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Abstract

The equivariant method of moving frames is used to specify systems of generating differential invariants
for finite-dimensional Lie group actions.
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1. Introduction

Differential invariants are the fundamental building blocks for constructing invariant differen-
tial equations and variational problems, and determining their explicit solutions and conservation
laws. The equivalence, symmetry and rigidity properties of submanifolds are all governed by
their differential invariants. Additional applications abound in differential geometry and rela-
tivity, computer vision, integrable systems, geometric numerical integration, classical invariant
theory, and many other fields of both pure and applied mathematics, [17,20,24].

The paper [3] initiated the rapid development of a new and far-reaching generalization of the
Cartan method of moving frames, which exploits their (re-)interpretation as equivariant maps
back to the transformation group. In particular, the equivariant approach has endowed us with
a number of new, powerful tools for producing and classifying the differential invariants for
general Lie group actions. See [20] for a recent survey of progress and current directions of
research. Further applications can be found, for instance, in the work of Marí Beffa, [14–16], on
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the Poisson geometry of curves and surfaces in homogeneous spaces, and Mansfield, [13], on
symmetric differential equations.

However, it has recently become apparent that one of the key results claimed in [3, Theo-
rem 13.3] characterizing the generators of the algebra of differential invariants is not correct as
stated. The goal of this note is to formulate and prove a corrected version of the theorem that ap-
plies to moving frames of minimal order. In addition, an explicit counterexample to the claimed
non-minimal order result, which arises in the familiar Euclidean geometry of space curves, is
presented.

We will assume that the reader has some familiarity with the equivariant approach to moving
frames, as developed in [3,20]. General results on group actions, jet spaces, prolongation, and
differential invariants can be found, for instance, in [17].

2. Moving frames and differential invariants

Let G be a Lie group that acts (locally) on an m-dimensional manifold M . We are interested in
the action of G on p-dimensional submanifolds N ⊂ M which, in local coordinates, we identify
with the graphs of functions. For each positive integer n, let G(n) denote the prolonged group
action on the associated nth order submanifold jet space Jn = Jn(M,p), whose overall dimension
equals

dim Jn = q(n) = p + q

(
p + n

n

)
. (2.1)

A real-valued function2 I : Jn → R is known as a differential invariant if it is unaffected by the
prolonged group transformations, so I (g(n) · z(n)) = I (z(n)) for all z(n) ∈ Jn and all g ∈ G such
that both z(n) and g(n) · z(n) lie in the domain of I . Any finite-dimensional group action admits
an infinite number of functionally independent differential invariants of progressively higher and
higher order. The Basis Theorem for differential invariants first formulated by Lie, [12, p. 760],
and then extended by Tresse, [26], to infinite-dimensional pseudo-group actions, states that all the
differential invariants can be generated from a finite number of low order invariants by repeated
invariant differentiation. Modern proofs can be found in [17,24].

Theorem 2.1. Given a finite-dimensional Lie group G acting on p-dimensional submanifolds
N ⊂ M , then, locally, there exist finitely many generating differential invariants I1, . . . , I�, along
with exactly p invariant differential operators D1, . . . ,Dp , with the property that every differ-
ential invariant can be locally expressed as a function of the generating invariants and their
invariant derivatives: DJ Iκ = Dj1Dj2 · · ·Djk

Iκ .

The invariant differential operators do not necessarily commute, and so the order of differen-
tiation is important. However, each commutator can be re-expressed as

[Di ,Dj ] =
p∑

k=1

J k
ijDk, (2.2)

2 Throughout, functions, maps, etc., may only be defined on an open subset of their indicated domain.
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where the coefficients J k
ij are certain differential invariants, and hence functions of the DJ Iκ .

Moreover, the differentiated invariants are not necessarily functionally independent, but may be
subject to certain functional relations or differential syzygies of the form

H(. . .DJ Iκ . . .) ≡ 0. (2.3)

In [3], it was proved that there are a finite number of generating differential syzygies; see also [23]
for extensions to pseudo-group actions. Together, the commutation relations (2.2) and syzygies
(2.3) completely prescribe the structure of the algebra3 of differential invariants.

A familiar example is G = SE(3), the (special) Euclidean group consisting of all rigid,
orientation-preserving motions of M = R

3, acting on space curves, i.e., one-dimensional sub-
manifolds. The differential invariant algebra is generated by the curvature κ , torsion τ , and their
successive derivatives with respect to arc length, [4,7]. Similarly, the differential invariants for
the action of SE(3) on surfaces S ⊂ R

3 are the Gauss and mean curvatures and their derivatives
with respect to two non-commuting invariant differential operators, which are closely related
to, but not exactly the same as, the standard covariant derivatives, cf. [17]. In this case, there
is a single fundamental differential syzygy among the curvature invariants: the Gauss–Codazzi
formula, [11].

In general, for most4 Lie group actions on curves, so p = 1, the number of generating differ-
ential invariants is equal to q = m − 1, and there are no syzygies. However, when dealing with
higher-dimensional submanifolds, where p > 1, the number of generating differential invariants
can vary with the transformation group. For example, the three-dimensional Euclidean group ac-
tion on surfaces requires 2 generating differential invariants, whereas according to a recent result
in [22], the more complicated action of the equi-affine group SA(3), consisting of all volume-
preserving affine maps, on surfaces in R

3 requires only one generating differential invariant—the
third order Pick invariant, cf. [10,25]. At the other extreme, the following rather trivial abelian
group actions on surfaces demonstrates that, when the submanifolds have dimension p � 2, there
is no universal upper bound on the required number of generating differential invariants.

Example 2.2. Consider the abelian group GV acting on M = R
3 via

(x, y,u) �→ (
x + a, y + b,u + ϕ(x, y)

)
, (2.4)

where a, b ∈ R and ϕ(x, y) ∈ V ⊂ R[x, y] is an arbitrary element of a finite-dimensional sub-
space of the space of polynomial functions of (x, y). The infinitesimal generators are

w1 = ∂x, w2 = ∂y, vj = ϕj (x, y)∂u, j = 1, . . . , s = dimV, (2.5)

where ϕ1, . . . , ϕs form a basis of V . We are interested in the induced action of this (s + 2)-
dimensional transformation group on graphs of functions u = f (x, y), i.e., surfaces.

In the particular case when V = Vn consists of all polynomials of degree � n, then it is easy
to see that the individual derivatives ui,j = ∂i+j u/∂xi∂yj for i + j � n + 1 form a complete
system of functionally independent differential invariants. Since the action on the independent
variables is just translation, the invariant differential operators are the usual total derivatives:

D1 = Dx, D2 = Dy.

3 Technically, because differential invariants may only be locally defined, we should speak of the “sheaf of differential
invariants.” However, as we work locally on suitable open subsets, this extra level of abstraction is not required; moreover,
experts can readily translate our constructions into sheaf-theoretic language.

4 More precisely, we require that the group action be “ordinary,” [17], meaning it is transitive on M and does not
pseudo-stabilize when prolonged. Non-ordinary actions on curves require one additional generating invariant.
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The higher order differential invariants are generated by differentiating the n + 1 differential
invariants ui,j of order n + 1 = i + j . Moreover, these invariants clearly form a minimal gener-
ating set for this particular action. We conclude that there is no universal bound on the number
of required generating differential invariants, even for such an elementary class of group actions.

3. Moving frames

The equivariant method of moving frames, inspired by Cartan, [1,7], and initiated in [3],
provides an effective means of not only constructing the differential invariants and invariant
differential operators for general Lie group actions, but also revealing the structure of their in-
duced non-commutative differential invariant algebra. More recent extensions of these methods
to infinite-dimensional pseudo-groups can be found in [21,23], and many of the techniques and
results, suitably interpreted, carry over to this context. However, for simplicity and brevity, in
this paper we deal only with finite-dimensional Lie group actions.

Assuming that the prolonged action is free5 on an open subset of Jn, then one can construct
a (locally defined) moving frame, which, according to [3], is an equivariant map ρ : Jn → G.
Equivariance can be with respect to either the right or left multiplication action of G on itself. All
classical moving frames, e.g., those appearing in [1,5–7,10], can be regarded as left equivariant
maps, but the right equivariant versions may be easier to compute. Of course, any right moving
frame can be converted to a left moving frame by composition with the inversion map g �→ g−1.

In practice, one constructs a moving frame by the process of normalization, relying on the
choice of a local cross-section Kn ⊂ Jn to the prolonged group orbits. The corresponding value
of the right moving frame at a jet z(n) ∈ Jn is the unique group element g = ρ(n)(z(n)) ∈ G that
maps it to the cross-section:

ρ(n)
(
z(n)

) · z(n) = g(n) · z(n) ∈ Kn. (3.1)

The moving frame ρ(n) clearly depends on the choice of cross-section, which is usually designed
so as to simplify the required computations as much as possible.

Typically, simplification requires that one choose the moving frame to have as low an order as
possible. Such “minimal order” moving frames will be a focus of this paper. Since the existence
of a moving frame requires (local) freeness of the prolonged group action, the minimal order of
any moving frame is just the order of the jet space at which the group action first becomes locally
free. However, for our purposes, this in itself does not suffice, and we will use the term “minimal
order” in a stricter sense, requiring that all the cross-section normalization equations have as low
an order as possible.

Definition 3.1. A cross-section Kn ⊂ Jn, and, hence its induced moving frame ρ(n) : Jn → G,
is said to be of minimal order if, for each 0 � k � n, its projection Kk = πn

k (Kn) ⊂ Jk forms
a cross-section to the orbits of G(k) on Jk . Here πn

k : Jn → Jk denotes the standard jet space
projection map, [17].

5 A theorem of Ovsiannikov, [24], slightly corrected in [18], guarantees local freeness of the prolonged action at
sufficiently high order, provided G acts locally effectively on subsets of M . This is only a technical restriction; for
example, all analytic actions can be made effective by dividing by the global isotropy subgroup. Although all known
examples of prolonged effective group actions are, in fact, free on an open subset of a sufficiently high order jet space,
there is, frustratingly, as yet no general proof, nor known counterexample, to this result.
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Remark. From here on, a cross-section will be taken to mean a submanifold Kk ⊂ Jk of the com-
plementary dimension transverse to the maximal dimension prolonged group orbits. We do not
necessarily require that the cross-section intersect an orbit in a unique point, and so the normal-
ization construction will only produce a locally equivariant moving frame and local differential
invariants, that may retain certain discrete ambiguities. See Hubert and Kogan, [9], for further
details on the use of semi-regular cross-sections for invariantization.

As a specific example, consider the familiar action of the Euclidean group SE(2) on plane
curves C ⊂ M = R

2. The first order prolonged action is only locally free, because a 180◦ rota-
tion around a point on the curve will preserve its tangent line, and hence has trivial first order
prolongation. Indeed, the classical moving frame, consisting of the unit tangent and normal,6 is
only locally equivariant, since the 180◦ rotation will reverse the direction of the two frame vec-
tors and also reverse the sign of the curvature differential invariant κ . The second order prolonged
action of SE(2) is free on the subset {κ �= 0} ⊂ J2(M,1), and so one can resolve the sign ambigu-
ity by going to second order. (Classically, the ambiguity is resolved by assigning an orientation
to the parametrized curve.) Incidentally, the full Euclidean group E(2), which also includes the
reflections, introduces a second sign ambiguity owing to the action of a reflection through the
tangent line, which is only fully resolved at third order. See [19] for a complete discussion.

Classical moving frames are inevitably of minimal order. Indeed, the normalization procedure
advocated in [1,5–7,10] proceeds inductively by order, and one seeks to normalize as many jet
coordinates as possible before proceeding to the next higher order. A key innovation of [3] was
to point out the possibility of using non-minimal order moving frames to generate differential
invariants and thereby resolve equivalence problems even at singularities where the classical
minimal order moving frame breaks down, e.g., non-degenerate inflection points of space curves,
or non-degenerate umbilics of surfaces in Euclidean geometry.

In general, for each k � 0, let 1 � rk � r denote the maximal orbit dimension7 of the kth order
prolonged action of G(k) on Jk . The action is locally free at order n if and only if rn = r = dimG.
A jet z(k) ∈ Jk is called regular if it lies in an rk-dimensional orbit of G(k). Let V k ⊂ Jk be the
open (and necessarily dense if the action is analytic) subset consisting of the regular jets. A jet
z(n) ∈ Jn is called completely regular if it and its projections z(k) = πn

k (z(n)) ∈ V k are regular for
all k = 0, . . . , n.

Assuming local freeness of G(n), every cross-section Kn ⊂ V n has dimension

dimKn = dim Jn − r = q(n) − r. (3.2)

According to Definition 3.1, the moving frame is of minimal order if, in addition,

dimKk = dimπn
k

(
Kn

) = dim Jk − rk = q(k) − rk for all k = 0, . . . , n. (3.3)

In particular, minimality requires that every jet z(n) ∈ Kn be completely regular. Examples of
minimal and non-minimal cross-sections appear below.

To compute, we introduce local coordinates z = (x,u) = (x1, . . . , xp,u1, . . . , uq) on M—
considering the first p as independent variables, and the latter q = m − p as dependent vari-
ables. We locally identify the submanifolds with graphs of functions u = f (x). (This omits

6 To interpret the classical construction as a left equivariant map to SE(2), we regard the point on the curve as the
translation component, and the two orthonormal frame vectors as forming the columns of a rotation matrix. See [3,20]
for details. Section 6 below discusses the three-dimensional counterpart.

7 If any rn = 0, then all rk = 0, and the action is purely discrete. We are not interested in discrete actions here.
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submanifolds that are not transversal to the vertical fibers x = c, but these can be handled
by using an alternative coordinate chart.) The induced local coordinates on Jn are denoted
z(n) = (x,u(n)) = (. . . xi . . . uα

J . . .), with uα
J , for 0 � #J � n and 1 � α � q , representing the

partial derivatives of the dependent variables with respect to the independent variables, [17].
Each jet space coordinate xi or uα

J is indexed by either a single integer 1 � i � p, or a multi-
index pair (J ;α) where J = (j1, . . . , jk) is an unordered multi-index with each 1 � jν � p and
1 � α � q . In particular, the dependent variable uα corresponds to the pair (0;α), where 0 de-
notes the empty multi-index. We let T denote the set of all such indices—i or (J ;α)—and T (n)

those of order k = #J � n. (By convention, the single index i has order 0.) If S ⊂ T is any
subset, we set S(n) = S ∩ T (n).

In most cases, one selects a coordinate cross-section defined by setting a number of the coor-
dinate functions to specified constant values, so the resulting Kn ⊂ Jn is parallel to the coordinate
axes. (See [13] for examples based on non-coordinate cross-sections; adapting our constructions
to this more general context situation is not difficult, but we will stick with coordinate cross-
section to avoid technical complications.) Each coordinate cross-section passing through a fixed
regular jet z

(n)
0 ∈ V n ⊂ Jn corresponds to a subset P ⊂ T (n) of cardinality |P| = r = dimG.

Assuming transversality, the coordinate cross-section associated with P is prescribed by the
equations

xi = ci, u
β
K = c

β
K, for all i, (K;β) ∈P, (3.4)

where ci , c
β
K denote the values of the corresponding coordinates of the jet z

(n)
0 .

According to Definition 3.1, if the cross-section through z
(n)
0 defined by P is of minimal or-

der, then the number of normalization equations of each order 0 � k � n, or, equivalently, the
cardinality of P(k) = P ∩ T (k), must be as large as possible, namely |P(k)| = rk , the maximal
prolonged orbit dimension on Jk . Note that P(k) indexes all the normalization equations of or-
der � k. Therefore:

Lemma 3.2. If the normalization equations (3.4) define a minimal order cross-section, then the
number of equations of order = k is rk − rk−1.

Keep in mind that, to define a bona fide cross-section, there is also a transversality condition,
that will be properly dealt with below.

Once the cross-section has been fixed, the induced moving frame engenders an invariantiza-
tion process, that effectively maps functions to invariants, differential forms to invariant differ-
ential forms, and so on, [3,20]. Geometrically, the invariantization of any object is defined as the
unique invariant object that coincides with its progenitor when restricted to the cross-section. In
particular, invariantization does not affect invariants, and hence defines a morphism that projects
the algebra of differential functions onto the algebra of differential invariants.

Computationally, the invariantization of a differential function is constructed by first writing
out how it is transformed by the prolonged group action: F(z(n)) �→ F(g(n) · z(n)). One then
replaces all the group parameters by their right moving frame formulae g = ρ(n)(z(n)), resulting
in the differential invariant

ι
[
F

(
z(n)

)] = F
(
ρ(n)

(
z(n)

) · z(n)
)
. (3.5)

Differential forms and differential operators are handled in an analogous fashion—see [3,11] for
complete details.
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In particular, the normalized differential invariants induced by the moving frame are obtained
by invariantization of the basic jet coordinates

Hi = ι
(
xi

)
, Iα

J = ι
(
uα

J

)
. (3.6)

These naturally split into two classes: Those corresponding to the cross-section coordinates (3.4)
are constant, and known as the phantom differential invariants. The remainder, known as the
basic differential invariants, form a complete system of functionally independent differential
invariants. Thus, the index set P used to prescribe the coordinate cross-section (3.4) also serves
to index the phantom differential invariants, and so its elements will be called phantom indices.
The complement B = T \P indexes the basic differential invariants, and hence its elements will
be called basic indices. Note in particular that every index (J ;α) of order #J > n strictly greater
than the moving frame is basic. (This property distinguishes finite-dimensional Lie group actions
from infinite-dimensional pseudo-groups, [21].)

We call #J the degree of the differential invariant Iα
J , with the convention that the Hi also are

of degree 0. If the moving frame is of order n, then

orderHi � n, order Iα
J � max{n,#J }. (3.7)

Of course, the phantom invariants are constant, and hence of order 0. We use (H, I) =
(. . .H i . . . I α . . .) to denote the degree 0 differential invariants—all of which are constant if the
group acts transitively on M and we choose to normalize all of the base coordinates (x,u)—as
would be required for a minimal order moving frame—and (H, I (n)) = (. . .H i . . . I α

J . . .) with
#J � n to denote the complete system of normalized differential invariants of degree � n.

Once the normalized differential invariants are known, the invariantization process (3.5) is im-
plemented by simply replacing each jet coordinate by the corresponding normalized differential
invariant (3.6), so that

ι
[
F

(
x,u(n)

)] = ι
[
F

(
. . . xi . . . uα

J . . .
)] = F

(
. . .H i . . . I α

J . . .
) = F

(
H,I (n)

)
. (3.8)

In particular, if we start with a differential invariant, it is not affected by this process, and we
recover the remarkable (but trivial) Replacement Theorem:

I
(
x,u(n)

) = I
(
H,I (n)

)
whenever I is a differential invariant. (3.9)

This permits one to straightforwardly rewrite any known differential invariant in terms the basic
invariants, and thereby establishes their completeness.

4. Infinitesimal generators and the Lie matrix

Suppose the vector field

v =
p∑

i=1

ξ i(x,u)
∂

∂xi
+

q∑
α=1

ϕα(x,u)
∂

∂uα
(4.1)

represents an infinitesimal generator of the action of G on M . Let

v(n) =
p∑

ξ i(x,u)
∂

∂xi
+

q∑ ∑
ϕα

J

(
x,u(k)

) ∂

∂uα
J

(4.2)

i=1 α=1 0�k=#J�n
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denote the corresponding prolonged infinitesimal generator of the action of G(n) on Jn. Its coef-
ficient functions ϕα

J are prescribed by the well-known prolongation formula, [17],

ϕα
J = DJ

(
ϕα −

p∑
i=1

ξ iuα
i

)
+

p∑
i=1

ξ i(x,u)uα
J,i , (4.3)

where DJ = Dj1 · · ·Djk
is the corresponding iterated total derivative.

From here on, we will fix a basis v1, . . . ,vr for the Lie algebra g of infinitesimal generators
of our transformation group.

Definition 4.1. The Lie matrix of order n is the q(n) × r matrix8

L(n)
(
x,u(n)

) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ1
1 . . . ξ1

r

...
. . .

...

ξ
p

1 . . . ξ
p
r

ϕ1
1 . . . ϕ1

r

...
. . .

...

ϕ
q

1 . . . ϕ
q
r

...
. . .

...

ϕα
J,1 . . . ϕα

J,r

...
. . .

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, where 1 � α � q, 0 � #J � n. (4.4)

Its entries ξ i
κ , ϕα

κ , ϕα
J,κ are the coefficients (4.2) of the nth order prolongations, v(n)

1 , . . . ,v(n)
r , of

the chosen basis infinitesimal generators.

At a jet z(n) = (x,u(n)) ∈ Jn, the rank of the Lie matrix L(n)(z(n)) equals the dimension
of the prolonged group orbit passing through z(n). In particular, z(n) is a regular jet if and
only if rank L(n)(z(n)) = rn = r = dimG. Moreover, z(n) is completely regular if and only if
rank L(k)(z(k)) = rk for all 0 � k � n, where z(k) = πn

k (z(n)).
The rows of the nth order Lie matrix are indexed by the elements of T (n), and we indicate

them by the corresponding bold face symbol: ξ i = (ξ i
1, . . . , ξ

i
r ) or ϕα

J = (ϕα
J,1 . . . ϕα

J,r ). The order

of a row is that of its associated index, namely order ξ i = 0, while orderϕα
J = #J . Given any

subset S ⊂ T (n) of row indices, we let L(n)

S = L(n)

S (z(n)) denote the corresponding |S| × r Lie
submatrix formed by the rows indexed by S .

Lemma 4.2. A subset P ⊂ T (n) containing |P| = r indices defines a cross-section (3.4) through
the regular jet z

(n)
0 if and only if the corresponding r × r Lie minor is nonsingular:

det L(n)

P
(
z
(n)
0

) �= 0. (4.5)

We call a row of the Lie matrix L(n)(z(n)) either phantom or basic according to whether its
index belongs to P or B(n) = T (n) \ P . (In linear algebraic terms, the phantom rows would

8 Warning: In many texts, e.g., [18], the transpose of this matrix is known as the Lie matrix. To avoid unnecessary
transpose notation, we will adopt this convention throughout.
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correspond to the free variables and the basic rows to the basic variables following from the ap-
propriate column echelon form that results from (transposed) Gaussian Elimination.) A straight-
forward translation of Definition 3.1 yields the following characterization of minimal order
moving frames.

Lemma 4.3. At a completely regular jet z
(n)
0 ∈ Jn, the moving frame defined by P ⊂ T (n) is of

minimal order if and only if, for each k = 0, . . . , n, the rank of the Lie submatrix consisting of
the phantom rows of order � k equals

rank L(k)

P(k)

(
z
(k)
0

) = ∣∣P(k)
∣∣ = rk = rank L(k)

(
z
(k)
0

)
.

Corollary 4.4. The moving frame defined by P ⊂ T (n) is of minimal order if and only if each
basic row of the Lie matrix can be written as a linear combination of the phantom rows of equal
or lower order:

ξ i =
∑

l∈P(0)

hi
l (x, u)ξ l +

∑
(0,β)∈P(0)

hi
β(x,u)ϕβ,

ϕα
J =

∑
l∈P(0)

hα
J,l

(
x,u(k)

)
ξ l +

∑
(K;β)∈P(k)

h
α,K
J,β

(
x,u(k)

)
ϕ

β
K, where k = #J. (4.6)

Proof. If a basic row of order k were not a linear combination of phantom rows of that order
or less, this would mean that the rank of L(k)(z

(k)
0 ) would be strictly greater than the cardinality

of P(k), which would contradict Lemma 4.3. �
5. Recurrence formulae

Given a moving frame, the associated invariant differential operators D1, . . . ,Dp are obtained
by invariantization of the total derivatives:

Di = ι(Di), i = 1, . . . , p. (5.1)

Equivalently, they can be defined as the dual differential operators arising from the invariant
horizontal forms

ωi = ι
(
dxi

)
, i = 1, . . . , p, (5.2)

obtained by (horizontal) invariantization of the basic horizontal one-forms dx1, . . . , dxp . Details
can be found in [3,11].

Each invariant differential operator maps differential invariants to differential invariants.
Moreover, the differentiated invariants DiH

j and DiI
α
J can be written in terms of the normalized

differential invariants. Understanding these so-called recurrence formulae is the master key that
unlocks the structure of the algebra of differential invariants, the determination of generators,
and the classification of syzygies. Remarkably, [3,21], the recurrence formulae can be explicitly
determined without knowing the actual formulas for either the differential invariants, or the in-
variant differential operators, or even the moving frame! The only required ingredients are the
prolongation formulas for the infinitesimal generators, or, equivalently, the Lie matrix, along with
the specification of the cross-section normalizations.
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To formulate the construction, we introduce the invariantized Lie matrix

M(n)
(
H,I (n)

) = ι
(
M(n)

(
x,u(n)

)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

η1
1 . . . η1

r

...
. . .

...

η
p

1 . . . η
p
r

ψ1
1 . . . ψ1

r

...
. . .

...

ψ
q

1 . . . ψ
q
r

...
. . .

...

ψα
J,1 . . . ψα

J,r

...
. . .

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, where
1 � α � q,

0 � #J � n,
(5.3)

whose entries are obtained by invariantizing the infinitesimal generator coefficients:

ηi
κ(H, I) = ι

[
ξ i
κ (x,u)

]
, ψα

κ (H, I) = ι
[
ϕα

κ (x,u)
]
,

ψα
J,κ

(
H,I (k)

) = ι
[
ϕα

J,κ

(
x,u(k)

)]
. (5.4)

We also employ the corresponding bold face symbols,

ηi = ι
(
ξ i

)
, ψα

J = ι
(
ϕα

J

)
, (5.5)

to indicate the individual rows of the invariantized Lie matrix. Keep in mind that the invariantized
and ordinary Lie matrices agree when restricted to the cross-section, and hence have isomorphic
algebraic structure.

Theorem 5.1. The recurrence formulae for the differentiated invariants are

DiH
j = δ

j
i + ηj (H, I)Ri , DiI

α
J = Iα

J,i + ψα
J

(
H,I (k)

)
Ri . (5.6)

In these formulas, δ
j
i is the usual Kronecker symbol, while each Ri = (R1

i , . . . ,R
r
i )

T , for i =
1, . . . , p, is a column vector whose r = dimG entries are certain differential invariants.

The entries Rκ
i of the Ri will be called the Maurer–Cartan invariants, because, according

to [3], they can be identified as the coefficients of the invariant horizontal one-forms ωi in the
moving frame pull-backs

γ κ = (
ρ(n)

)�(
μκ

) =
p∑

i=1

Rκ
i ωi + · · · , (5.7)

where the dots indicate contact forms, while μ1, . . . ,μr form the basis of Maurer–Cartan forms
dual to the chosen infinitesimal generator basis v1, . . . ,vr . To explain all this in any detail
would take several paragraphs. Fortunately, this turns out to be completely unnecessary from
an algorithmic viewpoint. The Maurer–Cartan invariants are, in fact, uniquely prescribed by the
recurrence formulae, and so, for computational purposes, one can remain blissfully unaware of
how they arise from the Maurer–Cartan forms! (However, the proof of the recurrence formulae
(5.6) does rely essentially on this identification, [3].)

Indeed, given a coordinate cross-section prescribed by a set of phantom indices P ⊂ T , sub-
ject to the transversality constraint (4.5), the full system of recurrence formulae (5.6) naturally



460 P.J. Olver / J. Math. Anal. Appl. 333 (2007) 450–471
splits into two subsystems. Since the phantom differential invariants are constant, the correspond-
ing phantom recurrence relations have the form

0 = DiH
l = δl

i + ηlRi , 0 = DiI
β
K = I

β
K,i + ψ

β
KRi , for all l, (K;β) ∈ P . (5.8)

For each fixed i, (5.8) forms a system of r linear algebraic equations in the r unknown entries
of Ri . In fact, its coefficient matrix, whose rows are ηl ,ψ

β
K , is nothing but the invariantized Lie

matrix minor corresponding to the phantom indices:

M(n)

P
(
H,I (n)

) = ι
[
L(n)

P
(
x,u(n)

)]
.

Since we are using a bona fide cross-section, Lemma 4.2 implies that the coefficient matrix is
invertible. (Here we are using the fact that the invariantized Lie matrix agrees with the ordinary
Lie matrix when restricted to the cross-section.) We conclude that the phantom recurrence equa-
tions (5.8) can be uniquely solved for the Maurer–Cartan invariants Ri . They are then substituted
into the remaining basic recurrence relations

DiH
j = δ

j
i + ηj Ri , DiI

α
J = Iα

J,i + ψα
J Ri for j, (J ;α) ∈ B, (5.9)

that explicitly relate the normalized and differentiated invariants. The resulting fundamental re-
currence formulae serve to completely characterize the algebra of differential invariants, and,
through their detailed analysis, allow us to pinpoint the generating differential invariants and
their syzygies. Examples of this procedure can be found in [3,11,19,20] and below.

Remark. It is well known, [17], that the coefficients of the prolonged infinitesimal generators of
any group action are polynomial functions of the jet coordinates uα

J for all #J � 1. Therefore,
the Maurer–Cartan invariants, being solutions to a linear system with polynomially varying co-
efficients, are rational functions of the generating invariants, except possibly those of index 0,
namely Hi, Iα . In particular, if the action is transitive on M , and we normalize all the order zero
coordinates—or, more generally, the infinitesimal generators on M depend rationally on the co-
ordinates (x,u)—then we conclude that the Maurer–Cartan invariants, and hence all the higher
order normalized differential invariants, are rational functions of the generating differential in-
variants. The same holds for a large class of pseudo-group actions, [23]: the differential invariant
algebra is intrinsically rational, in the sense that all recurrence formula, commutation relations
and syzygies involve rational functions of the basic differential invariants (of order � 1).

Definition 5.2. Given phantom indices P ⊂ T , we define the set of edge indices E ⊂ B = T \P
to consist of all zeroth order basic indices i, (0;α) ∈ B(0), if any, along with all basic indices of
the form (J, i;α) ∈ B with (J ;α) ∈ P a phantom index.

Remark. The edge indices lie on the “edges” of the subset B ⊂ T of all basic indices, mean-
ing that they appear next to a phantom index of lower order. For instance, if p = 2, q = 1,
the edge indices corresponding to P = {1,2, (0;1), (1;1), (2,2,2;1)} are E = {(2;1), (1,1;1),

(1,2;1), (1,2,2,2;1), (2,2,2,2;1)}.

In this terminology, Theorem 13.3 in [3] states that the edge differential invariants, meaning
those normalized differential invariants indexed by the elements of E , form a generating set. In
the following section, we present an explicit counterexample to this claim, which is based on a
non-minimal order moving frame for the Euclidean geometry of space curves.
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6. An instructive example

Consider the standard action of the (r = 6)-dimensional Euclidean group SE(3) on space
curves C ⊂ M = R

3. We use coordinates z = (x,u, v) and, to avoid having to deal with the
infinite-dimensional reparametrization pseudo-group, restrict our attention to curves given by
the graphs of functions u = u(x), v = v(x). However, all our results remain valid for general
parametrized curves z(t) = (x(t), u(t), v(t))T . We use

zt =
(

xt

ut

vt

)
=

( 1
ux

vx

)
, ztt =

(
xtt

utt

vtt

)
=

( 0
uxx

vxx

)
, zttt =

(
xttt

uttt

vttt

)
=

( 0
uxxx

vxxx

)
,

(6.1)

and so on, to denote the derivative vectors along the curve, where the second expression can be
used in the special case of a graph, parametrized by t = x.

A basis for the infinitesimal generators is provided by the vector fields

v1 = ∂x, v2 = ∂u, v3 = ∂v,

v4 = v∂u − u∂v, v5 = −u∂x + x∂u, v6 = −v∂x + x∂v. (6.2)

The Lie matrices are easily computed; at order 4, say, L(4) equals⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 −u −v

0 1 0 v x 0
0 0 1 −u 0 x

0 0 0 vx 1 + u2
x uxvx

0 0 0 −ux uxvx 1 + v2
x

0 0 0 vxx 3uxuxx 2uxxvx + uxvxx

0 0 0 −uxx uxxvx + 2uxvxx 3vxvxx

0 0 0 vxxx 4uxuxxx + 3u2
xx 3uxxxvx + 3uxxvxx + uxvxxx

0 0 0 −uxxx uxxxvx + 3uxxvxx + 3uxvxxx 4vxvxxx + 3v2
xx

0 0 0 vxxxx 5uxuxxxx + 10uxxuxxx 4uxxxxvx + 6uxxxvxx

+ 4uxxvxxx + uxvxxxx

0 0 0 −uxxxx uxxxxvx + 4uxxxvxx 5vxvxxxx + 10vxxvxxx

+ 6uxxvxxx + 4uxvxxxx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(6.3)

Its rows are indexed by the jet variables x,u, v,ux, vx, uxx, vxx, uxxx, . . . , while each column
represents a prolonged infinitesimal generator. The corresponding index set T consists of the
single index 1, corresponding to x, and the multi-indices9 (k;1), (k;2) representing, respectively,
the jet coordinates uk = Dk

xu and vk = Dk
xv.

The classical moving frame, [7], relies on the equations

x = 0, u = 0, v = 0, ux = 0, vx = 0, vxx = 0,

9 Technically, to be in accord with our general index notation, we should write (1

k 1’s︷︸︸︷· · · 1;α) instead of (k;α), but this
is, of course, a less convenient notation in this situation.
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which serve to define a coordinate cross-section provided uxx �= 0. (Indeed, the classical moving
frame is not defined at inflection points of the space curve, [4,7].) The classical cross-section is
of minimal order, because the maximal prolonged orbit dimensions (or, equivalently, Lie matrix
ranks) are r0 = 3, r1 = 5, r2 = 6, and, in agreement with Lemma 3.2, we are normalizing all
3 = r0 zeroth order variables, 2 = r1 − r0 additional first order variables, and 1 = r2 − r1 second
order variable. This particular coordinate cross-section corresponds to the phantom indices

P = {
1, (0;1), (0;2), (1;1), (1;2), (2;2)

}
,

while the complementary set of basic indices

B = {
(k;1), (l;2) for all k � 2, l � 3

}
serves to index the complete system of functionally independent basic differential invariants. The
edge indices in this case are

E = {
(2;1), (3;2)

}
,

and represent the jet coordinates uxx, vxxx as well as their invariantizations.
For this particular cross-section, the left moving frame has the form

ρ(x,u, v,ux, . . . , vxx) = (R, z) ∈ SE(3) = SO(3) � R
3,

where the translational component z = (x,u, v) is the point on the curve, while the columns
of the rotational component R = [t,n,b] ∈ SO(3) are the unit tangent, unit normal, and unit
binormal frame vectors at z. However, keep in mind that these explicit identifications are not
required to generate the recurrence formulae for the differential invariant algebra. The resulting
invariantization map ι produces the phantom invariants

H = ι(x) = 0, I0 = ι(u) = 0, J0 = ι(v) = 0,

I1 = ι(ux) = 0, J1 = ι(vx) = 0, J2 = ι(vxx) = 0,

along with the independent normalized differential invariants

I2 = ι(uxx), I3 = ι(uxxx), J3 = ι(vxxx), I4 = ι(uxxxx), . . . ,

and so on. One can identify the edge invariants: I2 = κ is, up to a sign, the curvature,10 while
J3 = κτ is the product of curvature and torsion, [19]. The non-edge basic invariants,

I3 = κs, I4 = κss + 3κ3 − κτ 2, J4 = 2κsτ + κτs,

and so on are all obtained by invariant differentiation with respect to arc length, and so will not
be required in the generating system; this is well known, and can be readily deduced from the
recurrence formulae derived below. Thus, with this choice of minimal order cross-section, the
edge invariants do generate the rest. We note the classical formulas

κ = ‖zt × ztt‖
‖z3

t ‖
=

√
(uxvxx − uxxvx)2 + u2

xx + v2
xx

(1 + u2
x + v2

x)
3/2

,

τ = zt × ztt · zttt

‖zt × ztt‖2
= uxxvxxx − uxxxvxx

(uxvxx − uxxvx)2 + u2
xx + v2

xx

, (6.4)

10 As in the planar version, there is an ambiguous sign resulting from a 180◦ rotation, and one usually sets κ = |I2| to
ensure full invariance. To avoid technicalities, we shall ignore this minor complication here, and refer the reader to [19]
for further details.
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which can be obtained by fully implementing the moving frame construction, [4]. The first ex-
pression is valid for arbitrary parametrized curves, and the second is for graphs.

The invariant differential operator is the usual arc length derivative:

D = 1√
1 + u2

x + v2
x

Dx = ι(Dx). (6.5)

To establish the recurrence formulas for the arc length derivatives of the normalized invariants,
we implement the algorithm of Section 5. The invariantized Lie matrix is obtained by replacing
each jet coordinate in (6.3) by the corresponding normalized differential invariant, and so

M(4) = ι
(
L(4)

) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 −I2 0 0

0 0 0 J3 3I 2
2 0

0 0 0 −I3 0 0
0 0 0 J4 10I2I3 4I2J3
0 0 0 −I4 6I2J3 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6.6)

Therefore, the recurrence formulae (5.6) are given by

0 = DH = 1 + R1,

0 = DI0 = I1 + R2 = R2, 0 = DJ0 = J1 + R3 = R3,

0 = DI1 = I2 + R5, 0 = DJ1 = J2 + R6 = R6,

DI2 = I3, 0 = DJ2 = J3 − I2R4,

DI3 = I4 + J3R4 + 3I 2
2 R5, DJ3 = J4 − I3R4,

DI4 = I5 + J4R4 + 10I2I3R5 + 4I2J3R6, DJ4 = J5 − I4R4 + 6I2J3R5,

and so on. Note that we do not require the explicit formulas for either the moving frame or the
differential invariants in order to write out these formulas. The six phantom recurrence relations
are to be solved for the Maurer–Cartan invariants:

R1 = −1, R2 = 0, R3 = 0, R4 = J3/I2, R5 = −I2, R6 = 0.

Substituting these expressions into the remaining basic recurrence formulas leads to the explicit
recurrence relations

DI2 = I3, DI3 = I4 − 3I 3
2 + J 2

3 /I2, DJ3 = J4 − I3J3/I2,

DI4 = I5 − 10I 2
2 I3 + J3J4/I2, DJ4 = J5 − 6I 2

2 J3 + J3I4/I2, (6.7)

and, in general,

DIk = Ik+1 + 1

I2
Pk(I2, . . . , Ik, J3, . . . , Jk),

DJk = Jk+1 + 1
Qk(I2, . . . , Ik, J3, . . . , Jk), for all k � 3, (6.8)
I2
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where Pk , Qk are certain polynomials whose precise forms are not difficult to determine, but are
not required here. With these in hand, it is easy to see that the two edge invariants I2 and J3 do
indeed generate all higher differential invariants.

On the other hand, suppose we were to construct a non-traditional moving frame based on the
equations

x = 0, u = 0, v = 0, vx = 0, vxx = 0, vxxx = 1,

which define a coordinate cross-section provided uxuxx �= 0. In this case, the phantom indices
are

P = {
1, (0;1), (0;2), (1;2), (2;2), (3;2)

};
the basic indices are

B = {
(k;1), (l ;2) for all k � 1, l � 4

};
while the edge indices are

E = {
(1;1), (4;2)

}
.

The resulting moving frame invariantizations produce the phantom invariants11

H̃ = ι̃(x) = 0, Ĩ0 = ι̃(u) = 0, J̃0 = ι̃(v) = 0,

J̃1 = ι̃(vx) = 0, J̃2 = ι̃(vxx) = 0, J̃3 = ι̃(vxxx) = 1, (6.9)

along with the independent basic differential invariants

Ĩ1 = ι̃(ux), Ĩ2 = ι̃(uxx), Ĩ3 = ι̃(uxxx), Ĩ4 = ι̃(uxxxx), J̃4 = ι̃(vxxxx),

(6.10)

and so on. Let D̃ = ι̃(Dx) denote the associated invariant differential operator.
We will show that, in contradiction to the general claim in [3], the edge invariants Ĩ1, J̃4 in

this case do not generate the complete system of differential invariants through invariant differ-
entiation. To this end, we need to write out the recurrence formulae associated with this choice
of cross-section. In view of (6.9)–(6.10), the invariantized Lie matrix is

M(4) = ι̃
(
L(4)

) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 + Ĩ 2

1 0
0 0 0 −Ĩ1 0 1
0 0 0 0 3Ĩ1Ĩ2 0
0 0 0 −Ĩ2 0 0
0 0 0 1 4Ĩ1Ĩ3 + 3Ĩ 2

2 Ĩ1

0 0 0 −Ĩ3 3Ĩ1 0

0 0 0 J̃4 5Ĩ1Ĩ4 + 10Ĩ2Ĩ3 Ĩ1J̃4 + 4Ĩ2

0 0 0 −Ĩ4 4Ĩ1J̃4 + 6Ĩ2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6.11)

Thus, the phantom recurrence formulae are

11 We use tildes to distinguish these from the classical differential invariants derived above.
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0 = D̃H = 1 + R1,

0 = D̃Ĩ0 = Ĩ1 + R2,

0 = D̃J̃0 = J̃1 + R3 = R3,

0 = D̃J̃1 = J̃2 − Ĩ1R4 + R6 = −Ĩ1R4 + R6,

0 = D̃J̃2 = J̃3 − Ĩ2R4 = 1 − Ĩ2R4,

0 = D̃J̃3 = J̃4 − Ĩ3R4 + 3Ĩ1R5.

Since Ĩ1Ĩ2 = ι̃(uxuxx) �= 0 by virtue of our cross-section condition, these equations can be solved
for the Maurer–Cartan invariants:

R1 = −1, R2 = −Ĩ1, R3 = 0, R4 = 1

Ĩ2
, R5 = 1

3Ĩ1

(
Ĩ3

Ĩ2
− J̃4

)
, R6 = Ĩ1

Ĩ2
.

Substituting these expressions into the basic recurrence formulae

D̃Ĩ1 = Ĩ2 + (
1 + Ĩ 2

1

)
R5,

D̃Ĩ2 = Ĩ3 + 3Ĩ1Ĩ2R5,

D̃Ĩ3 = Ĩ4 + R4 + (
4Ĩ1Ĩ3 + 3Ĩ 2

2

)
R5 + Ĩ1R6,

D̃Ĩ4 = Ĩ5 + J̃4R4 + (5Ĩ1Ĩ4 + 10Ĩ2Ĩ3)R5 + (Ĩ1J̃4 + 4Ĩ2)R6,

D̃J̃4 = J̃5 − Ĩ4R4 + (4Ĩ1J̃4 + 6Ĩ2)R5,

and so on, leads to the fundamental recurrence formulas

D̃Ĩ1 = Ĩ2 + 1 + Ĩ 2
1

3Ĩ1

(
Ĩ3

Ĩ2
− J̃4

)
, D̃Ĩ2 = 2Ĩ3 − Ĩ2J̃4,

D̃Ĩ3 = Ĩ4 + 4Ĩ1Ĩ3 + 3Ĩ 2
2

3Ĩ1

(
Ĩ3

Ĩ2
− J̃4

)
+ 1 + Ĩ 2

1

Ĩ2
, (6.12)

and, in general,

D̃Ĩk = Ĩk+1 + 1

Ĩ1Ĩ2
Pk(Ĩ1, . . . , Ĩk, J̃4, . . . , J̃k),

D̃J̃k = J̃k+1 + 1

Ĩ1Ĩ2
Qk(Ĩ1, . . . , Ĩk, J̃4, . . . , J̃k), (6.13)

in which Pk , Qk are certain polynomials whose precise forms are not required here. The higher
order formulae (6.13) imply that the normalized invariants Ĩ1, Ĩ2, Ĩ3, Ĩ4, J̃4 of degree less than
4 serve to generate all the higher order differential invariants, which is in accordance with the
general result given in Theorem 7.1 below.

Let us now show that the edge invariants Ĩ1 and J̃4 do not generate the complete system of
differential invariants. Indeed, while the second and third formulas in (6.12) allow us to express
both

Ĩ3 = 1

2
D̃Ĩ2 + 1

2
Ĩ2J̃4, Ĩ4 = D̃Ĩ3 − 4Ĩ1Ĩ3 + 3Ĩ 2

2

3Ĩ1

(
Ĩ3

Ĩ2
− J̃4

)
+ 1 + Ĩ 2

1

Ĩ2
, (6.14)

in terms of derivatives of Ĩ1, Ĩ2 and J̃4, the resulting initial recurrence formula

D̃Ĩ1 = Ĩ2 + 1 + Ĩ 2
1

˜
( D̃Ĩ2

˜ − J̃4

)
(6.15)
6I1 I2
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is a differential equation for Ĩ2, and cannot be used to express Ĩ2 algebraically in terms of Ĩ1
and J̃4 and their invariant derivatives. Also, the higher order recurrence formulae (6.13) are of
no help, since they always introduce a new, higher order functionally independent differential
invariant, namely Ĩk+1 or J̃k+1, and this precludes any further syzygies among the lower order
invariants. (On the other hand, one can solve (6.15) for J̃4 in terms of Ĩ1, Ĩ2 and their derivatives,
and hence the latter pair of differential invariants do form a generating system.)

To reconfirm our conclusion, let us rewrite the lower order normalized differential invariants
in terms of the classical curvature and torsion invariants. Applying the invariantization map ι̃

defined by our non-traditional moving frame, as specified by (6.9)–(6.10), to the classical differ-
ential invariants (6.4), and invoking the Replacement Rule (3.9), we find

κ = ι̃

(√
(uxvxx − uxxvx)2 + u2

xx + v2
xx

(1 + u2
x + v2

x)
3/2

)
= |Ĩ2|

(1 + Ĩ 2
1 )3/2

,

τ = ι̃

(
uxxvxxx − uxxxvxx

(uxvxx − uxxvx)2 + u2
xx + v2

xx

)
= Ĩ2

Ĩ 2
2

= 1

Ĩ2
. (6.16)

Solving, we find12

Ĩ1 =
√

(κτ)−2/3 − 1, Ĩ2 = 1

τ
. (6.17)

In particular, we discover that this cross-section and resulting moving frame are only valid for
curves with κτ > 1. (Changing the last cross-section equation in (6.9) to vxxx = c will produce a
moving frame with a somewhat wider range of validity.) Thus, the invariants Ĩ1, Ĩ2 are essentially
equivalent to the classical curvature and torsion, which explains why they serve to generate the
full differential invariant algebra.

The corresponding invariant differential operator is expressed by applying invariantization to
the arc length derivative (6.5):

D = ι̃(D) = ι̃

(
1√

1 + u2
x + v2

x

Dx

)
= 1√

1 + Ĩ 2
1

D̃,

and hence, using (6.16),

D̃ = (κτ)−1/3D = (κτ)−1/3 d

ds
. (6.18)

Substituting (6.17)–(6.18) into (6.15) produces

J̃4 = 2κsτ + κτs

(κτ)4/3
+ 6

κ2/3

τ 1/3

√
(κτ)−2/3 − 1. (6.19)

Observe that J̃4 depends on τs and κs , and hence we cannot generate both κ and τ by differenti-
ating the edge invariants Ĩ1, J̃4, reconfirming our earlier observations. We also note that

Ĩ3 = κs

(κτ)4/3
+ 3

κ2/3

τ 4/3

√
(κτ)−2/3 − 1, (6.20)

which results from substituting (6.17)–(6.19) into the first recurrence formula in (6.14). An al-
ternative means of deriving these formulae (or for checking the preceding computations) is to

12 There is a sign ambiguity in the square root throughout.
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differentiate the classical formulae (6.4) with respect to arc length, and then apply the invarianti-
zation map ι̃.

7. Generating differential invariants

Let us now present corrected, rigorous results on generating differential invariants, for both
minimal and non-minimal order moving frames. Theorem 13.3 in [3] claims that the edge differ-
ential invariants, meaning those normalized differential invariants indexed by the elements of E ,
form a generating set. The justification relied on an induction argument, which was based on the
erroneous claim that the Maurer–Cartan invariants, being solutions to the phantom recurrence
equations (5.8), only depended on the edge invariants. First, it was correctly noted that the lead-
ing terms Iα

J,i in (5.8) are all either phantom invariants, and hence constant, or, if non-constant,
edge invariants. However, the rows ψ

β
K of the coefficient matrix can, in certain scenarios, de-

pend on some of the non-edge basic differential invariants—as we witnessed in the preceding
example—thereby precipitating a breakdown of the proposed inductive argument. However, the
following less powerful result does follow from the original argument.

Theorem 7.1. Given a moving frame of order n, the normalized differential invariants corre-
sponding to indices in B(n) ∪ E form a generating system.

Proof. Indeed, the linear system (5.8) determining the Maurer–Cartan invariants only involves
the basic invariants of order � n and the edge invariants of order n + 1, and hence the Maurer–
Cartan invariants can be expressed as functions of the listed generating invariants. Moreover, the
higher order basic recurrence formulae

Iα
J,i = DiI

α
J − ψα

J Ri for (J ;α) ∈ B, k = #J � n,

express the invariants of order k+1 in terms of generating and lower order differential invariants.
A straightforward induction argument completes the proof. �

Thus, to find a complete system of generating differential invariants, one may require all basic
differential invariants of order � n along with any edge invariants that appear at order n + 1.
Theorem 7.1 is a slight improvement on the classical result, [24], that requires all differential
invariants of order n+1. Keep in mind that it is not claimed that the differential invariants indexed
by B(n) ∪ E form a minimal generating system. Indeed, in practice, many of these invariants can
be generated by lower order invariants, and so are not required in a generating system. However,
as the example in Section 6 makes clear, the edge invariants by themselves may not suffice.

But, if a minimal order moving frame is employed, Theorem 13.3 in [3] does remain valid as
originally formulated.

Theorem 7.2. The edge differential invariants arising from a minimal order moving frame form
a generating system of differential invariants.

Proof. According to Corollary 4.4, we can rewrite every non-phantom row of the Lie matrix
as a linear combination of phantom rows. Applying the invariantization process to the resulting
linear dependencies (4.6) leads to similar dependencies amongst the rows of the invariantized
Lie matrix:
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ηi =
∑

l∈P(0)

hi
l (H, I)ηl +

∑
(0,β)∈P(0)

hi
β(H, I)ψβ,

ψα
J =

∑
l∈P(0)

hα
J,l

(
H,I (k)

)
ηl +

∑
(K;β)∈P(k)

h
α,K
J,β

(
H,I (k)

)
ψ

β
K, where k = #J. (7.1)

Substituting these formulae into (5.9) and then using the phantom recurrence formulae (5.8) leads
to

DiI
α
J = Iα

J,i + ψα
J Ri

= Iα
J,i +

∑
l∈P(0)

hα
J,l

(
H,I (k)

)
ηlRi +

∑
(K;β)∈P(j)

h
α,K
J,β

(
H,I (k)

)
ψ

β
KRi

= Iα
J,i −

∑
l∈P(0)

hα
J,l

(
H,I (k)

)
δl
i −

∑
(K;β)∈P(k)

h
α,K
J,β

(
H,I (k)

)
I

β
K,i . (7.2)

We conclude that, for any basic index (J ;α) ∈ B,

Iα
J,i = DiI

α
J +

∑
l∈P(0)

hα
J,l

(
H,I (k)

)
δl
i +

∑
(K;β)∈P(k)

h
α,K
J,β

(
H,I (k)

)
I

β
K,i , #J = k. (7.3)

To complete the proof, we use induction on the degree of the differential invariant, noting
that all basic degree zero invariants Hi , Iα (which only appear if the group acts intransitively
on M) are automatically included in our generating set. The only differential invariants of degree
> k = #J that appear on the right-hand side of (7.3) are the I

β
K,i for phantom indices (K;β) ∈

P(k). But, in this case, either (K, i;β) ∈ P(k+1) is another phantom index, in which case I
β
K,i is

constant, or (K, i;β) ∈ E is an edge index, in which case I
β
K,i is one of the generating differential

invariants. Thus, by our induction hypothesis, any degree k + 1 non-edge normalized differential
invariant Iα

J,i can be written in terms of the generating edge invariants of degree k + 1 and the
differential invariants of degree � k and their invariant derivatives. This completes the induction
step. �
Remark. Since, according to [17, Theorems 5.37 and 5.49], the order at which the prolongation
of a locally effective r-dimensional Lie group action becomes locally free is bounded by r ,
Theorem 7.2 can be used to bound the number of differential invariants in terms of the dimension
of the group. Details will appear elsewhere.

The edge invariants may still not form a minimal generating system. In general, given an
edge index of the form (J, i;α) ∈ E with (J ;α) ∈ B basic, then (5.9) relates the edge invariant
Iα
J,i to the differentiated basic invariant DiI

α
J . Let us call the edge indices/invariants that are

not of this form essential. Thus, one might expect that only the essential invariants are needed
in a generating set. Unfortunately, while often true, this is not always the case as the following
example demonstrates.

Remark. As in [23], we can identify each index (J ;α) ∈ T with a monomial sJ Sα in the R[s]
polynomial module

S =
{

σ(s, S) =
q∑

σα(s)Sα

}
� R[s] ⊗ R

q,
α=1
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consisting of polynomials in variables s = (s1, . . . , sp), S = (S1, . . . , Sq), that are linear in the
latter. A cross-section and its associated moving frame are called algebraic if the subspace
spanned by the basic monomials sJ Sα for (J ;α) ∈ B forms a submodule. In this case, the es-
sential indices correspond to a (Gröbner) basis for the monomial submodule. See [23] for further
developments in this direction.

Example 7.3. Consider the group action GV on R
3 discussed in Example 2.2, in the special case

when the subspace V is spanned by the polynomials

ϕ1(x, y) = 1, ϕ2(x, y) = x, ϕ3(x, y) = y, ϕ4(x, y) = xy − 1

2
x2,

ϕ5(x, y) = xy − 1

2
y2, ϕ6(x, y) = −1

6
x3 + 1

4
x2y + 1

4
xy2 − 1

6
y3. (7.4)

The cross-section normalizations

x = y = u = ux = uy = uxx = uyy = uxxx = 0 (7.5)

serve to define a minimal order moving frame, since the rank of the second order Lie matrix is
r2 = 7. The basic differential invariants are

Ixy = ι(uxy), Ixxy = ι(uxxy), Ixyy = ι(uxyy), Iyyy = ι(uyyy),

Ijk = ι(ujk) for all j + k � 5.

The edge invariants are Ixy , Ixxy , Ixyy , Iyyy , Ixxxx , Ixxxy , while the essential invariants are Ixy ,
Iyyy , Ixxxx .

The recurrence formulas are readily established:

D1Ixy = Ixxy + Ixyy, D2Ixy = Ixxy + Ixyy + Iyyy,

D1Ixxy = 1

2
Ixxxx + Ixxxy, D2Ixxy = 1

2
Ixxxy + Ixxyy,

D1Ixyy = 1

2
Ixxxx + Ixxyy, D2Ixyy = 1

2
Ixxxy + Ixyyy,

D1Iyyy = −Ixxxx + Ixyyy, D2Iyyy = −Ixxxy + Iyyyy, (7.6)

while

D1Ijk = Ij+1,k, D2Ijk = Ij,k+1, whenever j + k � 4. (7.7)

In accordance with Theorem 7.2, we can generate all higher order differential invariants from
Ixy , Ixxy , Ixyy , Iyyy , Ixxxx . However, we cannot generate both Ixxy , Ixyy from Ixy , and so the
essential invariants do not form a generating system in this particular case.

The cause of the difficulty in this example appears to be that we are not paying proper atten-
tion to the algebraic structure associated with this group action. We are not able to fully develop
this remark here, but will make the following preliminary observations. The polynomial sub-
space spanned by (7.4) is the solution space to the following overdetermined system of partial
differential equations

ϕxx + ϕxy + ϕyy = 0, ϕxxy − ϕxyy = 0. (7.8)

The symbol module associated with this system is generated by the polynomials

s2 + st + t2, s2t − st2.
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The arguments in [23] inspire us to choose an “algebraic” coordinate cross-section prescribed
by the set of complementary monomials to the prolonged symbol module relative to some term
ordering, [2]. For example, using lexicographic ordering based on s < t , the complementary
monomials are 1, s, t, s2, st, s3, leading to the cross-section equations

x = y = u = ux = uy = uxx = uxy = uxxx = 0, (7.9)

which also define a minimal order moving frame. (In contrast, the monomials 1, s, t , s2, t2, s3,
corresponding to (7.5) do not form a complementary set with respect to any term ordering.) In
this case, the basic differential invariants are

Iyy = ι(uyy), Ixxy = ι(uxxy), Ixyy = ι(uxyy), Iyyy = ι(uyyy),

Ijk = ι(ujk) for all j + k � 5.

But in this case, the essential invariants Iyy, Iyyy, Ixxxx do generate all higher order differential
invariants. Indeed, the first two recurrence formulas are

D1Iyy = Ixxy + Ixyy, D2Iyy = Ixxy + Ixyy + Iyyy, (7.10)

while all the rest are exactly the same as in (7.6)–(7.7). Observe that we are now able to write the
non-edge invariants Ixxy , Ixyy in terms of Iyy , Iyyy .
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