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' . with small parameter e. The first one is a hyperbolic partial differential equation,
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while the second one is a parabolic partial differential equation. In previous work, we
showed existence and uniqueness results and performed a general homogenization of

I{I(Silué(;ztflsi%ation the coupled system. Here we give a more precise homogenization. For that, we use
Hyperbolic the asymptotic expansion of the solution and the coefficients of the system. Besides,
Parabolic we obtain corrector results. We also extend the existence theorem of previous work
Partial differential equation by proving that the solution of the parabolic equation is bounded independently of
Corrector the small parameter.

Multiscale convergence © 2019 Elsevier Inc. All rights reserved.

1. Introduction

We will study a system modeling the erosion phenomenon presented in [3,4], where existence and unique-
ness results for the solution of the system were given. In [4] we applied a scaling and a nondimensionalization
on a coupled system of a shallow water equation and an equation for sand dunes. We obtained the dimen-
sionless system by rewriting the coupled system with respect to a small parameter €, which was, for the
first time, defined in [5]. The small parameter e corresponds to the ratio of a 1-month tide period over a
long 16-year observation period of the tide; that is, e = 1/192. Because of the long observation period of
the tide, the equation for sand dunes presented in [5] was named the equation for “long term dynamics of
dunes” of sand (LTDD).

Klainerman and Majda [6] introduced the e-balanced property to prove the existence of the solution of
a singular hyperbolic equation. Then we proved existence results for the coupled system by using the e-
balanced property of the balance law equation [4]. The solution z¢ of the parabolic equation was bounded by
a constant C depending on €. Now, by extending the e-balanced property on the parabolic equation, we prove
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that z¢ is bounded independently of €. A crucial consequence of this result concerns the homogenization.

To do the homogenization, we supposed the second member of the dimensionless LTDD equation is such
that |V - C¢(v¢)| < €2C [4]. So, by proving z¢ is bounded independently of €, we can do the homogenization

without any assumptions.

The rest of this article is organized as follows. In Section 2, we present the model, recall some properties,

and give the main theorems for existence and homogenization. We give a proof of the existence theorem in
Section 3. Section 4 is devoted to the homogenization of the coupled system. Finally, Section 5 gives a short

conclusion and perspectives.

2. Model and main results

In this section, we present the model to be studied. We recall some useful properties. Finally, we give the

main results.
We will study the following coupled system:

dvt 1 o1 1
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and

c(1 — bem®)|q€|% ¢

e N A
The dimensionless shallow water equation,
2 1
64 Z 0xj eh(v‘) — 6—4P(v€,z£), (2)

is a first-order hyperbolic system of the balance law, and the dimensionless LTDD equation,

€
aait GV AV = 5V O, (3)
is a parabolic equation.

These two equations become singular or degenerate when e takes particular values. For example, when
e = 0, we have a singular case, and when their coefficients equal 0 for some values of €, we have a degenerate
case.

The dimensionless shallow water equation is symmetrizable in Friedrich sense, since there is a symmetric
positive definite matrix B® such that we can write it in the following form:

42 G = ) = ), (4)

€

where

1 1q62
E[(me+b1)2

qi 4
(me+b')  (me+b)

+ct(mE+bh)] -

B = G 1 0
(me +b') ’
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S 0 1
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B' and B? are symmetric matrices given, respectively, by
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k_q52
(me+b1)2
T/ € € kqi €
M) =B h(v) = | st fas |
kas ¢
me 4 bl ~Ja

and
ﬁ(’uevze) = BO ' P(Usaze)'

Further in this section, we will give the main theorems for existence and homogenization.
We now recall some necessary proprieties in [4,6] before presenting the main results.
We consider a parameter d(e) such that lir% d(e) = 400, and a weighted norm corresponding to a splitting
€E—>

vector v := t(v1,v2), v € R, vy € R%:
2 2 2
[oll7 = d(e)? [or|* + vl

where |-| and ||| stand for the usual euclidean norm in R and R?, respectively.
For a scalar function r(v),

lr (@)1 = ()]
For the two-dimensional functional vector (r1(v),r2(v)), we have
(1 (v), 72 ()12 = [l (ra(0), (o)

Let D be the matrix associated with this splitting of v:

D11,Dq2
D= .
<D21,D22>

Then we can define the norms with D as follows:

ID||, = |D11| + d(€) [ D12| + d(e) ™" |Day| + [ Daa|
[D], = d(e)~?|D11| + d(€) " (|D12| + | Da1]) + |Daal .

We can deduce the following inequalities for any splitting vector v defined as above with C' > 0 constant:

D]l <Dl - vl
(D, )] < C[D] ]l - [lv]l, -

The associated Sobolev norm is given by
2 2 2
[v]l5.c = d(e)* [loalls + vzl
for integers s such that s > so + 1, where so = 1 and ||-||, stands for the usual Sobolev norm.

For the functional space C([0,T], H*(T?,R3)) n C*([0,T], H*~*(T? R3)), we consider the following
norms:
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Wolller = sup [llv(@®)]ll.
te[0,7]

and

dv
P (t)

@Il = o)l + ]

s—1,€
We now give an extended definition of the structural conditions called the e-balanced property.
Definition 2.1. For s > so + 1, the system (1) is said to be e-balanced around v, a given fixed vector, if the

following structural conditions are satisfied:
There exists 6 > 0 independent of € such that

Hlys(Aj,vO,é), Qlys(h,vo,é), 01,5 (P, v0,5) < oo forj=1,2, (5)
’yl,l(BjaUOva) <00 fOl"jZO,].,Q, (6)
91,5(-’4671}0;5)a91,S(CEaUOa6) < 00, (7)
where
91,8('7’0076) = 91,8(')
_ —|s1] S1 1)S2
=max[ Y d(e) max_ (ID5 D - (o p) | ()
1<]s1|+|s2[<s
and

71,5('7 UOv 6) = ’yl,s(')

=max[ Y d(e)”"*" max  [DS1D32 - (p1,po)]]. (9)
=0 _ llp=00]]. <6
<|s1|+]s2]<s

Another property concerns the choice of the initial value condition:

v(t=0,2) =wvo(z)+v5(x),
) o(z) + 05(x) (10)
z(0, ) = z"(z),
such that
L v = (v,vll) e H¥(T?), s > 59+ 1,
2 Ov
IL.  v{ constant, | véIHS + ZAj(Uo, 6)0—xj <K,
J=1 s—1,€
2 e IC)
. ov (
1. Al il <K
Z (v076)8$j -
J=1 s—1,e
IV. |56l <0,
V. e HP(T?), p>1, ”ZOHM <A,

where ¢’ > 0 is considered small enough and is to be chosen later, and A, is a constant.
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We now give the theorem.

Theorem 2.1. Consider the Cauchy problem given by (1)—(10) with initial value satisfying (IC). Then there
exists T > 0 not depending on e such that for any € close to 0, the Cauchy problem given by (1)—(10)
has a unique solution: (v¢,z¢) € C([0,T], H*(T?2,R?)) N CY([0,T], H*~(T?2,R?)) x L>([0,T], H?(T?)). In
addition, the following estimates hold:

1Z°Ollpe <7+ A,

5], =
ot -
Dp,€
oy -], + [ 28] <a
e dt a—l,ei

for any t € [0,T], where A, 4, and 7' are constants independent of e.

The following paragraphs concern the homogenization of (1). We start by considering a new variable:

. v
we=|
z
The system (1) becomes
2 2 2
ows 1 o ows 1 o Ows 1 o 0%we 1
— 4+ =y IV — - = M — - = 7. = —-E(uw° 11
or T Z Ox; €24 Or; €2 0r2 e (w"), (11)
j=1 j=1 J= J
with
0 ) 0
AL | dt(me +bY) A? 0
Ll —_ 0 , L2 — dl(m5+b1) ,
0 0 i 0 0
0| 0
, N7 = for j =1,2,
0] A
We consider the Ansatz
t t
w(t,x) =w(t, -, —,2) = 0" +ew" + 0> + > + e (Antz1)
€€

t

t
and the two scales § = - and 7 = -
€

€
Introducing (Antz1) in the matrix coefficients of the system (11) yields the following:

L= Lé —i—eL{ +o(e), j=1,2,
M7 = MJ +eM] +ole), j=1,2, (Antz2)
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NI = Ng —&—eNlj +o(e), j=1,2,
E = Ep+ eEy + o(e).

By Theorem 2.1, since the solution (v€,z¢) is bounded by a constant not depending on €, we can prove
three-scale convergence of the solution to a profile that is the solution of a limit equation of (11).
We have the following theorem.

Theorem 2.2. Consider the Cauchy problem given by (1)—(10) with initial value satisfying (IC). The solutions
we of (11) three-scale converge to a profile w® belonging in the space L>([0,T), L ([0,1], L3 ([0, 1], HY(T?,
R%)))), with | = min{p, s} and @ the solution of the equation

ow . Ow
—O+ZL3~%;J=0. (12)
1

The following theorem gives the corrector result.

Theorem 2.3. Consider the Cauchy problem given by (1)—(10) with indtial value satisfying (IC). If the solution
wE —

w® satisfies the assumptions (Antzl), then we have that Kb = o three-scale converges to w; €

€
L==([0,T), L ([0, 1], L ([0, 1], H{(T2,R%)))), the solution of the equation

8w1 ZLJ 8w1+ZLJ (’)w(): ’ (13)

€ Kb —af o o o o ;
K% = — L three-scale converges to wy € L ([0,T), Lg([0,1], L ([0,1], HY(T?2,R%)))), the solution

€
of the equation

awg ; 0wy Owy
+ZL dx; +Z 8563

2 T %0
j 0 1 0

T M T LN g =0 14)
j=1 J

=1

three-scale converges to ws € L>([0,T), L ([0, 1], L ([0, 1], HY(T?2,R%)))), the solution

€
of the equation

_ 2 2 _
j 67113 1 87112
7. 22
2_: ; b Oz
2 _
Jj=1 J

2 2

Ow . Ow - 0w
+a—;—ZMf'a—£‘ZNf'aTz°‘EOZO’ "
j=1 j=1 J

K3,e — s

and K*¢ = 3 three-scale converges to W, € L=>([0,T), Lg ([0, 1], L ([0, 1], H(T?2,R%)))), the so-

€
lution of the equation
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811}4 Z LJ 3w4 Z
Jj=

_22: j.%_i j 07w
O O, 0 9z
j=1 7=
Oy O TR 02w
0 1 ] 1 y 1
T 20 Ny Z NT N E, = 0. 1
MR ;13% ;1ax;+1 0 (16)

3. Estimates

In this section, we give the proof of Theorem 2.1. Theorem 2.1 is different from the existence theorem
given in [4] only in the estimates for the solution z¢ of the LTDD equation. So, we only have to prove the
estimates for z¢.

We give first the following remarks and properties.

Remark 3.1. A7 (ve(t,z)), 7 = 1,2, BI(v°(t,x)), j = 0,1,2, h(v(t,x)), plv(t,x)), A (v(t,z)), and
Ce(ve(t,x)) are C-differentiable with respect to v¢(t,z) € R3 and are valued functions in B(R3) or R3
for v¢ belonging to a set included in H*([0,T) x T2, R3).

In [4], the e-balanced property of the system (2) was proved. Hence, we recall it as a remark.

Remark 3.2.

o In [4], to prove that 6, ;(P(v€, 2% €), vo,d) < 0o, we showed that it is quite possible to find d*(e) such
that

HII(l) d*(e) | DS P(ve, 2% €)|| = 0, |a] > 0. (17)
e—
o The system (2) is e-balanced around an initial condition v° satisfying (IC).

Proposition 3.1. The following estimations hold:

91,3(-’467’0076) < Kﬂ (18)
01..(C,0°,0) < K. (19)
Proof.
9 s e 0 5 — d *\51\ D81D32 €
1,¢ (C , Uy ) renax[ Z (6) H’U*Hl}(?‘ﬁgﬁ H U1 yzc (U17 V2, G)HE]’

0
1< s1|+[s2]|<s

d(e) !

= S1 S2 €

—Ienag[ Z € Hv—r%?\quD Dc v1702)||e],
1< s1|+]s2|<s €

d(e)” !
mwml Y T ma [IPRDECEyL )
1<]s1|+]s2|<s €

Since C¢(v) is s-differentiable with respect to v and since |s1]| > 1,
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d(e)”*"!

R A 81 S92 €

max| Y S max [DRDEC e < o,
1< s1|+]s2]<s

01.5(C%,0°,0) < o0
Finally we set 61 4(C,0v°,0) < K.
We can use the same argument for A°(v,€). Indeed, A°(v,¢€) is a scalar function, s-differentiable with
respect to v. Hence, we can set 01 s(A¢,0°,6) < K. O
As in [4], we define the function spaces B%(vg) = B%(vo,d, A), a subset of

C([0, 7], H*(T?,R?)) N C*([0,T], H*~}(T?,R?)),

with s = sg + 1 = 2, such that

— <,
{ ||U UOHE - (20>

|||v_ﬁ0me,T§Av A25>03
with o8 = vo! and 6{f = 0.

Remark 3.3. In [4], by using existence results of [6,7], we proved the existence of the solution (v, z¢) of
the system given by (1)—(10) when the initial value satisfies (IC). With v¢ belongs in B5.(vg) and satisfies

dve(t
the estimate ||v°(t) — ’UOHS . ‘ vdt( ) < A. Thus, we need only to prove the estimates for z¢ and
’ s—1,€
(D z¢
oD*z") for any v € B5.(vp).
ot 0.c
We will proceed in stages: first we will prove two propositions given below and then we will give a proof
. O(D*z¢)
of the estimates for 2¢ and —Q | -
0,¢

Proposition 3.2. For v € B%(vg, 0, A), the following estimation holds:
I -C(w.0ll, < CRA. (21)

Proof.
IV - C(v,¢) Z ax )

J
€

<.
Il
-

IN
MM
i
QJQJ
&Q
<.
<
N

<22: D¢ 2% 4 b0, 2%
T« v J@xj v jaa}j
Jj=1 €
2 ovy  Ov
< -1 ) ) ket ]
<3| @@ Do+ DucidOZE + 5|

<.
Il

IN

Q
M

=

)" D, Gl + 11D, Cill ) 1Vl
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2
<Cmaxd sup  (d(e)7"|Dy,Gll, + 1DuCyll) 1Vl ,

0T o=l <6

< 091,1((367” ,0) [[Vlf,.
Using Proposition 3.1, we obtain
IV-Cv,e)ll, < CK [|Voll, -
Integrating the last inequality in T? yields

IV -C(v, )]l < CK Vol
< Cf(||Vv|\

s—l,e-
Using (20), we obtain

[V-Clv,€)lly. < CKA. O
Proposition 3.3. For € small enough, the following estimate holds:

01.s(A(v,€)V2¢,2°,0) < K. (22)

Proof. For e small enough, we have

I /\

HDf}in;.AE(vl, vg)VfHE ’Dles2 (1 + b1 VZEH6 ,

621

IN

1 ||D81Dé2A6(v1,v2)v,z€H€ | D3 D32 (v1 + b')

=y

HD““DS?.A6 V1,2, €) V2| | D3 D2 P(v, 2 e)H .

V2

N

Using (17), we obtain

max| Z d(e)™*1  max | D5 D32 A (v1, 02, €) V€| ] <

0 lo—v0| <o
1<]s1]+[s2]<s

91)3(P(’U’Z€76)7’U0’5) S K
Then 6 4(A¢(v,€)V2¢,0%,6) < K. O

o(D“z°)

We can now give the proof of estimates for z¢ and H 5

of the existence theorem (Theorem 2.1).
0,¢

Proof. Multiplying (3) by 2¢ and integrating by parts the resulting equation in T2, we get

@2+ /Ae (V=) / V(). (23)

N =

For any ¢ > 0 small enough, we have A°(v¢) > 0, and then — /.AE )(V2z9)? > 0. In addition, using the

Cauchy-Schwartz inequality in the second member of (23), we get
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e Y R I
< CKA [12%lo,c -
Setting C' = CKA, we have
5 1T < el
el < .
If we consider z° as a scalar function of v, we have [|z°||; . = [[2|[ ;2 (p2)- Then integrating the last inequality

in [0,7], r <T, we have

I d . S ~
[ GVl e < [ Ca,
0 0

120 L2 r2y < Cr 4 12°0)| g2 p2y ¥ 7 € 0,77, (24)

e 12l aerey < CT +120) ]2 cre) -

Differentiating (3) at order o with respect to z, with 1 < |a| < p, and multiplying the resulting equation
by 2D%, we obtain

/QD’IM - /QD%ED“V [AVz] = /2Daz5D"‘V .C,

ot
T2 T? T2
d| Dz,
St <2 [0 Doy (v |+ 2 [ DD
T2 T2
en2

dHDaZ ||O,E @ € [e% € € o € [e% €
—a < OHD < ||o76 ||D V- [A Vz ”|0,€ +C HD z ||O,e ||D \e ||o,e~

Using Lemma (A.3) in [6], we obtain

2
d ||Da2€||07e

dt S C ||D04ZE||O’E Ap+1(91,p(A6VZE7UO7 5) + 91,?(0671)0’ 5))

Using (22) and (19), we have

2
d|[D"zcg

7% 1 a €
08 < CRAP D%,

We set C'p = CKAP*! and obtain

|| Dz .

<C,.
dt - 7P

Integrating the last inequality in [0,¢], with ¢t € [0, 7], we have
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D2 lg,c o < Cot,

D24 (®) g, < Cpt + [1D°2(0)l
ST oD@l <pCpt+ Y [DY2E(0) ]l -

1<|a|<p 1<|a|<p

Summing the last inequality with (24), we obtain

12 @llge + D I1D24()

lo.e < @G, + Ot + lz5llg,c + D 1D %o, s

1<]al<p 1<]al<p
> DY B)llg < (Cp + CNt+ > ID 2]l »
jal<p jal<s
12, < @Cp+ OVt + 12611,
max 12O, < (pCp + O)T + A...

We can set 7 = (pC,, + O)T.

Differentiating (3) at order a with respect to z, with |a] < p, we multiply the resulting equation by
A(D*z9) . . . ;
————=. Then integrating that new equation over the torus, we obtain

ot
(D= ) I(D*z°) 11a eo e 7/3(1?“26) o .
(%E/ » ) pev v = [P pey e,
T2 T2 T2
Da € 2
% S C(Hl,p(AEVze,vo,(S) +91’p(V . Ce,vo,é)),
0,¢
D) |° _ oo arit || 22°%)
ot e ot 0.c
Then we have
HM <@, vtelo,T),
ot 0.c

and summing the last inequality on |a| < p, we obtain

<pC, ¥V te[0,T).

p,e

Kz

€
We now set 4 = pC), and we have

<#Vtel0,T]. O

p,€

4. Homogenization

This section is devoted to the homogenization of the system (1). In [4], we showed that, since v¢ is
bounded independently of € and under the assumption that z¢ is bounded independently of €, the solution
of (1) two-scale converges to a profile:

7 =5 e Lo([0,T), L3, (R, L (T2, R?))),

per
2—s

— ze L*>([0,T), LS, (R, L3(T?))).

per

26
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That profile is the solution of the system

B' = +B*-— = —p(v,2) on[0,T) xR x T2,

~V-(AVz)=V-C on [0,T) x R x T?,

with Bi(t,L,2) 5 BU(t,0,2), Bt L o) 2= B2t 0,0), (0ot 2) 2 p(0,7), A) = Alt, L)

[P
€
- t _
A(t,0,2), and C*(v°) = C(t, -, z) =° C(t,0, ).
€
In this work, we do not need any hypothesis for the homogenization of (1), since by Theorem 2.1 the
solution is bounded independently of e. But as indicated in [4], the two equations do not have the same scale

1
for —. So globally, the two-scale convergence of (1) yields the two-scale convergence of the equation with the
€

biggest order for 1 Therefore, in this work we give a more precise homogenization of (1) in Theorems 2.2
and 2.3. ¢

In [4], we used the two-scale convergence introduced in [1,8], but in this work will we use a multiscale
convergence presented in [2]. Particularly, we will use the three-scale convergence.

Let us first recall some properties of two-scale and three-scale convergence.

Definition 4.1. Let (w¢) in L>([0,T), H'(T2,R*)), | > 1, be a sequence of functions.
It two-scale converges to we L>([0,T), L3 (R, HY(T?2,R%))) if for every ¢ € C([0,T], Cx (R, H(T?2,R*)))

we have
T T 1
lir%//we(t,x)z/)(t,z,x)dtdx:///ﬁ}(t,@,x)w(t,@,x)detdx.
€e— €
T2 0 00

T2

It three-scale converges to w € L>([0,T), L¥ (R, L (R, H'(T?,R*)))) if for every ¢ € C([0,T], Cx(R
Cyu(R, H(T?2,R%)))) we have

T 1 1
hm// (t,z)y t— —4,36 dtdx—////u_)tﬂm (t,0,7,x)drdOdtdx.
€
00 0

T2

We can give the following theorem stated in [1,8].

Theorem 4.1. If a sequence of functions (w€) is bounded in L>=([0,T), H'(T?2,R*)), there exists a subsequence
still denoted (w*) and a function w € L>*([0,T), Ly ([0,1], H(T?,R*))) (or L>=([0,T), LF([0,1], L ([0, 1],
H'(T2,R*%))))) such that w® two-scale converges (or three-scale converges) to w.

We can now start the proof of Theorem 2.2.

t t
Proof. Multiplying (11) by a test function ¢(¢, -, —,z) = ¢¥*(t,z) € R*, regular enough, with supp(¢€) C
€ €
[0,7) x T? and ¥(t,0, 7, z) is 1-periodic in § and 7. Integrating the last multiplied equation over [0,7) x T2
yields

J [ i ot 4 et

J=lt2 9
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IR //E

[t e s o e
0

T2 0 J=1 72 J=lr2 o
) NIy
—E—ZZ//we 7——//E / w (0, 2)h<(0,0,0,z) = 0.
J=1lp2 T2 0
Using the chain rule 8;6 = <E;—Qf> —i—% <88Qg> + = o <g—f) , we have
e I\ A(Linye)
[ () e o
T2 0 Jj=1
T [ 2
1 ¢ O(MIy) o OP(N7yF)
Jr672// Zw Ox; wa 022 )
T2 0 Jj=1 j=1
1 r o\
v/ (we <T)> —EWW)
T2 0
T €
f/ /w6 <3a1f> + w(0,2)¥°(0,0,0,z) | =0.
T2 \0O

Multiplying the last equation by €* and passing to the three-scale convergence, we obtain

T 1 1 2 .
_ oY _ O(Liw) B
//// woa'i‘zwo'?j drdfdtdx =0
000 j=1

T2

Finally, we have the equation

In the following, the above steps applied to (11) are called the “scale convergence process,” and the following
steps applied to (11) and (12) are called the “a-scale convergence process.”
Differentiating (11) at order |af, 1 < |a| < I, we obtain

aDO& € o € 1 2
A ZD L w. _4 Z:: 3%

2 2
1 . ow© 1 . ODYw* 1 - 02w
P o J . _ J . _ QNTT
EQZD M Ox ; 62ZM Ox; 62ZD N Ox?
j=1 J j=1 J j=1 J
2
1 S 2D 1.

j= J
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. ) e, U T . ) . . . . 9
Multiplying (26) by ¥(t, -, —, ) = ¥*(t, x), integrating the resulting equation by parts in [0,7") x T2, and
€ €
finally passing to the three-scale limit, we obtain

_ 2

aDa z . . 9D
v ZD Ll Z 8;’ -0

since D*w*® three-scale converges to D®w¢.
We now need to prove that D®w® = Dew¢. For that consider the homogenized equation for w°.

Differentiating (12) at order |a| <1 yields

2
aDa aDa
Z DL} - Z L =0. (27)
In addition, wy is a unique solution of (12), and then D*u" is a unique solution of (27). Then D*w° =
Dewe. O
We now give the proof of Theorem 2.3.

Proof. Replacing (Antz2) in (11), we have

2 2
1 ; 0w ; 0%we
e Z 0 9z; T 0a?
Jj=1 Jj=
2 2
1 ; Owe ; 0%w
— ZMl'axj +ZN1 52 +E0) E1 =0 (28)
j=1 j=1 J
— € — € 1 — € 1 — €
Replacing the chain rule % = (8_11;0) + - (%) + a (%) in (12), we have
OWs .,  0ws  (Owo\© 1 [0\
L0 (22} 222 —o. 2
ot +j§ 0.c Bz, ( o) “e\an) =0 (29)
Subtracting (29) from (28) yields
O(we —w§) 1 o O(we —w§) 1 o o
— %o - 7. — %o - 7
at +e4; 0 "o, +63; 1 B,
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82
ZNJ 2 2 +E0)

() g

0w\ ©
+(W)

2

oK 1 jaKlf 1
¢ 6t +€_3J;LO xj SZ

Kle — WS + ews + 621D§ + ES’LZ}Z is a solution of

aKlf 15 L1 2.
2 2
1 ow* - 02w
—a (M g N 82)
j=1 Tj=1 J
1 Do\ | o O s g O
2 (W) LM G+ 2 M T )

() -#)-

(30)

By using the same properties and assumptions as in Theorem 2.1, we can prove that the system (30) has a

unique solution in a space Bf. satisfying estimates as in Theorem 2.1.

We now apply the scale convergence process to (30).

t
Multiplying (30) by a test functions (¢, -, —,x) = ¥°(t,z) € R* regular enough, with supp(¢¢) C
€ e

[0,7) x T? and 0, 7+ )(t,0,7,x) is 1-periodic in § and 7. Then, integrating that new equation by parts,

and using the chain rule, we obtain

2

T 9 .

1 l,e 81/) ‘ l,e 8L67€¢6 €

76—3// K ((%) +Y K e +) e
T2 0 j=1 J j=1

Il
-

T2 Jj=1 J

aL{"eqpf
5$j

V(s oM & 9PN e
[ G T
0
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31110 6 2 € a]\4-1j,e’(/)€ 2 € 82Nf,61/)6 €
J

T2 s j=1 =1

/ / <<8w) Bt K (2—?)) ‘T[ K14(0,2)5°(0,0,0,2) | 0.

Multiplying the last equation by €3 and using three-scale convergence, we have

Tl 2 ) RV oL
*_ YT 0 T =
[\ 25 om 5 om0 =0
00 0 J=1 j=1

T2

Finally, we obtain

Oy | gy DB 00
or  — 0 Ox; - b Oz '

Jj= Jj=

Hence, K" three-scale converges to w; in the space L>([0,T), LF([0,1], L ([0,1], L*(T? R")))). Now
it remains to prove the three-scale convergence for all differentials at order || < [ of K1€. Applying
the a-scale convergence process to (30) and (13), we obtain D*K¢ three-scale converges to D%w; in
the space L>([0,T), L ([0,1], L ([0, 1], L*(T?, R%)))). Then K¢ three-scale converges to w; in the space
L=([0,7), L ([0, 1], L (0. 1] H'(T2 R1))))

€ p€

We can do the same work for L — K% = @S + ew§ + €2wg, which is the solution of the following
€

system:

8K2€ 1< 1< 8K1€
EEOLESS s

L ([ 0wo\* 0wy \ 1 (0w \°
— — | —FEi. — -{——) =0. 31
+62(<at> 1’+(89)>+6<8t (31)
As above, by using the same properties and assumptions as in Theorem 2.1, we can prove that the system

(31) has a unique solution in a space B satisfying estimates as in Theorem 2.1.
Applying the scale convergence process to (31), we find that ws is the solution of the following equation:

ow 2 ow 2 ow
2 j 2 i 1
<4 E [J.—= 4 E 7.
87 0 al‘j 1 ij

Jj=1 J=1
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Applying the a-scale convergence process to (14) and (31), we obtain D*K?*¢ three-scale converges to D%ws
in the space L>([0,T), LF ([0, 1], L ([0, 1], L*(T?,R*)))). So, K> three-scale converges to wy in the space
L>([0,7), Lg ([0,1], L ([0, 1], H'(T?,R*)))).

2,6 _ he€
We do the same work for D2 e = w§ + ewy, and find K¢ is the solution of the following
system: ¢
aKSf = 1 2 0K?e
j=1 j=1
2 2

i 8K1’€ i 82K1’€
DMy gD N5
j=1 Or; 5 0}
L (9 e+iMJ +ZNJ G E

Z 90 = a 922 0

1 Do owr \ ©

() -me (%)

L[ (0w, (Owz\7\ , 1 (0w _
T ((W) +(W> )*z(w) =0 (32)

As previously, we can prove that the system (32) has a unique solution in a space Bf. satisfying estimates
as in Theorem 2.1. Applying the scale convergence process to (32), we show that w3 is the solution of the

following equation:

G R ROWIR

2 _ 2 _
Sy Oy 2
_ 0 oxj 4 0 9g2
]:1 ]:1 J
T - - 92w
0 ] 0 1 0
TNy 0 NTN 2B g
T ; B ; 1 TR0

As above, we apply the a-scale convergence process to (15) and (32) and obtain D® K€ three-scale converges
to D*w3 in the space L>([0,T), L ([0,1], LF ([0, 1], L*(T?,R*)))). Then K™ three-scale converges to w3
in the space L>([0,T), L3 ([0, 1], L ([0, 1], H'(T?,R")))).

K3,e €
Now = — W8 _ e _ wy is the solution of the following system:
€
OK 1 [~ 0K 2 aK N OPKE
il 7. NY -
TRl D s +; X_: 2 ; Oz}

1 Owo\ (001 ) o, 0K N OPKLe
— (_(W> —<W) +;M1- oz, -‘rZNl- 32 + F .

j=1

() (&) ra () + ()i (Ge) -0 o
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We can prove that the system (33) has a unique solution in a space B satisfying estimates as in Theorem 2.1.
Applying the scale convergence process to (33), we show that w, is the solution of the following equation:

E)w4 Z LJ 871)4 Z

_i j.%_i j 07wy
0 8.’E] _ 0 62
Jj=1 Jj=
Dy O < TR 92w
0 1 1 1 j 1
ZH T NT g L N NI =0.
o "o ; ', ;1 92 0

We do the same work as above, and apply the a-scale convergence process to (16) and (33); we obtain
D*K*¢ three-scale converges to D%w, in the space L>([0,T), LE([0,1], L ([0,1], L*(T?,R*)))). Then
K*¢ three-scale converges to w, in the space L>([0,T), L3 ([0,1], LE([0,1], H'(T?,R%)))). O

5. Conclusion

In this work, we have extended the existence and uniqueness and the homogenization results given in
[4]. That is, we have shown the solution of the LTDD equation, z¢, is bounded independently of the small
parameter €. Also, we have given homogenization and corrector results for the coupled system.

In subsequent work, we will perform numerical studies on both systems: the coupled system and the
homogenized one. Precisely, we will compare the solutions of these systems.
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