ∈ L2
loc((0, T ) × Rn)

is said to be a weak solution of (1.1) on ((0, T )×Rn) if

ut + Λαu+∇ · (a(x)u) = 0

holds in D ′((0, T )×Rn).
Furthermore, if T can be arbitrary large, we say the weak solution is

global.

We shall construct a weak solution by the Galerkin method. Let β =
(β1, β2, · · · , βn) be a mult-index of nonnegative integers and

eβ(x1, x2, · · · , xn) :=
n∏

j=1

Hβj
(xj)e

− 1
2
(x2

1+x2
2+···+x2

n),

where Hβj
are Hermite polynomials of degree βj. Then eβ form an orthonor-

mal basis of L2. Moreover, it is easy to check that the eβ are eigenvectors of
the operator −� + |x|2 with eigenvalues 2|β| + n, |β| = β1 + β2 + · · · + βn.
Denote the eigenvalues by 0 < λ1 ≤ λ2 ≤ · · · ≤ λj ≤ · · · → ∞, and the
corresponding eigenvectors by ej satisfying

(−�+ |x|2)ej = λjej, j = 1, 2, · · · .

Then {ej(x)}∞j=1 form an orthonormal basis of L2 and ej are Schwartz func-
tions. Let PN be the orthogonal projection in L2 onto the span of the basis
ej(x) with 1 ≤ j ≤ N .

Lemma 2.4. If ϕ ∈ S , then for any k > 0 and mult-index β of nonnegative
integers

lim
N→∞

‖〈x〉kDβ(PNϕ− ϕ)‖L2 = 0.
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Proof. Let m = [k] + |β|+1. It is easy to check that 〈x〉kξβ/(|ξ|2+ |x|2)m
is a pseudo-differential operator of order 0, thus 〈x〉kDβ(−� + |x|2)−m is
bounded from L2 to L2. Then the lemma follows if one can show

lim
N→∞

‖(−�+ |x|2)m(PNϕ− ϕ)‖L2 = 0.

In fact, since (−� + |x|2)m commutates with PN and (−� + |x|2)m+1ϕ is
bounded in L2, we find

‖(−�+ |x|2)m(PNϕ− ϕ)‖L2 ≤ 1

λN+1

‖(−�+ |x|2)m+1ϕ‖L2 � 1

λN+1

→ 0

as N goes to infinity.

The assumption (A) implies that diva ∈ Lp
u, p > max{1, n

α
}. This enables

us to control diva by Λα in the sense of quadratic form. In fact, by Theorem
4.2 in Zheng [18], for any ε > 0, there exists cε such that∣∣∣∣∫

Rn

(diva)|f |2dx
∣∣∣∣ ≤ ε

∫
Rn

|Λα
2 f |2dx+ cε

∫
Rn

|f |2dx (2.8)

for all f ∈ H
α
2 . Now we state the main result in this section.

Theorem 2.2 (Existence and uniqueness). Assume that (A) holds, u0 ∈
L2. Then problem (1.1) has a unique global weak solution u ∈ L∞(0,∞;L2)⋂
L2(0,∞;H

α
2 ).

Proof. For R � 1, we choose a smooth function χR such that

χR(x) =

{
1, |x| ≤ R,

0, |x| ≥ R + 1,

and |χ′
R| ≤ C.

Now we approximate problem (1.1) by the following ODE system

∂tuN,R+PN(ΛαuN,R)+PN(∇· (aχRuN,R)) = 0, uN,R(0, x) = PNu0. (2.9)

Denote by Ff = PN(Λαf) + PN(∇ · (aχRf)), f ∈ L2. Then we claim that

‖Ff‖L2 � C(N,R)‖f‖L2 .
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In fact, on one hand

‖PN(Λαf)‖L2 �
N∑
j=1

|(Λαf, ej)| � ‖f‖L2

N∑
j=1

‖Λαej‖L2 �N ‖f‖L2 .

On the other hand, by Lemma 2.3 we have aχR ∈ L2, thus

‖PN(∇ · (aχRf))‖L2 �
N∑
j=1

‖aχR · ∇ej‖L2‖f‖L2 �N,R ‖f‖L2 .

Thus F maps L2 into L2. Since F is linear, F is Lipschitz continuous on
L2. Thanks to the Cauchy-Lipschitz theorem, for any u0 ∈ L2, there exists
a unique solution uN,R ∈ C([0,∞), L2) to problem (2.9).

Now we give some uniform bounds of uN,R. From the equation (2.9),
uN,R = PNuN,R, thus uN,R ∈ S . Multiplying (2.9) with uN,R and integrating
yield that

1

2

d

dt

∫
Rn

|uN,R|2dx+

∫
Rn

|Λα
2 uN,R|2dx+

∫
Rn

(∇ · (aχRuN,R))uN,Rdx = 0.

(2.10)
Using integration by parts and (2.8) we get∣∣∣∣∫

Rn

(∇ · (aχRuN,R))uN,Rdx

∣∣∣∣ ≤ ∣∣∣∣∫
Rn

diva|uN,R|2dx
∣∣∣∣

≤ 1

2

∫
Rn

|Λα
2 uN,R|2dx+ c

∫
Rn

|uN,R|2dx.

Then (2.10) becomes

d

dt

∫
Rn

|uN,R|2dx+

∫
Rn

|Λα
2 uN,R|2dx �

∫
Rn

|uN,R|2dx.

By Gronwall’s inequality, we obtain∫
Rn

|uN,R(t)|2dx ≤ eCt

∫
Rn

|u0|2dx,

and then ∫ t

0

∫
Rn

|Λα
2 uN,R|2dxdt ≤ 2eCt

∫
Rn

|u0|2dx.
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Thus we conclude that for T > 0 arbitrary, uN,R is bounded independent of
N and R in L∞(0, T ;L2) and L2(0, T ;H

α
2 ). By weak compactness we find

a subsequence denoted as um =: um,m and u ∈ L∞(0, T ;L2)
⋂
L2(0, T ;H

α
2 )

such that
um → u in L∞(0, T ;L2) weak-star,

um → u in L2(0, T ;H
α
2 ) weakly.

It follows that for any ϕ(t, x) ∈ C∞
0 ((0, T )×Rn)

〈∂tum, ϕ〉 → 〈∂tu, ϕ〉

and
〈PmΛαum, ϕ〉 → 〈Λαu, ϕ〉

as m → ∞. Combining this and Lemma 2.5, we can pass the limit to obtain

〈ut, ϕ〉+ 〈Λαu, ϕ〉+ 〈∇ · (au), ϕ〉 = 0

for all ϕ ∈ C∞
0 ((0, T ) × Rn). Thus the limit u is a weak solution of (1.1).

Since for any T > 0, u is bounded in L∞(0, T ;L2), the solution is global.
Note that if u0 = 0 then uN,R = 0, and of course the limit u must be zero.
This gives the uniqueness of the weak solution as problem (1.1) is linear.

Lemma 2.5. Let am, um and ϕ be the same as that in the proof of Theorem
2.2. Then

lim
m→∞

〈Pm(∇ · (aχmum)), ϕ〉 = 〈∇ · (au)), ϕ〉.

Proof. Using integration by parts, it suffices to show

lim
m→∞

〈ajχmum, ∂jP
mϕ〉 = 〈au, ∂jϕ〉

holds for j = 1, 2, · · · . Now write

〈ajχmum, ∂jP
mϕ〉 − 〈au, ∂jϕ〉 = 〈ajχmum, ∂j(P

mϕ− ϕ)〉+ 〈aj(χm − 1)um, ∂jϕ〉
+ 〈aj(um − u), ∂jϕ〉

= I1 + I2 + I3.
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First, note that um is bounded in L∞(0, T ;L2), utilizing Lemma 2.3 and
Sobolev embedding Hn ↪→ L∞, we obtain

|I1| ≤ ‖〈x〉−(n+1)ajχmum‖L2(0,T ;L1)‖〈x〉n+1∂j(P
mϕ− ϕ)‖L2(0,T ;L∞)

≤ ‖〈x〉−(n+1)ajχm‖L∞(0,T ;L2)‖um‖L2(0,T ;L2)‖〈x〉n+1∂j(P
mϕ− ϕ)‖L2(0,T ;Hn)

�
∑

0≤k,|β|≤n+1

‖〈x〉kDβ(Pmϕ− ϕ)‖L2(0,T ;L2)

→ 0

as m → ∞, we used Lemma 2.4 in the last step. Similarly,

|I2| � ‖〈x〉−(n+1)aj(χm − 1)‖L2‖um‖L2(0,T ;L2)‖〈x〉n+1∂jϕ‖L2(0,T ;Hn)

� ‖〈x〉−(n+1)aj(χm − 1)‖L2 → 0

as m → ∞. Finally, since ajϕ is bounded in L2(0, T ;L2) and um → u weakly
in L2(0, T ;L2), thus

lim
m→∞

I3 = 0.

This completes the proof.

3. Regularity of solutions

In this section, we shall show the smoothing effect of the evolution (1.1).
We split the discussion into two subsections for clarity.

3.1. Smoothness on spatial variable x

The main result in this subsection is the following theorem. It says that
if the drift vector a is smooth with bounded arbitrary order derivatives, then
the solution is smooth on x. It should be noted that the vector a allows to
be unbounded. In particular, if a = x we recover the result in [17].

Theorem 3.1 (Smoothing effect on x). Assume that u0 ∈ L2, and for
all mult-index β of nonnegative integers with |β| �= 0,

‖Dβaj‖L∞ ≤ Cβ, j = 1, 2, · · · .

Then the unique solution of (1.1) u(t) ∈ C∞(Rn) for all t > 0.
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To prove this result, we first recall the definitions of Littlewood-Paley
decomposition operator.

Let ψ : Rn �→ [0, 1] be a smooth radial cut-off function, say

ψ(ξ) =

⎧⎪⎨⎪⎩
1, |ξ| ≤ 1,

smooth, 1 < |ξ| < 2,

0, |ξ| ≥ 2.

(3.11)

Denote by ϕ(ξ) = ψ(ξ)− ψ(2ξ) and

ϕj(ξ) = ϕ(2−jξ), j = 1, 2, · · · ,

ϕ0(ξ) = 1−
∞∑
j=1

ϕj(ξ) = ψ(ξ).

One can easily check that suppϕj ⊂ {ξ ∈ Rn : 2j−1 ≤ |ξ| ≤ 2j+1} and
supp ϕ0 ⊂ {ξ ∈ Rn : |ξ| ≤ 2}. The frequency localization operators {�j}∞j=0

and Sj are defined by

�jf = F−1ϕjFf, j = 0, 1, · · · ,
Sjf =

∑
0≤k≤j

�kf.

Acting �j on both sides of (1.1) gives

∂t�ju+ Λα�ju+∇ · �j(a(x)u) = 0. (3.12)

Similar to [4], we use Bony’s decomposition to write

�j(au) =
∑

|k−j|≤2

[�j, Sk−1a ]�ku+
∑

|k−j|≤2

Sja�k�ju

+
∑

|k−j|≤2

((Sk−1a − Sja)�k�ju+
∑

|k−j|≤2

�j(�kaSk−1u)

+
∑

k≥j−1

∑
|k−l|≤1

�j(�ku�la).

Multiplying (3.12) with 2�ju, using integration by parts, Plancherel the-
orem and the fact

∑
|k−j|≤2 �k�j = �j implies that

d

dt
‖�ju‖2L2 + c2jα‖�ju‖2L2 ≤ I1 + I2 + I3 + I4 + I5,

11



where

I1 = 2
∑

|k−j|≤2

∫
[�j, Sk−1a ]�ku · ∇�ju,

I2 = 2

∫
Sja�ju · ∇�ju,

I3 = 2

∫ ∑
|k−j|≤2

(Sk−1a − Sja)�k�ju · ∇�ju,

I4 = 2

∫ ∑
|k−j|≤2

�j(�kaSk−1u) · ∇�ju,

I5 = 2

∫ ∑
k≥j−1

∑
|k−l|≤1

�j(�ku�la) · ∇�ju.

In what follows, we bound I1, · · · , I5 individually. For I1, by Hölder inequal-
ity,

|I1| � 2j‖�ju‖L2

∑
|k−j|≤2

‖[�j, Sk−1a ]�ku‖L2 .

It’s easy to check that

[�j, Sk−1a ]�ku =

∫
(F−1ϕj)(x− y)[Sk−1a(y)− Sk−1a(x)]�ku(y)dy.

Note that
‖Sk−1a(y)− Sk−1a(x)‖L∞ � ‖∇a‖L∞ |x− y|.

Since the converse Fourier transform of ϕj is 2
jnF−1ϕ(2j·), we use Young’s

inequality to get that

‖[�j, Sk−1a ]�ku‖L2 � ‖a‖L∞‖2jnF−1ϕ(2jx)|x| ∗ �ku‖L2

� 2−j‖�ku‖L2 .

Hence
|I1| � ‖�ju‖L2

∑
|k−j|≤2

‖�ku‖L2 .

For I2, using integration by parts we have

|I2| � ‖�ju‖2L2 .
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For I3, by Hölder inequality,

|I3| �
∑

|k−j|≤2

‖Sk−1a − Sja‖L∞‖�k�ju‖L2‖∇�ju‖L2

� 2j
∑

j−2≤k≤j+1

‖�ka‖L∞‖�ju‖2L2 .

Since arbitrary order derivatives of a is bounded, by [7, Theorem 6.3.6], for
any given K > 0,

‖�ja‖L∞ � 2−Kj. (3.13)

Thus
|I3| � 2−(K−1)j‖�ju‖2L2 .

Similarly, using (3.13), we obtain

|I4| � 2j
∑

|k−j|≤2

‖�ka‖L2‖Sk−1u‖L2‖�ju‖L2

� 2−(K−1)j‖u‖L2‖�ju‖L2 ,

and

|I5| �
∑

k≥j−1

∑
|k−l|≤1

‖�la‖L∞‖�ku‖L22j‖�ju‖L2

� 2−(K−1)j‖u‖L2‖�ju‖L2 .

Hence

d

dt
‖�ju‖2L2+c2jα‖�ju‖2L2 � ‖�ju‖L2

∑
|k−j|≤2

‖�ku‖L2+2−(K−1)j‖u‖L2‖�ju‖L2 .

Applying Hölder inequality to the terms on the right hand side, we have

‖�ju‖L2

∑
|k−j|≤2

‖�ku‖L2 ≤ c

4
2jα‖�ju‖2L2 + C ′2−jα

∑
|k−j|≤2

‖�ku‖2L2

and

2−(K−1)j‖u‖L2‖�ju‖L2 ≤ c

4
2jα‖�ju‖2L2 + C ′′2−(K−1+α)j‖u‖2L2 .
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Combining these inequalities and the fact ‖u(t)‖L2 � ect‖u0‖L2 implies that

d

dt
‖�ju‖2L2 +

c

2
2jα‖�ju‖2L2 � 2−jα

∑
|k−j|≤2

‖�ku‖2L2 + 2−(K−1+α)ject‖u0‖2L2 .

(3.14)
Based on (3.14), we have the following lemma.

Lemma 3.1. Assume that u is the solution of (1.1) with initial data u0 ∈ L2.
Then for any m ≥ 0, ε > 0

‖u(t)‖Hm−ε � t−mect, t > 0.

Proof. We first note that the lemma follows from the claim:

‖�ju(t)‖L2 � t−mect2−mjα

for all t > 0 and nonnegative integer m, the implicit constant is independent
of j. In fact, for any ε > 0

‖�ju(t)‖Hm−ε �
∑
j≥0

2(m−ε)j‖�ju‖L2 �
∑
j≥0

2−εjt−mect � t−mect.

Now we shall prove the claim by induction argument. By Theorem 2.2,
we find the claim holds in case m = 0. Now let 0 < t0 < t. Using Gronwall
lemma to (3.14) on the interval [t0, t] gives that

‖�ju(t)‖2L2 � e−
c2jα(t−t0)

2 ‖�ju(t0)‖2L2 +

∫ t

t0

e−
c2jα(t−τ)

2

[
2−jα

∑
|k−j|≤2

‖�ku‖2L2

+ 2−(K−1+α)ject‖u0‖2L2

]
dτ.

For t > t0, by Taylor formula, it’s easy to see

e−
c2jα(t−t0)

2 � (t− t0)
−22−2jα.

Thus, by the induction hypothesis of ‖�ju(t)‖L2 ,

‖�ju(t)‖2L2 � (t− t0)
−2t−2m

0 e2ct2−2(m+1)jα

+

∫ t

t0

e−
c2jα(t−τ)

2

[ ∑
|k−j|≤2

τ−2me2cτ2−(2m+1)kα + 2−(K−1+α)je2ct‖u0‖2L2

]
dτ.

(3.15)
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The integral on the right hand side of (3.15) is bounded by

�
∫ t

t0

e−
c2jα(t−τ)

2

[
t−2m
0 e2ct2−(2m+1)jα + 2−(K−1+α)je2ct‖u0‖2L2

]
dτ

� t−2m
0 e2ct2−(2m+2)jα + 2−(K−1+2α)je2ct‖u0‖2L2 .

Inserting this into (3.15) and setting t0 = t/2 yields

‖�ju(t)‖L2 � t−(m+1)ect2−(m+1)jα + t−mect2−(m+1)jα + 2−(K−1+2α)j/2ect‖u0‖L2

� t−(m+1)ect2−(m+1)jα[1 + t2 + tm+12−j(K−1
2

−m)‖u0‖L2 ].

Let K = 2m+ 2, choose N0 = 2 ln−1 2 ln ‖u0‖L2 such that

2−N0(
K−1

2
−m)‖u0‖L2 = 1.

Then for j ≥ N0, we obtain

‖�ju(t)‖L2 � t−(m+1)ec
′t2−(m+1)jα,

with some different constant c′ > c. For j < N0,

‖�ju(t)‖L2 � ‖u(t)‖L2 � ect � t−(m+1)ec
′t2−(m+1)jα,

where the implicit constant depends on ‖u0‖L2 , and is independent of j. This
completes the proof.

Proof of Theorem 3.1. It follows from Lemma 3.1 and Sobolev em-
bedding theorems.

3.2. Smoothness on time variable t

In this subsection we shall show the solution is smooth with respect to
time t. To prove this result, a extra growth restriction on a is needed com-
pared to the assumptions of Theorem 3.1. The main reason is that we benefit
less from the cancelation property of ∇ · (au) now while which is very im-
portant in the proof of Theorem 3.1. The main result in this subsection is
the following

Theorem 3.2 (Smoothing effect jointly on x, t). Under the assumptions
of Theorem 3.1, we assume further that

|a| � lnγ(2 + |x|2)
for some γ > 0, then the solution of (1.1) u ∈ C∞((0,∞)×Rn).
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Remrak 3.1. Theorem 3.2 holds for smaller γ. In particular, if γ ≤ 0,
Theorem 3.2 is valid.

To prove the theorem, we first recall the definition of Muckenhoupt weights.

Definition 3.3. Let 1 < p < ∞ and a weight w(x) be a locally integrable
function. We say w is an Ap weight, namely w ∈ Ap, if

sup
B Balls in Rn

1

|B|
∫
B

w(x)dx ·
[

1

|B|
∫
B

w(x)−p′/pdx

]p/p′
< ∞.

The importance of Ap can be seen from the following proposition, see e.g.
the Corollary in [13, p.205] and Proposition 2 in [13, p.245].

Proposition 3.1. Let w ∈ Ap, 1 < p < ∞, m(ξ) ∈ C∞(Rn\{0}) be a
bounded function such that for β

|Dβm| ≤ Cβ|ξ|−|β|,

then the Fourier multiplier m(D) is bounded from Lp(wdx) to Lp(wdx).

In what follows, we denote by

φγ = lnγ(2 + |x|2).
Lemma 3.2. For all γ ∈ R, φγ ∈ A2.

Proof. It’s easy to see that w ∈ A2 if and only w−1 ∈ A2. So we assume
γ > 0 now. Let B(x0, r) = {x : |x− x0| ≤ r}, it suffices to show

sup
x0∈Rn,r>0

r−2n

∫
B(x0,r)

φγ(x)dx ·
∫
B(x0,r)

φ−1
γ (x)dx < ∞. (3.16)

We divide the proof into two cases. If |x0| > 3r, then |x| ∼ |x0| for all
x ∈ B(x0, r). Then

LHS(3.16) � sup
x0∈Rn,r>0

r−2n

∫
B(x0,r)

φγ(x0)dx ·
∫
B(x0,r)

φ−1
γ (x0)dx � 1

as desired. If |x0| ≤ 3r, then B(x0, r) is contained in B(0, 4r). Since φγ is
radial and increasing on |x|, thus

LHS(3.16) � sup
r>0

r−2n

∫
B(0,4r)

φγ(x)dx ·
∫
B(0,4r)

φ−1
γ (x)dx. (3.17)
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Since (3.17) is bounded for r ≤ r0 with some fixed r0, it suffices to show for
r � 1

r−2n

∫
B(0,4r)

φγ(x)dx ·
∫
B(0,4r)

φ−1
γ (x)dx � 1. (3.18)

On one hand, it’s obvious that∫
B(0,4r)

φγ(x)dx � rn lnγ r.

On the other hand, let η > 0, we make the splitting∫
B(0,4r)

φ−1
γ (x)dx =

∫
B(0,η)

φ−1
γ (x)dx+

∫
B(0,4r)\B(0,η)

φ−1
γ (x)dx.

It’s easy to see that ∫
B(0,4r)

φ−1
γ (x)dx � ηn + rn ln−γ η. (3.19)

Minimizing the right hand side of (3.19) with respect to η gives∫
B(0,4r)

φ−1
γ (x)dx � rn ln−γ η(1 +

γ

n
ln−1 η), (3.20)

where
nηn lnγ+1 = γrn.

Note that r � 1, we find η ∼ r. Then (3.20) becomes∫
B(0,4r)

φ−1
γ (x)dx � rn ln−γ r.

Thus (3.18) holds. This completes the proof.

Lemma 3.3. For all γ ∈ R, k ∈ N, it holds that

‖φγΛ
αu‖Hk � ‖φγu‖Hk+α .
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Proof. By Leibniz rule and the fact |Dμφγ| � φγ , the lemma is reduced
to proving

‖φγΛ
αDβu‖L2 � ‖φγu‖Hm+α

for all mult-index |β| ≤ k. It is equivalent to

‖ΛαDβ〈D〉−(k+α)u‖L2(φ2γdx) � ‖u‖L2(φ2γdx). (3.21)

In fact, the symbol of ΛαDβ〈D〉−(k+α) is m(ξ) = ξβ|ξ|α(1 + |ξ|2)−(k+|α|). It’s
easy to check that for all μ

|Dμm(ξ)| � |ξ|−|μ|.

Then (3.21) follows from Lemma 3.2 and Proposition 3.1.

Lemma 3.4. Assume that u is the solution of (1.1) with initial data u0 ∈ L2.
Then for every 0 < t0 < T < ∞, we have

‖φ−kγ∂
k
t u‖L∞([t0,T ];Hm) < ∞

for any integers m, k > 0.

Proof. Let vk = φ−kγ∂
k
t u. Acting ∂

k
t on both sides of (1.1) and multiplying

φ−(k+1)γ give

vk+1 + φ−(k+1)γΛ
α∂k

t u+ φ−(k+1)γ∇(a∂k
t u) = 0.

Thus, for all integers m > 0,

‖vk+1‖Hm � ‖φ−(k+1)γΛ
α∂k

t u‖Hm + ‖φ−(k+1)γ∇(a∂k
t u)‖Hm .

On one hand, it follows from Lemma 3.3 that

‖φ−(k+1)γΛ
α∂k

t u‖Hm � ‖φ−kγΛ
α∂k

t u‖Hm � ‖vk‖Hm+α � ‖vk‖Hm+2 .

On the other hand, we write φ−(k+1)γ∇(a∂k
t u) = ∇(φ−(k+1)γa∂

k
t u)−∇φ−(k+1)γ·

a∂k
t u to obtain

‖φ−(k+1)γ∇(a∂k
t u)‖Hm � ‖φ−γavk)‖Hm+1 + ‖∇φ−(k+1)γ · aφkγvk‖Hm

� ‖vk‖Hm+1 ,
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where in the last step we have used the fact that for all μ,

|Dμφ−γa | � 1, |Dμ∇φ−(k+1)γ · aφkγ| � 1.

Thus, we conclude that

‖vk+1‖Hm � ‖vk‖Hm+2 .

It follows from Theorem 3.1 that v0 ∈ Hm for all m ≥ 0, t > 0. Then an
induction argument implies the desired conclusion.

Proof of Theorem 3.2. It follows from Lemma 3.1 and Lemma 3.4 that
for all 0 < t0 < T < ∞, 0 ≤ m ∈ N, u ∈ Hm((t0, T )×Rn). Then by Sobolev
embedding we find that u ∈ C∞((t0, T ) × Rn). Since t0 can be arbitrarily
small and T can be arbitrarily large, Theorem 3.2 follows.

Remrak 3.2. The well posedness of nonlocal Fokker-Planck equation with
bounded drift on bounded domain is established in [8]. The restriction on
the drift in Theorem 3.2 is relaxed in a more recent work [14].
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Phys. Lett. A 239 (1998) 13–16.

[3] A. Compte, Stochastic foundations of fractional dynamics, Phys. Rev.
E 53 (1996) 4191–4193.

[4] P. Constantin, G. Iyer, J. Wu, Global regularity for a modified critical
dissipative quasi-geostrophic equation, Indiana Univ. Math. J. 57 (2008)
2681–2692.
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