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Let (M, g) be a Kähler manifold whose associated Kähler form ω is integral and let 
(L, h) → (M, ω) be a quantization hermitian line bundle. In this paper we study 
those Kähler manifolds (M, g) admitting a finite TYCZ expansion, namely those 
for which the associated Kempf distortion function Tmg is of the form:

Tmg(p) = fs(p)ms + fs−1(p)ms−1 + · · · + fr(p)mr, fj ∈ C∞(M), s, r ∈ Z.

We show that if the TYCZ expansion is finite then Tmg is indeed a polynomial 
in m of degree n, n = dimC M , and the log-term of the Szegö kernel of the disc 
bundle D ⊂ L∗ vanishes (where L∗ is the dual bundle of L). Moreover, we provide 
a complete classification of the Kähler manifolds admitting finite TYCZ expansion 
either when M is a complex curve or when M is a complex surface with a cscK 
metric which admits a radial Kähler potential.
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1. Introduction

Let M be a (not necessarily compact) n-dimensional complex manifold endowed with a Kähler metric g. 
Assume that there exists a holomorphic line bundle L over M such that c1(L) = [ω], where ω is the Kähler 
form associated to g and c1(L) denotes the first Chern class of L (such an L exists if and only if ω is an 
integral form). Let m ≥ 1 be an integer and let hm be an Hermitian metric on Lm = L⊗m such that its 
Ricci curvature Ric(hm) = mω. Here Ric(hm) is the two–form on M whose local expression is given by

Ric(hm) = − i

2π∂∂̄ log hm(σ(x), σ(x)), (1)

for a trivializing holomorphic section σ : U → Lm \{0}. In the quantum mechanics terminology Lm is called 
the prequantum line bundle, the pair (Lm, hm) is called a geometric quantization of the Kähler manifold 
(M, mω) and � = m−1 plays the role of Planck’s constant (see e.g. [1]). Consider the separable complex 
Hilbert space Hm consisting of global holomorphic sections s of Lm such that

〈s, s〉m =
∫
M

hm(s(p), s(p))ω
n

n! < ∞.

Define the Kempf distortion function,1 namely the smooth function on M defined by:

Tmg(p) =
N(m)∑
j=0

hm(sj(p), sj(p)), (2)

where sj , j = 0, . . . , N(m) (dimHm = N(m) + 1 ≤ ∞) is an orthonormal basis of Hm.
As suggested by the notation this function depends only on the metric mg and not on the orthonormal 

basis chosen. Obviously if M is compact Hm = H0(Lm), where H0(Lm) is the (finite dimensional) space of 
global holomorphic sections of Lm.

By applying the methods developed in [4] and specifically the parametrix for the Szegö kernel, D. Catlin 
[8] and S. Zelditch [30] independently proved that if in the above setting M is compact, there exists a 
complete asymptotic expansion of the Kempf distortion function:

Tmg(p) ∼
∞∑
j=0

aj(p)mn−j , (3)

where a0(p) = 1 and aj(p), j = 1, . . . are smooth functions on M . This means that, for any nonnegative 
integers r, k the following estimate holds:

||Tmg(p) −
k∑

j=0
aj(p)mn−j ||Cr ≤ Ck,rm

n−k−1, (4)

where Ck,r are constant depending on k, r and on the Kähler form ω and || · ||Cr denotes the Cr norm. The 
expansion (3) is called Tian–Yau—Catlin-Zelditch expansion (TYCZ expansion in the sequel). Later on, Z. 
Lu [24], by means of Tian’s peak section method, proved that each of the coefficients aj(p) is a polynomial 
of the curvature and its covariant derivatives at p of the metric g which can be found by finitely many 

1 In the literature the function Tmg was first introduced under the name of η-function by J. Rawnsley in [27], later renamed as 
θ-function in [5] followed by the distortion function of G. R. Kempf [14] and S. Ji [13], for the special case of Abelian varieties 
and of S. Zhang [31] for complex projective varieties.
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algebraic operations. In particular, he computed the first four coefficients. The second and the third two 
are given by (a0 = 1):

{
a1(p) = 1

2 scalg
a2(p) = 1

3Δscalg + 1
24 (|R|2 − 4|Ric|2 + 3scal2g),

(5)

where scalg, Ric, R, are, respectively, the scalar curvature, the Ricci tensor and the Riemann curvature 
tensor of (M, g), in local coordinates. The reader is also referred to [15] and [16] for a recursive formula for 
the coefficients aj ’s and an alternative computation of aj for j ≤ 3 using Calabi’s diastasis function (see 
also [21] for the case of locally Hermitian symmetric spaces). When M is noncompact, there is not a general 
theorem which assures the existence of an asymptotic expansion (3). Observe that in this case we say that 
an asymptotic expansion (3) exists if (4) holds for any compact subset of M . M. Engliš [11] showed that 
a TYCZ expansion exists in the case of strongly pseudoconvex bounded domains in Cn with real analytic 
boundary, and proved that the first four coefficients are the same as those computed by Lu for compact 
manifolds. The reader is referred to [26] for the description of some curvature conditions which assure the 
existence of a TYCZ expansion in the noncompact case (see also [12] and [23] for some explicit examples).

Consider the negative Hermitian line bundle (L∗, h∗) over (M, g) dual to (L, h) and let D ⊂ L∗ be the 
unit disk bundle over M , i.e.

D = {v ∈ L∗ | ρ(v) := 1 − h∗(v, v) > 0}. (6)

It is not hard to see (and well-known) that the condition Ric(h) = ω implies that D is a strongly pseudo-
convex domain in L∗ with smooth boundary X = ∂D = {v ∈ L∗ | ρ(v) = 0}. X will be called the unit circle 
bundle. Let S(v) be the Szegö kernel of D (see Section 2 below). By a fundamental result due to Boutet de 
Monvel and Sjöstrand [4]2 there exist a, b ∈ C∞(D̄), a �= 0 on X such that:

S(v) = a(v)ρ(v)−n−1 + b(v) log ρ(v), v ∈ D. (7)

The function b(v) log ρ(v) in (7) is called the logarithmic term (log-term from now on) of the Szegö kernel. 
One says that the log-term of the Szegö kernel of the disk bundle D ⊂ L∗ vanishes if b = 0 identically on D. 
The Szegö kernel is strictly related to the Kempf distortion function. Indeed Z. Lu and G. Tian [25] prove 
that3 if the log-term of the disk bundle D ⊂ L∗ vanishes then ak = 0 for k > n, where ak are the coefficients 
appearing in (3). A conjecture still open, due to a private communication with Z. Lu, asks if the vanishing 
of the ak’s for k > n implies the vanishing of the log-term.

In this paper we address the problem of studying those Kähler manifolds whose TYCZ expansion is finite, 
namely the Kempf distortion function is of the form:

Tmg(p) = fs(p)ms + fs−1(p)ms−1 + · · · + fr(p)mr, fj ∈ C∞(M), s, r ∈ Z. (8)

Notice that this sort of problem has been partially investigated in the compact setting by the first author 
of the present paper and by C. Arezzo [1].

One can give a quantum-geometric interpretation of Tmg as follows. Assume that there exists m sufficiently 
large such that for each point x ∈ M there exists s ∈ Hm non-vanishing at x (such an m exists if M is 
compact by standard algebraic geometry methods and corresponds to the free-based point condition in 

2 This formula (7) has been proved for strictly pseudoconvex complex domains in Cn with smooth boundary, but it could be 
easily extended to the disc bundle D ⊂ L∗ (see, e.g., [25]).
3 The proof is given in the compact setting but it is of local nature so it immediately extends to the noncompact one.
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Kodaira’s theory). Consider the so called coherent states map, namely the holomorphic map of M into the 
complex projective space CPN(m) given by:

ϕm : M → CPN(m) : x �→ [s0(x) : · · · : sN(m)(x)]. (9)

One can prove (see, e.g. [2]) that

ϕ∗
mωFS = mωg + i

2π∂∂̄ log Tmg, (10)

where ωFS is the Fubini–Study form on CPN(m), namely the Kähler form which in homogeneous coordinates 
[Z0, . . . , ZN(m)] reads as ωFS = i

2π∂∂̄ log
∑N(m)

j=0 |Zj |2. Recall that a Kähler metric g on a complex manifold 
M is said to be projectively induced if there exists a Kähler (isometric and holomorphic) immersion of (M, g)
into the finite or infinite dimensional complex projective space (CPN , gFS), N ≤ +∞, endowed with the 
Fubini–Study metric gFS. The reader is referred to [22] for further details and for an updated account on 
projectively induced Kähler metrics. Obviously not all Kähler metrics are projectively induced. Nevertheless, 
by combining (10) and the existence of a TYCZ expansion one gets that ϕ

∗
mgFS

m C∞-converges to g. In other 
words, any metric g with integral Kähler form ω on a complex manifold is the C∞-limit of (normalized) 
projectively induced Kähler metrics (under the assumption of the existence of a TYCZ expansion). In the 
compact case this was a conjecture of Yau proved by G. Tian [29] and W.D. Ruan [28] by means of peak 
section method.

The following theorem represents our first result.

Theorem 1.1. Let (M, g) be a Kähler manifold with integral Kähler form ω and of complex dimension n. 
Assume that the corresponding TYCZ expansion is finite. Then Tmg(p) is forced to be a polynomial in m of 
degree n and the log-term of the Szegö kernel of the disc bundle D vanishes.

The concept of finite TYCZ expansion is strictly related to regular quantizations introduced in [5] in the 
context of the quantization by deformation of Kähler manifolds. One says that the quantization (L, h) of 
a Kähler manifold (M, g) is regular if the Kempf distortion function Tmg (exists and) is a strictly positive 
constant for all m sufficiently large (see also [17] and [7] and reference therein). In S. Donaldson [9] termi-
nology a Kähler metric g with integral Kähler form ω such that its Kempf distortion function is a positive 
constant is called balanced. Hence a quantization of a Kähler manifold (M, g) is regular if mg is balanced 
for all m sufficiently large.

When (M, g) is a compact Kähler manifold which admits a regular quantization then the TYCZ expansion 

is necessarily finite. Indeed in that case Tmg = h0(Lm)
V (M) , where h0(Lm) denotes the complex dimension of 

H0(Lm) and V (M) =
∫
M

ωn

n! is the volume of M , and so by Riemann–Roch theorem Tmg is a monic 
polynomial in m of degree n. Thus, the vanishing of the log-term of the Szegö kernel in the last part of 
Theorem 1.1 (which is in accordance with the above mentioned Lu’s conjecture) extends the results obtained 
in [3] and [18] in the compact and regular case. We believe that in the compact case, finite TYCZ expansion 
implies regular quantization.

Nevertheless, in the noncompact case there exist Kähler manifolds with nonconstant Kempf distortion 
function and finite TYCZ expansion. In order to describe an example assume that M is a complex domain 
(open and connected) of Cn equipped with a global Kähler potential Φ : M → R, i.e. ω = i

2π∂∂̄Φ. In this 
case ω is trivially integral and the Hilbert space Hm agrees with HmΦ the weighted Hilbert space of square 
integrable holomorphic functions on M , with weight e−mΦ, namely

HmΦ =

⎧⎨
⎩f ∈ Hol(M) |

∫
e−mΦ|f |2ω

n

n! < ∞

⎫⎬
⎭ . (11)
M
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If HmΦ �= {0} then the Kempf distortion function reads as

Tmg(z) = e−mΦ(z)KmΦ(z, z), (12)

where KmΦ(z, z) =
∑N(m)

j=0 |fj(z)|2 is the weighted reproducing kernel and {fj} an orthonormal basis for 
HmΦ. Let now p be a positive real number and

M = {(z1, z2) ∈ C2 | |z1|2 + |z2|
2
p < 1}

equipped with the Kähler form ω, with Kähler potential

Φ = − log
[
(1 − |z1|2)p − |z2|2

]
.

A straightforward computation (see e.g. [10, pp. 450-451]) shows that the weighted reproducing kernel is 
given by

KmΦ(z, z) = emΦ [m2 + (c(z) − 3)m + c(z) + 2
]

where

c(z) =
(

1 − 1
p

)(
1 − |z2|2

(1 − |z1|2)p
)
.

Thus, by (12), the Kempf distortion function reads as

Tmg(z) = m2 + (c(z) − 3)m + c(z) + 2. (13)

It follows that for p �= 1, Tmg is a polynomial in m of degree 2 with nonconstant coefficients (a1(z) = c(z) −3
and a2(z) = c(z) + 2). Notice that for p = 1, M is the complex hyperbolic plane, namely the unit ball in 
C2 and ω equals the hyperbolic form, and in this case the quantization is regular (see also below).

Our second result shows that, for a complex curve, finite TYCZ expansion implies regular quantization 
and that this happens only in the complex space form case.

Theorem 1.2. Let M be a complex curve which admits a complete Kähler metric g whose corresponding 
TYCZ expansion is finite. Then (M, g) is Kähler equivalent to one of the following complex space forms:

(a) (C, g0), where g0 is the flat metric on C.
(b) (CH1, μghyp), where ghyp is the hyperbolic metric on the unit disk of C and μ is a positive real number.
(c) (CP1, λgFS), where gFS is the Fubini-Study metric and λ is a positive integer.

Many examples of Kähler manifolds admitting regular quantizations are obtained by taking simply-
connected homogeneous Kähler manifolds with integral Kähler forms (see [2]). Hence, for example the 
complex space forms namely the flat space (Cn, g0) with the flat Kähler form ω0 = i

2π∂∂̄|z|2, the hyperbolic 
space (CHn, ghyp), i.e. the unit ball in Cn with the hyperbolic form ωhyp = − i

2π∂∂̄ log(1 −|z|2), the complex 
projective space (CPn, gFS), admit regular quantizations which, as one can easily verify, have finite TYCZ 
expansion.

While in the compact case the homogeneous Kähler manifolds are the only known examples admitting 
a regular quantization, in the noncompact case the first author together with F. C. Aghedu [7] prove that 
the Kempf distortion function for the Simanca metric gS on the blow-up C̃2 of C2 at the origin is given by 
TmgS = m2. Hence, for the Simanca metric the quantization is not just regular but the TYCZ is finite with 
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constant coefficients (all the coefficients ak = 0 for k ≥ 1). Notice that, if H denotes the exceptional divisor, 
then gS has radial Kähler potential on the dense subset U = C̃2 \H = C2 \ {0} given by

Φ(z) = |z1|2 + |z2|2 + log(|z1|2 + |z2|2). (14)

Our third and last result shows that the complete complex surfaces with a cscK (Kähler with constant 
scalar curvature) metric with densely defined radial potential and finite TYCZ expansion are essentially the 
complex space forms and (C̃2, gS).

Theorem 1.3. Let M be a complex surface which admits a complete cscK metric g whose corresponding 
TYCZ expansion is finite. Assume, moreover, that the metric g admits a radial Kähler potential Φ : U → R

defined on a dense subset U of M . Then (M, g) is Kähler equivalent to one of the following Kähler surfaces:

(i) (C2, g0), where g0 is the flat metric on C2.
(ii) (CH2, μghyp), where ghyp is the hyperbolic metric on the unit disk of C2 and μ is a positive real number.
(iii) (CP2, λgFS), where gFS is the Fubini-Study metric and λ is a positive integer.
(iv) (C̃2, λgS), where C̃2 denotes the blow-up of C2 at the origin, gS the Simanca metric and λ is a positive 

integer.

Remark 1. The assumption on the potential in Theorem 1.3 means that U can be equipped with global 
complex coordinates z1 and z2 and Φ only depends on |z1|2 + |z2|2. Notice also that Φ is not necessarily 
defined at the origin (see Remark 4 below for details).

Remark 2. If we assume M = CP2 and the finiteness of TYCZ expansion then, by using the last part of 
Theorem 1.1, one can get that g = λgFS for some integer λ, without further assumptions (either on the 
curvature or on the potential). Indeed, a deep result due to Z. Lu and G. Tian [25] asserts that an integral 
Kähler form on CP2 such that the log-term of the disk bundle vanishes is an integral positive multiple of 
the Fubini-Study form.

The paper is organized as follows. Section 2 and Section 4 are dedicated to the proofs of Theorem 1.1
and Theorems 1.2–1.3 respectively. The proof of the latter is based on the classification of radial cscK 
projectively induced metrics with a3 = 0 given in Section 3 (see Proposition 3.1).

2. The proof of Theorem 1.1

Let (M, g) be a Kähler manifold. Assume that the Kähler form ω associated to g is integral and let 
(L, h) → (M, ω) be a quantization bundle and D ⊂ L∗ be the corresponding disk bundle as in the intro-
duction. The proof of Theorem 1.1 is based on the link between the Szegö kernel of the disk bundle D and 
the Kempf distortion function (see Equation (20) below) and on the two subsequent lemmata (Lemma 2.1
and Lemma 2.2). In order to obtain (20) let us denote by H2(X) the space of boundary values of holomor-
phic functions on D that are square integrable on X with respect to the measure dμ = θ ∧ (dθ)n, being 
dθ = ω. The Hardy space H2(X) admits the Fourier decomposition into irreducible factors with respect to 
the natural S1-action. Namely,

H2(X) =
+∞⊕
m=0

H2
m(X) (15)

where
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H2
m(X) = {f ∈ H2(X) | f(eiθx) = eimθf(x)}, (16)

equivalently, f(αv) = αmf(v) for α ∈ C (since f is holomorphic).
By definition the Szego kernel S(z, w) is the reproducing kernel of H2(X), i.e. is characterized by the 

properties S(z, w) ∈ H2(X) for every fixed w ∈ D, S(w, z) = S(z, w) and

f(z) =
∫
X

S(z, w)f(w)dμw (17)

for every f ∈ H2(X) and z ∈ D. From these properties it is immediately seen that S(z, w) =∑∞
j=1 fj(z)fj(w), where {fj} is an orthonormal basis of H2(X). Let us denote S(z) := S(z, z) =∑∞
j=1 |fj(z)|2. Now, by (15), an orthonormal basis of H2(X) can be obtained by putting together or-

thonormal bases of H2
m(X) for m = 0, 1, . . . . If f1, . . . , fN(m) form an orthonormal basis of H2

m(X), let us 
denote

Sm(v) :=
N(m)∑
j=1

|fj(v)|2 (18)

Then, we can write

S(v) =
∞∑

m=0
Sm(v). (19)

Remark 3. Notice that H2
0(X) is the space of holomorphic functions f on D such that f(eiθx) = f(x)

for every x ∈ X, i.e. the functions which are constant on the fiber above every point p ∈ M and square 
integrable on X. If M is compact, H2

0(X) obviously contains only the constant functions and a basis is given 
by f ≡ c such that 

∫
X
|c|2dμ = 1. If M is not compact, H2

0(X) identifies with the space of holomorphic 
functions f on M such that 

∫
M

|f |2ωn < ∞, and S0(v) is constant on each fiber of D, i.e. it can be identified 
with a smooth function F0 : M → C.

Let Hm be the space of L2-bounded holomorphic sections of Lm defined in the introduction. It is easy to 
see (see e.g. [30] for the compact case) that for m ≥ 1 there is a unitary equivalence Hm → H2

m(X) which 
sends a section s ∈ Hm to the function ŝ ∈ H2

m(X) defined by

ŝ(λ) = λm(s)

for every λ ∈ L∗. Then, if we take an orthonormal basis s1, . . . , sN(m) of Hm then ŝ1, . . . , ̂sN(m) is an 
orthonormal basis of H2

m(X).
Thus, for m ≥ 1 we have

Sm(v) =
N(m)∑
j=1

|ŝj(v)|2 =
N(m)∑
j=1

∣∣∣(√h∗(v, v))mŝj (x)
∣∣∣2 = (h∗(v, v))m

N(m)∑
j=1

|ŝj(x)|2 ,

where we denote by x = v√
h∗(v,v) . Thus, since 

∑N(m)
j=1 |ŝj(x)|2 is the Kempf distortion function Tmg(π(x)) =

Tmg(π(v)) (where π : L∗ → M is the bundle projection), we have

Sm(v) = (h∗(v, v))mTmg(π(v)).
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Combining this with (19), we can write4

S(v) =
∞∑

m=0
(h∗(v, v))mTmg(p) (20)

for v ∈ D, where p = π(v) and T0(p) is the function F0 in Remark 3 above.

Lemma 2.1. Let (M, g) be a Kähler manifold such that Kähler form ω associated to g is integral. Assume 
that the associated Kempf distortion function Tmg admits a TYCZ expansion. Let p0 ∈ M and define

φ (t) =
∞∑

m=0
(1 − t)n+1tm Tmg(p0) (21)

Then the map t �→ φ(h)(t) := ∂h

∂th
(φ(t)) is bounded on (0, 1) for all h ≥ 0.

Proof. One has

φ(h) (t) =
∞∑

m=0

(
(1 − t)n+1tm

)(h)
Tmg(p0)

=
∞∑

m=1

(
(1 − t)n+1tm

)(h)
Tmg(p0) + ((1 − t)n+1)(h)T0(p0)

On the other hand, by (4), we have

−C0,0 m
n−1 + a0 m

n ≤ Tmg(p0) ≤ C0,0 m
n−1 + a0 m

n, m ≥ 1.

Hence to show that φ(h) (t) is bounded one needs to verify that the two functions

ϕk(t) =
∞∑

m=1

(
(1 − t)n+1tm

)(h)
mk, k = n− 1, n

are bounded on (0, 1). This easily follows since

( ∞∑
m=0

(1 − t)n+1tmmk

)(h)

=
(
qk(t)(1 − t)n−k

)(h)
, 0 < t < 1,

where qk(t) is the polynomial of degree k in t such that

qk(t) = (1 − t)k+1
∞∑

m=0
tmmk, 0 < t < 1. � (22)

Lemma 2.2. Let k0 be a positive integer and h a natural number. Consider the function

ψh(t) =
(

(1 − t)n+1
∞∑

m=1

tm

mk0+h

)(n+k0)

, 0 < t < 1. (23)

Then ψh(t) = O(1) in [0, 1] if and only if h �= 0.

4 Equation (20) extends to the noncompact setting the analogous equation proved in [3] for the compact case.
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Proof. Observe that

ψh(t) =
n+k0∑

l=k0−1

cl (1 − t)1−k0+l
∞∑

m=1

(
tm

mk0+h

)(l)

=
n+k0∑

l=k0−1

(1 − t)1−k0+l
∞∑

m=l if l≥1
m=1 if l=0

(
bl,lm

l + bl,l−1m
l−1 + · · · + bl,1m + bl,0

) tm−l

mk0+h

=
n+k0∑

l=k0−1

l∑
s=0

bl,s

∞∑
m=l if l≥1
m=1 if l=0

(
tm−l

mk0+h−s
(1 − t)1−k0+l

)
(24)

where cl, bl,l−1, . . . , bl,0, bl are suitable real numbers. Consider the series

Fk0,s,h,l(t) = (1 − t)1−k0+l
∞∑

m=l if l≥1
m=1 if l=0

tm−l

mk0+h−s
(25)

for k0 − 1 ≤ l ≤ n + k0 and 0 ≤ s ≤ l. Notice that for l = 0 (and hence s = 0 and k0 = 1) (25) reads as ∑∞
m=1

tm

mh+1 which is bounded for t → 1− if and only if h > 0. More generally, we claim that (25) diverges 
if and only if h = 0 and s = l = k0 − 1.

Indeed for h = 0 and s = l = k0 − 1 (25) reads as

t−k0+1
∞∑

m=k0−1 if k0≥2
m=1 if k0=1

tm

m
= t−k0+1

[
log (1 − t) −

k0−2∑
m=1

(
tm

m

)]

and so it tends to −∞ for t → 1−. On the other hand for the other values of the parameters one has the 
following case by case analysis which shows that (25) is bounded for t → 1− (we assume l ≥ 1 by the above 
considerations).

Case 1. s > k0 + h:

Fk0,s,h,l(t) = (1 − t)1−k0+l
∞∑

m=l

tm−l

mk0+h−s
= (1 − t)1−k0+l

∞∑
m̃=0

tm̃(m̃ + l)s−k0−h

= (1 − t)l−sq̃s−k0−h(t),

where q̃s−k0−h(t) is a polynomial of degree s − k0 − h.

Case 2. s = k0 + h (and hence l ≥ k0):

Fk0,s,h,l(t) = (1 − t)1−k0+l
t−l

∞∑
m=l

tm = (1 − t)1−k0+l
t−l

[
1

1 − t
−

l−1∑
m̃=0

tm̃

]

= (1 − t)−k0+lt−l − (1 − t)1−k0+lt−l
l−1∑
m̃=0

tm̃
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Case 3. s = k0 + h − 1 (and hence5 l > k0 − 1):

Fk0,s,h,l(t) = (1 − t)1−k0+l
t−l

∞∑
m=l

tm

m
= (1 − t)1−k0+l

t−l

[
log(1 − t) −

l−1∑
m̃=1

tm̃

m̃

]
.

Case 4. s ≤ k0 + h − 2:

Fk0,s,h,l(t) = (1 − t)1−k0+l
∞∑

m=l

tm−l

mk0+h−s
≤ (1 − t)1−k0+l

∞∑
m=l

tm−l

m2 . �

We can now prove Theorem 1.1.

Proof of Theorem 1.1. We first prove that (8) forces Tmg(p) to be a polynomial of degree n. By (4) for 
k = 0 and (8) one gets

∣∣∣∣∣
s∑

h=r

fh (p)mh−n − a0

∣∣∣∣∣ ≤ C0,0 m
−1,

and taking m → ∞ one deduces fn+1 = fn+2 = . . . fs = 0 and fn = a0 = 1. It remains to show that r ≥ 0. 
Assume by a contradiction that r < 0. Then the function φ(t) given in (21) decomposes as

φ(t) = (1 − t)n+1T0(p) + g+(t) + g−(t) (26)

where

g+(t) := (1 − t)n+1
∞∑

m=1
tm (fn(p)mn + · · · + f0(p))

g−(t) := (1 − t)n+1
∞∑

m=1
tm
(
f−1(p)

1
m

+ · · · + fr(p)
1

m|r|

)
,

and there exists a positive integer k0 such that f−1(p) = f−2(p) = · · · = f−k0+1(p) = 0 and f−k0(p) �= 0. 
Notice that

g
(n+k0)
− (t) =

|r|−k0∑
h=0

f−k0−h (p)ψh(t),

(where ψh(t) is defined by (23)) and, by Lemma 2.2,

lim
t→1−

g
(n+k0)
− (t) = −∞. (27)

By combining (26), (27) and the fact that g+(t) has bounded derivatives of all orders (being g+(t) =∑n
k=0 fk (x) qk(t)(1 − t)n−k, where qk(t) is the polynomial given by (22)) we deduce that φ(n+k0)(t) is 

unbounded in contrast with Lemma 2.1.
Let now p0 ∈ M and e : U → L∗ be a local trivialization on a neighborhood of p0. Consider the coordinate 

system

5 Since l = k0 − 1 forces h = 0 and s = l = k0 − 1.
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v(t, θ, p) =

√
t

h(p)e
iθe(p),

where h(p) = h∗(e(p), e(p)) (and hence h∗ (v(t, θ, p), v(t, θ, p)) = t) By (20) and h∗ (v(t, θ, p), v(t, θ, p)) = t, 
one has

φ (t) =
∞∑

m=0
(1 − t)n+1tm Tmg(p0) = ρ (t)n+1 S(v(t, θ, p0)) (28)

Therefore, by inserting g−(t) = 0 in (26) one obtains that φ : D → R is the restriction of a smooth function 
on D and by (7) one deduces that the log-term of the Szegö kernel S(v) of D must vanish, concluding the 
proof of the theorem. �
3. Radial projectively induced cscK metrics with a3 = 0

We first recall the classification of radial Kähler metrics with constant scalar curvature proved in [20]. 
Let U ⊂ Cn be a complex domain (not necessarily containing the origin of Cn) endowed with a Kähler form 
ω = i

2π∂∂̄Φ with radial potential Φ : U → R, i.e.

Φ(z) = f(r), r = |z|2 = |z1|2 + · · · + |zn|2 ∈ Ũ := {r = |z|2, z ∈ U}.

These metrics can be studied by rewriting everything in terms of the function ψ(y) introduced in the 
proof of Theorem 2.1 in [20], i.e. more precisely F (t) = f(et), y = F ′(t), ψ(y) = F ′′(t).

In particular, by assuming that g is cscK, one shows after a long but straightforward calculation (see the 
proof of Theorem 2.1 in [20]) that ψ has the form

ψ(y) = Ay2 + y + B

yn−2 + C

yn−1 , (29)

where A, B and C are constants and the scalar curvature is equal to −An(n + 1).

Remark 4. Assume n = 2. If we set z = t(z1, z2) then one easily sees that the matrix of the metric g (still 
denoted by g) reads as:

g = F ′′ − F ′

e2t ztz̄ + F ′

et
I,

where I is the 2 × 2 identity matrix, whose (positive) eigenvalues are F
′

et and F
′′

et . So, if we further assume 
that Φ is defined at the origin, we get

lim
t→−∞

F ′ = lim
t→−∞

F ′′ = 0,

forcing B = C = 0 in (29). In this case the solution of ψ(y) = Ay2 + y are the flat, the Fubini-Study and 
the hyperbolic metric if A = 0, A < 0 and A > 0, respectively (cfr. (31), (34) and (35) below).

In the proof of Theorem 1.1 in [20] it is shown that n = 2 and a3 = 0 (where a3 is the third coefficient 
of TYCZ expansion of the Kempf distortion function) if and only if C = 0, so (29) reduces under these 
assumptions to

ψ(y) = Ay2 + y + B (30)
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Remark 5. For a cscK radial metric the condition a3 = 0 is equivalent to a2 = 0 (see [20]). This fact will be 
used in the proof of Theorem 1.3.

Hence the classification of radial cscK metrics with a3 = 0 reduces to integrating equation (30) (recall 
that ψ = y′, where the derivative is meant with respect to t = log r) in the cases A = 0 and A �= 0. In the 
latter we further distinguish the three cases where the equation Ay2 + y+B = 0 has no real solutions, only 
one real solution or two real solutions, and the sign of these solutions. Let us briefly recall the result of such 
classification. In order to keep the same notation used in [20], we will rewrite ψ in terms of real parameters 
λ, μ, ξ, ζ > 0, 0 < ζ < 1, κ ∈ R (the exact relation with A, B is not necessary for our purposes).

When a1 = 0 (namely vanishing scalar curvature or, equivalently, A = 0) we have the following three 
cases:

ψ(y) = y (31)

which corresponds to the flat metric g0 on U ⊆ C2;

ψ(y) = y − λ (32)

which integrates as F ′(t) = μet + λ, is defined on r = et > 0 and is (a multiple of) the Simanca metric (14)
on U ⊆ C2 \ {0};

ψ(y) = y + λ (33)

which integrates as F ′(t) = μet − λ and is defined on r = et > λ
μ . Notice that F ′ → 0 when r → λ

μ .
When a1 �= 0 (equivalently, A �= 0) we have the following eight cases [(34)–(41)]:

ψ(y) = 1
μ
y(μ− y) (34)

which integrates as y = F ′(t) = μet

1+et and corresponds to the multiple μωFS = μi∂∂̄ log(1 + |z|2) of the 
Fubini-Study metric on U ⊆ C2 ⊂ CP 2;

ψ(y) = 1
μ
y(μ + y) (35)

which integrates as y = F ′(t) = μet

1−et and corresponds to the multiple μωhyp = −μi∂∂̄ log(1 − |z|2) of the 
hyperbolic metric on U ⊆ CH2;

ψ(y) =
[(

1
μ
y + 1

2

)2

+ λ2

]
(36)

which is easily seen to integrate as y = F ′(t) = μ 
[
λ tan(λt + κ) − 1

2
]

with maximal interval of definition 
given by hπ + arctan

( 1
2λ
)
< λt + κ < 2h+1

2 π. Notice that F ′ → 0 when λt + κ → hπ + arctan
( 1

2λ
)
;

ψ(y) = 1
μ

(
y − 1 − ζ

2

)(
y − 1 − ζ

2 + μ

)
(37)

which is easily seen to integrate as y = F ′(t) = −μ 
[
−ξζeζt

1−ξeζt
+ 1−ζ

2

]
with maximal interval of definition given 

by 1−ζ < ξeζt < 1. Notice that F ′ → 0 when ξeζt → 1−ζ ;
1+ζ 1+ζ
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ψ(y) = 1
μ

(
y − μλ

2

)(
y + μλ

2 + μ

)
(38)

which is easily seen to integrate as y = F ′(t) = −μ 
[
−ξ(λ+1)e(λ+1)t

1−ξe(λ+1)t − λ
2

]
with maximal interval of definition 

given by 0 < ξe(λ+1)t < 1. Notice that μλ2 < F ′ < +∞:

ψ(y) = − 1
(λ + 1)μ

(
y + μλ

2

)(
y − μλ

2 − μ

)
(39)

which is easily seen to integrate as y = F ′(t) = μ 
[
−ξ(λ+1)e−(λ+1)t

1+ξe−(λ+1)t + 2+λ
2

]
with maximal interval of definition 

given by ξe(λ+1)t > λ
2+λ . Notice that F ′ → 0 when ξe(λ+1)t → λ

2+λ ;

ψ(y) = − 1
μ

(
y − μ(1 + ζ)

2

)(
y − μ(1 − ζ)

2

)
(40)

which is easily seen to integrate as y = F ′(t) = μ 
[
−ζe−ζt

1+e−ζt + 1+ζ
2

]
with maximal interval of definition R \{0}. 

Notice that μ(1−ζ)
2 < y < μ(1+ζ)

2 ;

ψ(y) = 1
μ

(
y + μ

2

)2
(41)

which is easily seen to integrate as y = F ′(t) = μ 
[

1
k−t −

1
2

]
with maximal interval of definition k−2 < t < k. 

Notice that F ′ → 0 when t → k − 2.
Metrics (36)–(41) correspond respectively to cases 11a, 6, 7, 8, 9, 10a of Theorem 2.1 in [20].
In [20] the first and the third author together with F. Salis proved that the flat metric and the Simanca 

metric, i.e. the cases (31) and (32) above, are the only radial projectively induced metrics with a1 = a3 = 0.

Remark 6. For the hyperbolic metric ghyp on CHn and the Fubini-Study metric gFS on Cn, i.e. the cases 
(35) and (34) above, one has that μghyp admits an injective Kähler immersion into CP∞ for any μ > 0, 
while μgFS admits an injective Kähler immersion into CPN if and only if μ is an integer (the reader is 
referred to [6] for an explicit description of these maps).

Among the other cases above, it is easy to see that the metric (38) is projectively induced provided λ ∈ Z

and λμ2 ∈ Z. Indeed, an explicit potential of this metric is given by

Φ̂ = log (|z1|2 + |z2|2)
μλ
2

[1 − ξ(|z1|2 + |z2|2)(λ+1)]μ
(42)

and, by using 1
(1−x)μ =

∑∞
i=0

μ(μ+1)···(μ+i−1)
i! xi one has

eΦ̂ =(|z1|2 + |z2|2)
μλ
2

∞∑
i=0

μ(μ + 1) · · · (μ + i− 1)
i! ξi(|z1|2 + |z2|2)(λ+1)i

=
∞∑
i=0

μ(μ + 1) · · · (μ + i− 1)
i! ξi(|z1|2 + |z2|2)(λ+1)i+μλ

2

=
∞∑ (λ+1)i+μλ

2∑ μ(μ + 1) · · · (μ + i− 1)
i! ξi

(
(λ + 1)i + μλ

2
j

)
|z1|2j |z2|2(λ+1)i+μλ−2j .
i=0 j=0
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Then,

(z1, z2) �→

⎡
⎣· · · ,

√
μ(μ + 1) · · · (μ + i− 1)

i! ξi
(

(λ + 1)i + μλ
2

j

)
zj1z

k
2 , · · ·

⎤
⎦ (43)

for i = 0, . . . , ∞ and j + k = (λ + 1)i + μλ
2 gives the desired projective immersion.

Remark 7. Notice that the metric given by potential (42) is not Einstein for any values of λ, μ, ξ > 0. Indeed, 
for a Kähler metric g on a 2-dimensional manifold with Kähler form ω = i

2π∂∂̄Φ given by a radial potential 
Φ(z) = f(r), r = |z1|2 + |z2|2, we have

det(g) = det
(
f ′ + f ′′ · |z1|2 f ′′z̄1z2

f ′′z̄2z1 f ′ + f ′′ · |z2|2

)
= f ′ 2 + f ′f ′′r = f ′(rf ′)′.

Then, after a straightforward computation with Φ given by (42) we get

det(g) = ξμ2(λ + 1)2

2
rλ−1[λ + ξ(λ + 2)rλ+1]

(1 − ξrλ+1)3 (44)

and one immediately sees that the metric is not Einstein by comparing log det(g) with (42).

The following proposition, interesting on its own sake, shows that the only radial cscK projectively induced 
metrics with a3 = 0 are those just described. It could be interesting to classify all the radial projectively 
induced cscK metrics without the assumption of the vanishing of a3 (the reader is referred to [19] for the 
classification of radial projectively induced Ricci flat Kähler metrics).

Proposition 3.1. Let U ⊂ Cn be a complex domain on which is defined a radial Kähler metric g given by 
a radial potential Φ : U → R. Assume that g is a cscK metric and a3 = 0. Then g is projectively induced 
if and only if we are in the cases (31), (32) with λ ∈ Z, (34) with μ ∈ Z, (35) for any μ and (38) with 
λ, λμ2 ∈ Z, of the above classification.

In order to prove the proposition we need three lemmata.

Lemma 3.2. Let U ⊂ Cn be a complex domain endowed with a Kähler metric g whose associated Kähler 
form ω = i

2π∂∂̄Φ has radial potential Φ : U → R, i.e. Φ(z) = f(r), r = |z|2. If there exist r ∈ Ũ := {r =
|z|2, z ∈ U} and h ∈ N such that

gh(r) = dhef(r)

drh
< 0 (45)

then g is not projectively induced.

Proof. See Lemma 3.1 in [19] for a proof. �
Lemma 3.3. Let g be a radial Kähler metric as above and let ψ(y) = Ay2 + y + B given by (30). Assume g
is projectively induced and 0 is a limit point in the domain of definition of ψ. Then B = 0 (i.e. ψ has 0 as 
root).
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Proof. By taking h = 1, 2, 3 in (45), one gets in particular that if g is projectively induced then

f ′ ≥ 0
f ′ 2 + f ′′ ≥ 0

f ′′′ + 3f ′f ′′ + f ′ 3 ≥ 0
(46)

(the derivatives are meant with respect to r). These conditions can be rewritten in terms of the function 
ψ(y) introduced above. More precisely, since f(r) = Φ(t)|t=log r, y = Φ′(t), ψ(y) = Φ′′(t), we have f ′ = y

r , 
f ′′ = ψ−y

r2 , f ′′′ = ψ′ψ−3ψ+2y
r3 and (46) rewrite

y ≥ 0
ψ − y + y2 ≥ 0

3yψ + ψ′ψ − 3ψ + 2y − 3y2 + y3 ≥ 0
(47)

Now, by replacing ψ(y) = Ay2 + y + B in (47) one gets

y ≥ 0
(A + 1)y2 + B ≥ 0

(2Ay + 3y − 2)(Ay2 + y + B) + 2y − 3y2 + y3 ≥ 0
(48)

From the second and the third condition one immediately deduces that if the metric is such that in the 
interval of definition one can let y = Φ′(t) tend to zero, then it must be B = 0, as claimed. �
Lemma 3.4. Let g be a radial Kähler metric as above and let ψ(y) = Ay2 + y + B given by (30). Assume g
is projectively induced and y0 is a limit point in the domain of ψ. If y0 is a positive root of ψ then y0 ∈ Z.

Proof. For every k ≥ 1 one can prove by induction on k that

e−f d
kef

drk
= ψPk + y(y − 1)(y − 2) · · · (y − k + 1)

rk
, (49)

where Pk is a polynomial in y. Indeed, for k = 1 one has

e−f de
f

dr
= f ′ = F ′(t)

r
= y

r

that is (49) with P0 = 0. Now, assuming by induction that (49) is true for some k, we claim that it is true 
for k + 1. Indeed, one has

dk+1ef

drk+1 = d

dy
[ψPk + y(y − 1)(y − 2) · · · (y − k + 1)] dy

dr
· e

f

rk
+

+ [ψPk + y(y − 1)(y − 2) · · · (y − k + 1)] d

dr

(
ef

rk

)

and the claim follows by using

dy

dr
= d

dr
F ′(t) = F ′′(t)

r
= ψ

r
,

d
(
ef

k

)
= rf ′ − k

k+1 ef = y − k
k+1 ef
dr r r r
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and the fact that ψ is a polynomial. Now, notice that from (49) it follows that if y0 is a root of ψ, then

e−f d
kef

drk |y=y0

= y0(y0 − 1)(y0 − 2) · · · (y0 − k + 1)
rk

(50)

Assume y0 /∈ Z. By continuity, in a neighborhood of y = y0 one has that dkef

drk
has the same sign of 

y0(y0 − 1)(y0 − 2) · · · (y0 − k + 1) which is strictly negative for k = [y0] + 2 (where [y0] denotes the integer 
part of y0). Hence, by Lemma 3.2, the metric is not projectively induced. �
Proof of Proposition 3.1. By the discussion before the statement of the proposition, we are left to prove 
that the metrics corresponding to cases (33), (36), (37), (39), (40) and (41) are not projectively induced for 
any values of λ, ξ, μ, and that if λ /∈ Z or λμ2 /∈ Z then the metric (38) is not projectively induced.

By Lemma 3.3 one immediately sees that the metrics (33), (36), (37), (39), and (41) are not projectively 
induced for any values of the parameters.

For the remaining cases (38) and (40), we cannot use the same argument since we have respectively 
μλ
2 < y < +∞ and μ(1−ζ)

2 < y < μ(1+ζ)
2 and so 0 is not a limit point in the domain of definition of ψ, so 

we will use another approach. More precisely, we will take the explicit expressions of the potentials of these 
metrics, which are respectively (see the statement of Theorem 2.1 in [20])

f(r) = log r
μλ
2

(1 − ξrλ+1)μ (51)

and

f(r) = log[r
μ(1+ζ)

2 (1 + r−ζ)μ] (52)

and we will apply the criterion given in Lemma 3.2.
Let us begin from case (40): by Lemma 3.4, if one of the two roots

k = μ(1 − ζ)
2 , l = μ(1 + ζ)

2

of ψ is not an integer, then the metric is not projectively induced. Assume thus that k, l ∈ Z+, which implies 
also k + l = μ ∈ Z. Then, by (52) we have

ef(r) = rl(1 + r−ζ)μ =
μ∑

s=0

(
μ

s

)
rl−ζs =

μ∑
s=0

(
μ

s

)
rk+(μ−s)ζ .

By a straight calculation one sees that, for k0 = k + 2 one has

dk0

drk0
ef(r) = rζ−2(c0 + c1r

ζ + c2r
2ζ + · · · + cμ−1r

(μ−1)ζ),

for suitable constants cj , with

c0 = μ(ζ + k) · · · (ζ + 1)ζ(ζ − 1)

is negative since 0 < ζ < 1. This implies that dk0

drk0 e
f(r) → −∞ for r → 0+ and proves that the metric is not 

projectively induced for any values of the parameters.
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For the last case (38), we first notice that, by Lemma 3.4, if the root μλ2 of ψ is not an integer then the 
metric is not projectively induced. We are then left to show that when μλ2 ∈ Z and λ /∈ Z then the metric 
is not projectively induced. By (51) one has

ef(r) =
∞∑
i=0

μ(μ + 1) · · · (μ + i− 1)
i! ξir(λ+1)i+μλ

2

Then, by a straightforward computation, one sees that, for k0 = μλ
2 + [λ] + 3 (where [λ] denotes the 

integer part of λ)

dk0

drk0
ef(r) = rλ−[λ]−2(c0 + c1r

λ+1 + c2r
2(λ+1) + · · · )

where

c0 = μξ

(
λ + μλ

2 + 1
)(

λ + μλ

2

)
· · · (λ− [λ])(λ− [λ] − 1)

is strictly negative since we are assuming λ /∈ Z. This implies that dk0

drk0 e
f(r) → −∞ for r → 0+ and 

concludes the proof. �
4. The proofs of Theorem 1.2 and Theorem 1.3

Proof of Theorem 1.2. By Theorem 1.1, the finiteness of TYCZ expansion implies that the Kempf distortion 
function reduces to the polynomial Tmg = m +a1. This forces a2 = 0 and hence, using again the fact that M
is a complex curve, one deduces by (5) that a1 = 1

2 scalg = const, namely the metric g is a cscK metric. Notice 
that, by completeness, if (M, g) were simply-connected then one would deduce that it is a one-dimensional 
complex space form (a), (b) and (c), where λ is a positive integer (we are also using the integrality of the 
Kähler form ω associated to g to obtain the integrality of λ). Hence, in order to prove the theorem, we are 
reduced to show that M is simply-connected. Assume, by contradiction, that M is not simply connected 
and let p : (M̃, ̃g) → (M, g) be the universal covering map (which is a non-injective Kähler immersion 
satisfying p∗g = g̃). Then (M̃, ̃g) would be one of the three one-dimensional complex space forms (a), (b), 
(c), and hence there exists an injective full Kähler immersion ψ : M̃ → CPN (see Remark 6 above). Since 
Tg = 1 +a1 is constant one deduce (see (10)) that the coherent states map ϕ1 : M → CPN(1) is a full Kähler 
immersion. Hence the holomorphic map ϕ1 ◦ p : M̃ → CPN(1) satisfies (ϕ1 ◦ p)∗gFS = p∗ϕ∗

1gFS = g̃. By the 
celebrated Calabi’s rigidity theorem [6] N(1) = N and there exists a unitary transformation U of CPN such 
that U ◦ ψ = ϕ1 ◦ p. This forces ϕ1 ◦ p and hence p to be injective, yielding the desired contradiction. �

Finally, we prove Theorem 1.3.

Proof of Theorem 1.3. Combining the assumptions with Theorem 1.1 and Remark 5 one gets that, for some 
constant a1, the Kempf distortion function associated to (M, g) is given by Tmg = m2 + a1m. Therefore 
the metric g is forced to be balanced for all m (or equivalently (L, h) is a regular quantization). Recall 
that a balanced metric is automatically projectively induced and, as we have already pointed out in the 
Introduction, (i), (ii), (iii) and (iv) in Theorem 1.3 all admit an open and dense subset with a cscK metric 
with radial potential with finite TYCZ expansion. Thus, by using Proposition 3.1, we are left to show that 
the metric of case (38) of the classification in Section 3, given by potential (42), does not admit a regular 
quantization for ξ, λ, μ > 0 with λ, λμ2 ∈ Z. In order to do that, recall that by (10) this happens if and only 
if
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i

2π∂∂̄ log
∑
j

|sj(z)|2 = i

2π∂∂̄Φ̂ (53)

where {sj} is an orthonormal basis of the space Hμ,λ,ξ of holomorphic functions s = s(z) on the domain of 
definition of the metric

U =
{
r = |z1|2 + |z2|2 | r <

(
1
ξ

) 1
λ+1

}

which are bounded with respect to the norm

‖s‖2
hμ

=
∫
U

hμ(z)|s(z)|2dv(z) (54)

endowed with the hermitian product6 〈s, t〉hμ
=
∫
U
hμ(z)s(z)t(z)dv(z) (cf. (11) and (12) in the introduction), 

where

hμ(z) = e−Φ̂(z) = [1 − ξr(λ+1)]μ

r
μλ
2

, r = |z1|2 + |z2|2

and dv(z) =
(

i
2π
)2 det(g)dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2 is the volume form.

Now, take s(z) = zj1z
k
2 . By passing to polar coordinates z1 = ρ1e

iθ1 , z2 = ρ2e
iθ2 , and using (44) we get

‖s‖2
hμ

=
∫
U

|z1|2j |z2|2khμdv(z)

=2ξμ2(λ + 1)2
∫

ρ2j+1
1 ρ2k+1

2
(1 − ξ(ρ2

1 + ρ2
2)λ+1)μ

(ρ2
1 + ρ2

2)
μλ
2

(ρ2
1 + ρ2

2)λ−1[λ + ξ(λ + 2)(ρ2
1 + ρ2

2)λ+1]
(1 − ξ(ρ2

1 + ρ2
2)λ+1)3 dρ1dρ2,

where we are integrating on ρ2
1 + ρ2

2 < (1
ξ )

1
λ+1 .

Now by setting ρ =
√
ρ2
1 + ρ2

2 we can make the substitution ρ1 = ρ cos θ, ρ2 = ρ sin θ, 0 < ρ < ∞, 
0 < θ < π

2 , and using

π
2∫

0

(cos θ)2j+1(sin θ)2k+1 = j!k!
2(j + k + 1)!

the previous integral becomes

ξμ2(λ + 1)2 j!k!
(j + k + 1)!

(
1
ξ

) 1
2(λ+1)∫
0

ρ2j+2k+2λ−μλ+1λ + ξ(λ + 2)ρ2(λ+1)

(1 − ξρ2(λ+1))3−μ
dρ. (55)

With the change of variables

x = ξρ2(λ+1), dx = 2ξ(λ + 1)ρ2λ+1dρ

6 Notice that we are using the fact that U is dense in M in order to integrate on U .
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(55) reads as

ξ−
2j+2k−μλ

2(λ+1) μ2(λ + 1) j!k!
(j + k + 1)!

1∫
0

x
2j+2k−μλ

2(λ+1)
λ + (λ + 2)x
(1 − x)3−μ

dx. (56)

Thus it converges if and only if μ > 2 and 2j+2k−μλ
2(λ+1) > −1, i.e.

j + k >
μλ

2 − (λ + 1). (57)

This is the condition for a monomial zj1zk2 to belong to the space Hμ,λ,ξ. Since by radiality it is easy 
to see that the monomials zj1zk2 are pairwise orthogonal, we see that {zj1zk2}j+k>μλ

2 −(λ+1) form a complete 
orthogonal basis of in Hμ,λ,ξ, so the condition (53) for the metric to be balanced can be rewritten

i

2π∂∂̄ log

⎡
⎣ ∑
j+k>μλ

2 −(λ+1)

|z1|2j |z2|2k

‖zj1zk2‖2
hμ

⎤
⎦ = i

2π∂∂̄Φ̂ (58)

This means that there exists a holomorphic function f such that

log

⎡
⎣ ∑
j+k>μλ

2 −(λ+1)

|z1|2j |z2|2k

‖zj1zk2‖2
hμ

⎤
⎦ = Φ̂ + Re(f).

By radiality, f is forced to be constant and we can rewrite this condition as

∑
j+k>μλ

2 −(λ+1)

|z1|2j |z2|2k

‖zj1zk2‖2
hμ

= CeΦ̂ = C
(|z1|2 + |z2|2)

μλ
2

[1 − ξ(|z1|2 + |z2|2)(λ+1)]μ
, (59)

for some C > 0.
Now, we notice that since we are assuming λ > 0, then condition (57) is fulfilled for j+k = μλ

2 −1 (recall 
that λ, μ > 0 and that we are assuming that μλ

2 ∈ Z, otherwise the metric is not projectively induced). 
But it is easy to see that the Taylor expansion of the right-hand side of (59) does not contain the term 
|z1|2j |z2|2k for j + k = μλ

2 − 1, so (59) cannot be satisfied and the metric is not balanced. This concludes 
the proof of the theorem. �
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