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Let X be a uniformly convex Banach space such that its dual X* has the
Kadec—Klee property, C a bounded closed convex subset of X, and 7 ={T(¢):t
[0,)} a one-parameter nonlinear semigroup which is asymptotically nonexpansive
in the intermediate sense. We show that every continuous almost orbit of . is
weakly almost convergent to a common fixed point of 7. A discrete version of our
main result is also included. ~ © 2000 Academic Press
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1. INTRODUCTION

This paper is devoted to a mean ergodic theorem for nonlinear semi-
groups and mappings which are asymptotically nonexpansive in the inter-
mediate sense. The first results of this kind for nonexpansive semigroups
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were established by J.-B. Baillon and H. Brezis [3] (see also [2]), N. Hirano
and W. Takahashi [14], and S. Reich [24-26]. See also, [12, 13, 18, 20, 21,
23, 27-29, 31, 32], and especially the very nice survey by R. E. Bruck [8].
An up-to-date bibliography can be found in [10]. Our main theorem
(Theorem 4.1) improves upon a result proved by J. Garcia Falset and the
authors (Theorem 4.5 in [10]) for asymptotically nonexpansive semigroups
of Lipschitzian mappings. We also include a new mean ergodic theorem
for the discrete case (Theorem 5.3). The Zarantonello inequality [33]
(rediscovered by J.-B. Baillon in [1]) and the y-method due to R. E. Bruck
[6, 8], are basic tools in the proofs of almost all mean ergodic theorems for
asymptotically nonexpansive mappings. The main problem in the proofs of
our results is that we cannot use this method directly because our opera-
tors are not Lipschitzian. To overcome this difficulty we need a long
sequence of auxiliary lemmas and theorems (see Section 3). Only the first
three lemmas are similar to those proved by H. Oka [22] for the iterates of
a mapping which is asymptotically nonexpansive in the intermediate sense
(see also [15]).

2. PRELIMINARIES

Throughout this paper X is assumed to be a uniformly convex real
Banach space, C a nonempty bounded closed convex subset of X, and T a
mapping from C into itself. We denote by co M and by clco M the convex
hull and the closed convex hull of M C X, respectively, and w,({x,})
stands for the set of all weak subsequential limits of a bounded sequence
{x,} in X. The closed ball centered at 0 € X and of radius r > 0 is
denoted by B,. We also put

n
Al == (A,..0,A) 0 =0,i=1,2,...,n, YA =1y.
i=1

Let 7= {T(¢):t € [0,%)} be a family of self-mappings of C. The family
J is said to be a nonlinear semigroup which is asymptotically nonexpansive
in the intermediate sense if the following conditions are satisfied:

(i) T(1r): C - C is continuous for each ¢ € [0, =);
() T(s + t)x = T(s)T(t)x for all s,t € [0,%) and x € C;
(i) TO) =1,
(iv) The inequality
(*) limsup sup ([|7(t)x — T(¢)yll = llx —yl) <0

t->» x,yeC
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holds;
(v) T(t)x is continuous in ¢ € [0, ) for each x € C.

The notion of a mapping which is asymptotically nonexpansive in the
intermediate sense was introduced in [9].

The set of common fixed points of the semigroup  is denoted by F(9).

We say that a function u: [0,0) — C is an almost orbit of 7 [5] if

lim( sup |lu(t +s) — T(t)u(s)||) = 0.

SN el0, )

Let w,(u) denote the set of all weak subsequential limits of {u(#)}, ¢ g, ., as
t — o,

Finally, recall that a Banach space is said to have the Kadec—Klee
property (KK-property, for short) [11] if whenever w-lim, x, = x with
llx,Il = llx]l, it follows that lim,, x, = x strongly.

3. AUXILIARY LEMMAS AND THEOREMS

The common assumptions in the sequence of lemmas and theorems in
this section are as follows: X is a uniformly convex Banach space, C is a
bounded closed convex subset of X, 9 = {T(¢):t € [0,)} is a one-param-
eter semigroup of self-mappings of C which is asymptotically nonexpansive
in the intermediate sense, and u is an almost orbit of 7.

The first three lemmas and their proofs are analogous to the lemmas
given in [22] (see also [15] for a correct proof of Lemma 3.1) and therefore
we omit their proofs here. Let us only mention that the convex approxima-
tion property of X X X (where X is a uniformly convex Banach space) [7]
plays a crucial role in these proofs.

LEMMA 3.1. For €> 0 there exist t.>0 and &, . > 0 such that if
t=t, 2,2, € C,andif |lzy — z,| = IT()z;, — T(Dz,ll < 6, , then
IT()(Azy + Az5) = AT(t)z, — AT (1) 2, < e
forall A = (A, A,) € AL
LEMMA 3.2. For € > 0 and for each integer n > 2 there exist t, > 0 and

. > 0 where t_ is independent of n, such that ift > t_, z,, z,,...,2, € C,

= les

andlf llz, — z; =Tz, — T(t)zjll <9, . for 1 <i,j<n, then

T(t)( i )\izi) - i NT (1) z;

i=1

forall X = (A, Ay,...,0,) € AL
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LeEmMMA 3.3. For € > 0 and for each integer n > 2 there exist t. > 0 and
6. > 0 where both t_ and &, are independent of n, such that if t > ¢,
2129500y 2, € C,and if |lz; — zj|| —IT(®)z; — T(t)zj|| <8 forl<i,j<
n, then

=

MT(t)z|| < e

i=1 i=1

HT(t)( i )‘izi) -

forall A = (A, Ay,...yA) € AL

Now we are ready to prove a theorem about the limit behavior (in the
norm) of almost orbits.

THEOREM 3.1. Let X be a uniformly convex Banach space and I a
semigroup of self-mappings of a bounded closed convex subset C of X which is
asymptotically nonexpansive in the intermediate sense. Suppose that u, and u,
are almost orbits of 7, f,, f, € F(9), and 0 < a < 1. Then the limits

lim [J,(6) = uy(1) |,
lim [luy(6) = £
and
lim [|auy(£) + (1= a)fy = fo]

exist.

Proof. We have

ui(t + ) —uy(t + )|
<[luy(t +5) = T(Du,(s) | +[T()us(s) —uy(t +9)|
+[T()ui(s) = T(t)uy(s) |
< sup |u (¢ +s) = T()u(s)||

t'e[0,»)

+ sup Ju (2 +5) — T()uy(s)||

t'€[0, )
+IT(O)ui(s) = T()un(s) || —[lus(s) = un(s)|]
() = us() .
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Therefore, by (), we get

limsup ||, (1) — u,(2) ||
t— oo

limsup ||u,(t +5) — uy(t +5) |

> >

< sup [luy (¢ +s5) = T()uy(s)|
t'e[0,»)
+ osup [luy(# +s) = T(¢)uy(s) |
t'€[0, )
+limsup sup (|T(t)x — T(t)y| —llx = yll)
t—>» x,yeC
+lui(s) = ua(s) |
< sup [luy (¢ +5) = T()uy(s)|
t'e[0,»)
+ osup [luy(# +s) — T(¢)uy(s) |
t'e[0,»)

Hui(s) = us(s) |

for each s € [0,%). Next, applying the definition of an almost orbit we
obtain

timsup (1) = (1) < Timinf Ju,(5) = ws(s) .

t— o0

Since the constant function u,: [0,%) — C defined by

us(t) =1, t>0,

is an almost orbit of .7 it follows from the above that
tim (1) — £
exists. Moreover, if f}, f, € F() and 0 < « < 1, then
||au1(t +s)+(1—-a)f; _lel
< afuy(t +s5) = T(t)uy(s)|
+aT(u(s) + (1= a)f; = T(1)(au(s) + (1= a)f)]
+H|T (1) (auy(s) + (1 = a)fy) = 1
_”aul(s) +(1-a)f _lel +||0‘“1(S) +(1-a)fy _f2||
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<a sup [u(t +s) = T()uy(s)||
t'el0,)

+||ozT(t)u1(s) +(1—-a)f, - T(t)(aul(s) + (1 - a)fl)”

+H|T(6)(auy(s) + (1 = a)f) —f

—llau(s) + (1 = a)f, = foll +]au,(s) + (1 = @) f; = f2].
(3.1)

For a given € > 0, let §, . > 0 be taken from Lemma 3.1. There exists s,
such that for s > s, and for an arbitrary ¢,

() = fill =T ui(s) = fill < 8,
Indeed,
ur(s) = Fill =T () () = fil]
<[u(s) = fill =llui(s + ) = Fill HIT(O)ui(s) —ui(t +5)]
<[ui(s) = fill =lluiCs + 1) = £l

+ sup [|T(¢)uy(s) —uy(t +9)|
t'e[0,»)

and it is sufficient to apply the definition of an almost orbit and the fact
that

tim [lu(5) = £,

exists. Returning to (3.1), we observe that for s >s, and ¢ > 1, (see
Lemma 3.1) we have

”aul(t +5) +(1-a)f _lel =a SFP )||”1(t, +s) - T(t’)ul(‘g)”
t'e[0,%
+”T(t)(0‘”1(s) + (1 - a)fl) _f2||
_”0‘”1(5) +(1-a)fy _lel
+||0‘”1(S) +(1-a)fy _lel + €.
Hence, by (*), we get

limsup | au,(¢) + (1 = a)f; = f

t—

= limsup || au,(t +5) + (1 — a)f, — f»

t—

<a sup |lu (¢ +s)— T )u(s)|

t'€[0,»)

+||au1(s) +(1-a)fy _f2|| + €
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for s > s,. Therefore directly from the definition of an almost orbit we
obtain

limsup || au,(t) + (1 — @) f; — f»|

— 0

< liminf||au,(s) + (1 — a)f; — f,|| + e,

and since € > 0 is arbitrary we see that

limsup | eu (1) + (1 — a)f; — f>||

—

< liminf || au,(s) + (1 — a)f, — £,
§— 0

which yields the claimed result. i
To prove the next theorem we need the following lemma also.

LEMMA 3.4. Let X be a uniformly convex Banach space and 9 a semi-
group of self-mappings of a bounded closed convex subset C of X which is
asymptotically nonexpansive in the intermediate sense. Suppose that u is a
continuous almost orbit of . Then u is uniformly continuous on [0, ).

Proof. Let € > 0 be arbitrary. One can choose s, > 0 such that for all
u,v € C and s > s,

€
IT(s)u — T(s)v| —llu—vll < 1
and

€
sup ||u(t +5) — T(t)u(s)” < —.
te[0, %) 4

Next, since u is uniformly continuous on [0,2s, + 1] there is a positive
6 < 1 such that

lu(s) = u(s)] < 5

for s,s' €[0,2s, + 1] with [s — 5’| < 6. Now suppose s,s" > 0 are such
that 0 <s' —s < 6. If s < 25, then s’ < 25, + 1 and hence

lu(s') = u(s)l < 5 < e.
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If s > 2s,, then

lu(s’)y —u(s) | <u(s") = T(s = sp)u(s’ —s + sp) |
T (s = sg)u(s’ —s +s55) = T(s = s)u(so) ||

T (s = so)ulsy) —u(s)l|

€ , € €
<Z+||u(s —5+5) _M(SO)||+Z+ 7 e

Now we prove an inequality which will play a role similar to that of the
v-inequality in the Bruck method (see also Lemma 2.6 in [31]).

THEOREM 3.2. Let X be a uniformly convex Banach space and 9 a
semigroup of self-mappings of a bounded closed convex subset C of X which is
asymptotically nonexpansive in the intermediate sense. Suppose that u is a
continuous almost orbit of 7. For any € > 0 and t > 0 there exists R_, > 0
such that forallh > R_,, r > R_,, and t > 0,

Hrug( Mr+7yh)——f7xmuu+7)m
In particular, for each t > 0 there exists r, > 0 such that

1
- (2

‘huo( wr+7yh)——f7xmuu+f)m

forall h,r > r,.

Proof. By Lemma 3.4, for a given € > 0 there exists

0<8<38,,

(8, /¢ is taken from Lemma 3.3) such that [lu() — u(Dll < ¢ if |7 — 7] <
5. Let0=r1,< 7 < -+ <7, =1 be a partition of [0, ¢] with n, > 2 and
AT—T—11<8f0rz—12 ., n,. Then

l

n;

1 1
Ht/u(r-f— T)dT——Zu(r-f-T)AT

1*1
1 T €
S7 f lu(r+ 7) —u(r+ 7,)|dr < e

Ti-1

HM:
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Since the semigroup 9 is assumed to be asymptotically nonexpansive in
the intermediate sense, there exists R. such that

€
(T(h)v — T(h)w]| <llo —wll + 3

for every v,w € C and h > R.. Hence

1 ™ -
H(Zg T(m)(ulr + 7)) A | = 7/0 T(h)u(r+ 7)dr
1 .
< 71':1[7,-,1 IT(h)u(r + 7)) — T(h)u(r + )| dr
1 . ) 6
) 7i—1'/;,~1(”u(r +7) —u(r+ )|+ g) dr < 3

for h > R... Since u is an almost orbit, there exists 1567, > 0 such that

85/3

sup||u(r + h) — T(h)u(r)| < 3

h=0

and (see Theorem 3.1)
sup| ||u(r + 1) —u(r+ Ti)” —”u(r +h + Tj) —u(r+h+ ﬂrl)|||
h>0

66/3

<
3

for r > Iim and 1 < i, j < n,. It then follows that

||u(r + Tj) —u(r+ frl-)” —||T(h)u(r + 'r]-) — T(h)u(r + frl-)”
<|u(r+ 7)) —u(r+ )| = |u(r+h+7) —u(r+h + 1)
+||u(r +h+ 1) = T(h)u(r+ T])”
+u(r+h+ 1) = T(h)u(r+ 7)|
<83
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for r > Iée’t and 0 < i,j < n,. This in turn implies (see Lemma 3.3—now
we denote ¢, 5 by R?)
;

1 1 ™
T(h)(; You(r+ 1) ATi) — (7 Y T(h)(u(r + Tl-))A’Tl-)

i=1 i=1

€
< —
3

for r > Iim and & > R!. Next, we have
n;

T(h) lftu(r +1)dr| - T(h) ! Y u(r + 7,) A,
tJo t

i=1

€
+ —
6

n;

(%fotu(r+ T)dT) - (? Y u(r + 7,) Ar,

<
i=1

€
3

N m

€
< —+
6
for 4 > R.. Finally, we get

HT(h)(%/:u(r+ T)df) - 1fotT(h)u(r+ 7) dr

<

T(h)(%fotu(r + 1) dT) - T(h)(% %u(r + 1) ATZ,)H

i=1

—+

1
Y u(r + ;) AT,»)

Lz

T(h)

1 ™
(3 Z s )

i=1

1 M 1 .,
I 7 X T (u(r + T,»))An) - 7/() T(hyu(r + 7) dr

i=1

€ € €
<z + s+ =€
3 3 3

forall h > R, , and r > R, ,, where R, , = max(R_, R, Iis’t). To get the

second inequality it is sufficient to set

rt:Rl/t,t'
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Remark 3.1. Without loss of generality (see the proof of Theorem 3.2)
we will assume in the following that

limr, = .

— oo
Let us observe that in place of r, we can take arbitrary r; > r,.

The theorem just established allows us to prove the next four lemmas
which are crucial in the proof of our main theorem. The common assump-
tions in this sequence of lemmas are as follows: X is a uniformly convex
Banach space, C is a nonempty bounded closed convex subset of X, .7 is a
one-parameter semigroup of self-mappings of C which is asymptotically
nonexpansive in the intermediate sense, u is a continuous almost orbit of
7, and {r,}, . , is the family of positive real numbers appearing in Theorem
3.2.

LEMMA 3.5.  For each f € F(9) and any family {r]} of real numbers such
thatr, = r, fort > 0,

L
lim 7fou(r;ﬂ)df—fu
exists and
L L
lim 7fou(r,'JrT)dT—fH= tli_)nolOHT/(;u(rt—f— T)dT—fH.

Proof. We have the identity ([27])

dr +g(t,p,h), (3.3)

1 t 1 t 1 P
?'/(-)u(7+h)dr=?/(‘) (;/(; u(t+ mn+h)dny

where

1
g(t,p,h) = Efop“’ — ) [u(n +h) —u(n +h + 1)) dn

for t,p > 0 and h > 0. This implies that

1
t+s

1

ft+s(—fsu(7+ n+r,)dn|dr
0 s o

t+s ,
'/(‘) u(r,+s+7)d7'=t+s

+g(t+s,8,1.,)
for t, s > 0. Assume now that

t>r.

N
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If
M = sup|lx|l,
xeC
then
2M s sM
lt 550l < o [ (6 = mdn= = 0.

Next, we observe that

1 t+s 1 N
t+Sv/;) (Ef()”(T*‘n*‘rtlﬂ)d”fI)dT—fH
1 r; 1 S ,
= t+sfo ;'/;)(M(T+n+r’+5)_f)dn dr
1 t+s 1 s ,
t—|—s.// ;‘/(‘J (u(7+n+rt+s) _f)dn dr
I, +1,.

One can easily see that

1 1 s
I, = f’—fu7+ +r —f)dn|dr
1 t+S0|:S()(( n l+S) f)”)
2Mr,
< — 0
t+s o=
For 7 > r;, set
ht,szrl,+s_r;+7'
Consequently,
ht,szrt,Jrs
and
ht,szr;Jrs {0 OO’ ht,szr;Jrs §— 00 (34)

uniformly in s (in ¢, respectively). Fix € > 0. By (*) and (3.4), there exists
§ > 0 such that for all s > § and for every v,w € C,

1 € 3.8
- < = .
S <3 (3:5)
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and
ITCh, 0 = TCh, Jw] <llo = wl+ 5. (3.6)
Now we fix s > § for a moment. By (3.4) there exists 7 > 0 such that
h, >
for all ¢ > . Therefore, by (3.2), (3.5), and (3.6),
1

;fs(u(H N+ i) —f)dnH
0
1

S 1 s
— [uCh,, +ri+m)dn - (—f T(h,,)u(rs+m) dn)”
s Jo N}

<

+ %fOST(ht,s)u(r; +m)dn— T(hf,s)(éfosu(ré + ) dn)H

=+

Twmﬂéfwﬂ+mdﬁ—fu

1 s
S Nl ri ) = T u(rt + m) | dn

<
1 .5 , L s ’
5 [ T Ju(r + m) dn = T(h, )| 5 [w(rl+ ) dn
1 ,s , €
+ ;/(;u(rs+n)dn —f|+5

IA

1 s 1
S L lChy i m) = TChu(r+ ) dn +

€
+ —
2

+

1 s
~ u(r§+n)dn) —f
s Jo

IA

1 s
S Nl ri ) = T u(rt + m) | dn

+ + €

(%f:u(rﬁn)d”ﬂ)—f

sup [u(h +r) = T(h)u(r)]|

!
h>0,r>r;

IA

+ + €

1 ,s
St myn|
NR]
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for 7> r] and for all # > 7. Hence we see that

l. l 1 t+s[ 1 /S( ( ' ) )d :| d
m supl = umsup||—— - u(t+ ] +r - ’ n 7
. 2 . t s Jo t+s

=< SUP ”u(‘l r) 1 (n)u(r) ”

,
h>0,r>r;

1 s
~f u(r§+n)dn) ~f
s Jo

for all s > §. Consequently, for all s > § we have

+ + €

1
lim sup fu(r +7) dT—f‘
t—
T s
= lim sup —/ u(rj,, +7)dr—f
— >
< sup Ju(h+r) - T(hyu(r)|

h>0,r>r]

+ + €.

1 /s
o u(r;+n)dn)—f
§0

Now, it is sufficient to observe that the definition of an almost orbit
implies that

sup [u(h +r) = T(h)u(r)| ==

h>0,r>r;

§— 0
and therefore
1 . 1
lim sup —f u(ri+ 7)dr—f /u(r +m)dn)| —f
t— t 0

Since e > 0 is arbitrary, this concludes the proof of Lemma 3.5. |

COROLLARY 3.1.  For each f € F(9) and every € > 0 there exists t, > 0
such that

< liminf + €.

§— 0

1 1
fu(n+rt)dn f‘—llmH fu(n+rz)dn f

for all t > t, and all families {r]} of real numbers with r| > r, fort > 0.

LEmMMA 3.6. For every h > 0 and r > 0,

lim 1[T(h)u(r+7)dr——f u(r + ) dr| = 0.

[—x

Proof. Let

M = supl||x|l.

xeC
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For fixed 4 > 0, r > 0, and ¢t > & we have

‘ 1

7fO’T(h)u(r +1)dr— %fotu(r +1)dr

1
< [IT(Wyu(r +7) —u(h +r+ 7] dr

Ly ‘
+—|Ju(h+r+7)dr— | u(r+ 7)dr

IA

%fot(zu;())”T(ﬁ)u(r +7) — u(fz +r+ T)”) dr

/:l[u(t +r+7)—u(r+7)ldr

1
+ —
t

1 . - - 2hM
< 7](;(§up||T(h)u(r+ ) —u(h +r+ 7)”) dr + - —0
h=0

and the proof is complete. |

LEMMA 3.7. For h > 0 and any family {r)} of real numbers such that
r>r, fort >0,

1 1
7/O’T(h)u(r; + 1) dr - 7]{?14(;’{ + ) dr

Proof. Indeed, we have

1 1
H?fotT(h)u(rl’ + 1) dr— 7[O’u(r; +1)dr

lim =0.

t—> >

1
<~ [IT(utr + 7) = u(h +ri+ 1) dr
0

1 t t
+7Hf0u(h+r;+7)d7—fou(r;+T)dT

IA

lft(sup ”T(fz)u(r,’ +7) — u(l—z + 7+ ’T)”) dr
7o h>0

1| n
+—Hf [u(t +r] +7) —u(r, + 7)] dr
t|“o

L o . 2hM
[ (sl rEyutr + 7y = a4 7)) ar v S 0

t—
h=0

IA
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LEMMA 3.8. Foreach f,f, € F(7) and 0 < a < 1,

lim

t—>

1
a?f u(ri+m)ydr+ (1 —a)f, —f,

exists for every family {r]} of real numbers such that r| > r, fort > 0.

Proof.  'We will apply once again the following identity ([27]):

dr+g(t,p,h),

1 t 1 t 1 P
7f0u(7+h)d7=?f0 (;/{; u(r+n+h)dn

where

1 .p
g(t,p.h) = gfo (p—m)u(n+h) —u(n+h+1)]d

for ¢, p > 0 and A > 0. Using this identity we see that

1 t+s ,
t+sf0 u(t+r,,)dr
1 t+s 1 s , ,
=t+s'/(; ;j;) ”(T+77+rz+s)d77 d7+g(t+S,S,r[+s).

Assume that

t>r,.
Setting
M = sup||xl|,
xeC
we get
t+s,s,r < - dn = —> 0.
”g( s, 8 rt+s)|| s(t+s)f ( 77) n= t+g§ o
Next, we have
tes (1 s ,
H t+s/ (?/()u(T-l-n-l-rtH)dn)dT-i-(l—a)fl—

/OS au(r+n+r,,) +(1—a)f, - ]d”f])dT

JNEN
m/,'”(—f "‘”(7+7’+’t'+s)+(1—a)f1—f2]dn)d7
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Let us note that

!

rS
(M AN+l == 0.

I, <

Assume now that 7 > r; and set

o -
h,g=r{i,s—r +7.
Then
!
ht,s =Ty
and therefore
’ ’
ht,s = rt+s PR oo’ ht,s = rt+s §— 0 % (37)

uniformly in s (in ¢, respectively). Next we define for s > 0,
W(s) =sup{llu(h +r) = T(h)u(r)|:h = 0,r=r}.
It is obvious that

W(s) —= 0. (3.8)

§—

Let us fix € > 0 and let 0 < § < min(§, ,, 5), where &, , is as in Lemma
3.3. By Corollary 3.1 there exists § such that for all s > §,

1 s T 5

H;]O u(n +r)dn—f, —llgrolCHTfou(nw,)dn—fl <3 (39)
and

L R S

‘ S et + ) dn =1, _}Efjcujfou(wrn)dn—fl <3

(3.10)

Next, without loss of generality, by (3.8) we can also assume that for s > §,
! N4 ° 3.11
-+ <= .
~+W(s) <5 (3.11)

Fix s > § for a moment. By (*) and (3.7) there exists 7 > 0 such that
hy > 7,

and

€
I7Ch, )0 = TCh ] <o = wl+ 5
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for every v,w € C and t > . Consequently, by (3.9), (3.10), and (3.11) for
this s and each ¢ > 7 we obtain

1 s 1 s
H;/ u(n +ry)dn—f T(ht,s)(?/ u(n +ry) dn) —T(h,,)f
0

0

<

1 . , . 1 !
~[Cu(m+r)ydn—f,| = lim |- [“u(n+r)dn~f,
0 1-=|[ 1 /o

N

1

(5 [ utn s myan) = <[ 100, putn 4 in]

N

1 s
5 [T + ) = ulh, o+ 0+ 7)) dn

1 4
+ lim || [“u(n + 1) dn ~ f,
1/

| —

N

1 s
—H—fo u(h, ; + n+r§)dn—f1H

6 1 0
s§+;+‘lf(s)+§<8<6€/2.

Next, applying Theorem 3.2, Lemma 3.3, and the above conditions and
inequalities, we arrive at

1 .
ac [u(r+m+r)dn+ (1-a)f, —f
s 70

1 s
a—[Cu(h, +n+r)dn+(1-a)f ~f,
§70

IA

1 s

a— [ NuCh,  +n+7r) = T(h, Ju(n + 1) dn
s

1

5

+ « %fos T(h, u(n+r))dn— T(h,’s)( fosu(n +r) d”))”

1
+ —
N

aT(h,,s)( [[utn + 7y dn

+ (1= a)T(h, )i

—T(ht,s)(a%fosu(n +r)dn+ (1- a)fl)

+

T(hz,s)(a%fosu(n +ry)dn+ (1 - a)fl) —f

v 1 €
< +a—+ =+
a¥(s) as+ 5

1 ,s
a;fu(n+r£) dn+ (1 - a)fl) -
0

€
+—.
2
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It then follows that

limsupl, = lim sup

[— ® [ —x

1 t+ 1 N
t+ / S(__/;) [“”(TJFTIJFH'H)

sy s

+(1—a)fi = fo] d”)) dr

1
<a¥(s)+a—+e+
N

1 s
a;f u(n+r)ydn+ (1 —-a)f,—f,
0

for s > § and hence

lim sup

t—>®

1 .
a?/;)u(n+r;) dn+ (1 —a)f,— f,

< liminf

§— ®

1 ,s
a;j(;u(n-f-r;)dn-f—(l—a)fl—fz + €.

Since € > 0 is arbitrary, we obtain

1
lim sup a?ftu(’r] + r{) dn + (1 - a)fl -5
0

[—

< liminf

5§ ®

1 s
a—f u(n+r)dn+ (1 -a)f,—f,
N}

>

which concludes the proof of Lemma 3.8. |
Directly from Lemma 3.8 we arrive at the following corollary.
COROLLARY 3.2. Foreachf,,f, € F(9) and 0 < a < 1,

lim

—

1 .
a?fou(rt’+7)dr+(1—a)fl—f2

= lim

t—

1 .
a;fou(rt+7)d7+(1—a)f] -f

for all families {r]} of real numbers such that v, > r, fort > 0.

Finally, we recall that F. E. Browder [4] proved the demiclosedness
principle for nonexpansive mappings in uniformly convex Banach spaces.
We now extend Browder’s principle to nonlinear semigroups which are

asymptotically nonexpansive in the intermediate sense (see also [27] and
[30D.

THEOREM 3.3. Let X be a uniformly convex Banach space, C a closed
bounded convex subset of X, and I a semigroup of self-mappings of C which
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is asymptotically nonexpansive in the intermediate sense. If {xg}z c , is a net in
C converging weakly to x and if

lim (limsup ||xB - T(t)xB”) =0,
BeA

—

then T(t)x = x for all t € [0,) (in other words, x € F(9)).
Proof. We shall show that
lim | T(¢t)x — x| = 0.
t— o

We choose 7,5 and §, ;5 as in Lemma 3.3. By (+) and by our hypothesis
there exists ¢,(€) such that if ¢ > ¢,(e) then

€
T()u — T(t)v| = llu —vll < 3
for all u,v € C and
1
lim sup ||xB - T(t)xB” < 585/5.
BeA
Hence there exists B, , € A such that

1
g = T(6)x] < S0 5

for B> B, ,. Put € = min(%Ss/S, £). Now we can also take #, > 0. Let
t,(€) = max(t, 5, t,(€),t.) and let ¢ > t,(e). Since x € cleo{x; : B = B, J,
there exists a sequence

ln
{ ) /\n,ixﬁ(n,i)} € CO{XB B = Be,t}

i=1
such that

ln

lim ) A iXpn.iy = X.

—> 0 .
n i=1

Since
X600y = Xpen | =T Xp0n, 0y = T(6) X |

<[ %1y = T(O) Xpn.i) | + [ *pen. 1y = T Xp0, | < 85

for 1 <i,j </,, Lemma 3.3 implies that

=4,

I}

lll n
T(t) Z )\n,ixﬁ(n,i)) - Z )\n,iT(t)xﬁ(n,i)
i=1 i=1

€
< —=.
5
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There is also N, . > 1 such that
I,

Z A iXgn,) — X

i=1

< —
5

for all n > N, _. Since x € C, the combination of the above inequalities
gives

ln
||T(t)x —x|| <|T(t)x —T(t) 'Zl/\n,ixﬁ(n,i))
i=
l, l,
+ T(t) Z An zxﬁ(n 1)) Z A T(t)xﬁ(n i)
i=1 i=1

l,
X A (T X0 i) = Xpniy)
=

~

3

+ /\n Xgn,) —X|| < €

i

whenever n > N, . and ¢ > t,(€). This shows that

I7(1)x = x|l < e

I
—_

for ¢t > t,(€) and therefore

im T(t)x = x.

t—>x

By continuity of the semigroup .7~ we get

T(s)x = T(s)(tli};T(t)x) = tlingcT(s)T(t)x = tlin}gT(S +1)x=x

foreach s > 0. |1

4. MAIN RESULT
Our main result stems from the following lemma proved in [10]. The
idea of this lemma and its proof are due to J. Garcia Falset.

LEMMA 4.1. Let X be a uniformly convex Banach space such that its dual
X* has the KK-property. Suppose {x,} is a bounded sequence such that

lim Jlax, + (1 - a); - £

exists for all a € [0,1] and f,, f, € o,({x,}). Then w,({x,}) is a singleton.
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Let C be a nonempty bounded subset of a uniformly convex Banach
space X. Following Lorentz [19], we say that a continuous function u:
[0,00) — C is weakly almost convergent to some element y € X if

1
w-lim — [u(h + 7) dr =y
0

t—

uniformly in 4 > 0 (cf. [26]).

THEOREM 4.1. Let X be a uniformly convex Banach space such that X*
has the KK-property, C a bounded closed convex subset of X, and I =
{T(®):t €[0,2)} a one-parameter semigroup of self-mappings of C which is
asymptotically nonexpansive in the intermediate sense. Then every continuous
almost orbit u of  is weakly almost convergent to some y € F(9).

Proof. First, by Lemma 3.7 and Theorems 3.2 and 3.3 each weak
subsequential limit of {}/{u(r| + 7)dr} is a fixed point of .7. Next, by
Corollary 3.2 and Lemma 4.1 we see that {}[{u(r| + 7)d7} is weakly
convergent to some y € F(9) which is independent of the choice of {r/}.
Therefore

1
w-lim? tu(rl+h+7)d'r=y
0

uniformly in ~ > 0. To conclude the proof it is sufficient to apply the
decomposition

1 s
—f u(h + 7)dr
§ 70

= l rtu(h + 7)dr+ aHr’u(h + 7)dr+ ’
s |Jo ",

at+r,

u(h + 1) dT}

1 r, a—1
=—{/ u(h + 1) dr + thu(rt+jt+h+7)d7
N 0

0 j=0
N
v

at+r,

u(h + 1) dT},

where s =at +r, +b,0<b <t. 1
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5. THE DISCRETE CASE

In this section we present an analog of Theorem 4.1 for the case of a
single mapping. First we recall a few definitions.

Let C be a nonempty subset of a Banach space X. If T: C - C is
continuous and

limsup sup ([I7"x — T"yll = llx —yll) <0,

n—wo x,yeC

then T is said to be asymptotically nonexpansive in the intermediate sense
[9].

If T is a self-mapping of C, then F(T) will always denote the set of
fixed points of 7.

Recall that if X is a uniformly convex Banach space and T is a
self-mapping of a bounded closed convex subset C of X which is asymp-
totically nonexpansive in the intermediate sense, then F(T) # & ([16]).

A sequence {x,}, ., in C is called an almost orbit of a mapping T
C—-Cif

lim |supllx,,,, — T*x,,ll
m=«| k>0

[5].

A sequence {x,,},,., in a Banach space X is said to be weakly almost
convergent to x € X if 1X""lx,,, converges weakly, as n — %, to x,
uniformly in k& ([5, 19, 25).

To prove a mean ergodic theorem for a mapping which is asymptotically
nonexpansive in the intermediate sense we need to modify in a suitable
way all the lemmas and theorems from Sections 3 and 4. Moreover, in
place of (3.3) we have to use the equality ([17])

1n-1 1n= 1 p-1
- ZX = = Z th+j+k +g(l’l b k)
noi_o ni_o\P j=o
where
g(n,p, k) =— E (p-— j)(xj+k—1 _xj+k+n—1)‘

np (=

As an example we will present the proof of an analog of Theorem 3.2. First
we recall two known lemmas.
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LemMA 5.1 ([15, 22]). For each € > 0 there exist N, > 1 and 8, > 0
such that if k> N,, z,,z, € C, and |lz; — z,| = IT*z; — T*z,|l < &, .,
then

||Tk(/\1z1 + Nz,) = NTrz) — A\, Tz, || <e€

forall A = (A, A,) € AL,

LEMMA 5.2 ([22]). For each € > 0 and for each integer n > 2 there exist
N_ > 0 and 6, > 0, where both N, and &, are independent of n, such that if
k>N, z,25,...,2, € C,and |lz; — z]l = IT*z; = T*z || < 6, for 1 <,
< n, then

forall X = (A, Ay,. ., 0,) € AL

n n
Tk( Z )‘izi) - Z )\iTkZi

i=1

We will also apply the following theorem.

THEOREM 5.1 ([22]). Let X be a uniformly convex Banach space and T a
self-mapping of a bounded closed convex subset C of X which is asymptotically
nonexpansive in the intermediate sense. Suppose that {x,,},, . o and {y,},~ o
are almost orbits of T, f,, f, € F(T), and 0 < a < 1. Then the limits

lim (|x,, — v,

m—

lim [|x,, — fill,

m—

and
,,{iinoo”ax’" +(1-a)f _lel

exist.
Now we are ready to prove the following discrete analog of Theorem 3.2.

THEOREM 5.2. Let X be a uniformly convex Banach space and T a
self-mapping of a bounded closed convex subset C of X which is asymptotically
nonexpansive in the intermediate sense. Suppose that {x,,},, . , is an almost
orbit of T. Then for any € > 0 and n > 1 there exists M, , > 1 such that for
allk > M, , andm > M_,,

n

n—1

1n-1 1
Tk(; Z xi+m) - Z Tk'xi+m
i=0

ni_y

< €.
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In particular, for each n > 1 there exists m, > 1 such that

1 -1 1n-1
SR
i=0

forallk,m = m,.

Proof. Let € > 0. Since {x,,}, . ( is an almost orbit, there exists 771, , >
1 such that

66
supllx,, .. — Trx, Il < 3

k=0
and (see Theorem 5.1)
sup| Xt = Xl = WXk = X il | < 3
k>0
for m >m_, and 0 <i,j <n — 1. It then follows that
||xm+j _xm+i|| - ||Tkxm+j - Tkxm+i||
= ||xm+j = X pill = ||xm+j+k = Xy ikl

+ ||xm+j+k - Tkxm+j” + ||xm+i+k - Tkxm+i”

< §,

€

for m > m_ , and 0 <i,j <n — 1. This implies (see Lemma 5.2—now we
denote N, by m,_) that

1n—1 n—l
- me+i) - ( Z Tk €
noi—o
for m > m_, and k > m_. Hence we get
1 n—1 1 n—1
Tk(_ Z xm+i) - (_ Z Tkxn1+i <e€
ni_y ni_y

for all k = M, , and m > M, ,, where M, , = max(m,,m, ,). To obtain

the second inequality it is sufficient to set

m =M1/n,n'

n
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We conclude this paper by stating our discrete analog of Theorem 4.1.
We intend to present its complete proof elsewhere.

THEOREM 5.3. Let X be a uniformly convex Banach space such that X*
has the KK-property, C a bounded closed convex subset of X, and T: C — C a
mapping which is asymptotically nonexpansive in the intermediate sense. Then

every almost orbit {x,)}, ., of T is weakly almost convergent to some
yeF (7).
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