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Abstract

For each m (= 1, . . . , n) the nth Laguerre polynomial L
(α)
n (x) has an m-fold zero at the origin when

α = −m. As the real variable α → −m, it has m simple complex zeros which approach 0 in a symmetric
way. This symmetry leads to a finite value for the limit of the sum of the reciprocals of these zeros. There
is a similar property for the zeros of the q-Laguerre polynomials and of the Jacobi polynomials and similar
results hold for sums of other negative integer powers.
© 2007 Elsevier Inc. All rights reserved.
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1. The Laguerre polynomials

The Laguerre polynomials are given by the explicit formula

L(α)
n (x) =

n∑
k=0

(
n + α

n − k

)
(−x)k

k! , (1)

valid for all x,α ∈ C, showing them to be polynomials in both x and α.
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We also use the representation [6, (5.3.3)],

L(α)
n (x) =

(
n + α

n

)
1F1(−n,α + 1;x) =

(
n + α

n

)[
1 +

n∑
k=1

(
n
k

)
(−x)k

(α + 1)k

]
, (2)

with the usual notation for the confluent hypergeometric function. This is valid for α �=
−1, . . . ,−n, and with a limiting definition for α = −1, . . . ,−n.

The Laguerre polynomials satisfy the three term recurrence relation

xL(α)
n (x) = −(n + 1)L

(α)
n+1(x) + (α + 2n + 1)L(α)

n (x) − (α + n)L
(α)
n−1(x), (3)

with initial conditions L
(α)
−1(x) = 0 and L

(α)
0 (x) = 1 for all complex α and x. When α > −1, this

recurrence relation is positive definite and the Laguerre polynomials are orthogonal with respect
to the weight function xαe−x on [0,+∞). From this it follows that the zeros of L

(α)
n (x) are

positive, real, simple, increasing functions of α and they interlace with the zeros of L
(α)
n+1(x) [6].

When α � −1 we no longer have orthogonality with respect to a positive weight function and the
zeros can be non-real and non-simple. In the case α � −1 the behaviour of the zeros of L

(α)
n (x)

has been studied in detail in [1].
When α = −m (1 � m � n) the explicit formula (1) yields [6, (5.2.1)],

L(−m)
n (x) = (−x)m

(n − m)!
n! L

(m)
n−m(x), (4)

so L
(−m)
n (x) has a zero of order m at x = 0, the remaining n − m zeros being those of L

(m)
n−m(x).

The zero of order m arises from the coalescence of m simple zeros as α approaches −m. This
follows by the method used in [6, §6.72] to prove some corresponding results for the Jacobi
polynomials. (See [1] for more details of the Laguerre case.)

To see that m zeros approach the origin as α → −m, we let ε = α + m and normalize so that
the coefficient of xm is 1; that is, we consider the following multiple of L

(α)
n (x):

qn(x, ε) =
n∑

k=0

ck(ε)x
k, (5)

where

ck(ε) = (−1)k−m (n − m)!m!
(n − k)!k!

(ε − m + k + 1)n−k

(ε + 1)n−m

. (6)

For 0 � k � m − 1, ck(ε) is a polynomial in ε which vanishes for ε = 0; for m − 1 � k � n, it is
a rational function of ε which remains bounded as ε → 0; also cm(ε) = 1. Thus we may write

qn(x, ε) = xm + εc′
0(0) + r(x, ε),

where r(x, ε) remains to be examined more closely. If we choose an x0 so that |x0| =
2|εc′

0(0)|1/m, we find that

r(x0, ε) = O
(
ε1+1/m

)
, ε → 0.

so comparing r(x0, ε) and xm + εc′
0(0), we find, by Rouché’s theorem, that qn(x, ε) has exactly

m zeros in the disk |x| < |x0|. This shows that the m-fold zero of the right-hand side of (4) arises
from the confluence of m zeros of L

(α)
n (x), as α → −m.

For n � 2, although the reciprocal of each zero becomes infinite, as α → −m, the sum of their
reciprocals approaches a finite negative value. We state this as follows:
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Theorem 1. Let x1(α), . . . , xm(α) be the m (2 � m � n) zeros of L
(α)
n (x) in a neighbourhood of

x = 0 for α ∼ −m. Then

lim
α→−m

m∑
k=1

1

xk(α)
= m(m − 2n − 1)

m2 − 1
. (7)

Proof. Let α be close to −m. Let us number the zeros of L
(α)
n (x) so that x1, . . . , xm are near zero

and xm+1, . . . , xn are near the positive real zeros of L
(m)
n−m(x). The explicit formula (2) yields

n∑
k=1

1

xk(α)
= n

α + 1
, α �= −1, . . . ,−n. (8)

This is readily seen by considering the factorization(
n + α

n

)−1

L(α)
n (x) =

(
1 − x

x1(α)

)
· · ·

(
1 − x

xn(α)

)
= 1 − x

n∑
k=1

1

xk(α)
+ · · · , (9)

and comparing with the expansion (2):(
n + α

n

)−1

L(α)
n (x) = 1 − n

α + 1
x + · · · . (10)

Letting α → −m gives

n

1 − m
= lim

α→−m

n∑
k=1

1

xk(α)

= lim
α→−m

m∑
k=1

1

xk(α)
+ lim

α→−m

n∑
k=m+1

1

xk(α)
,

where the zeros in the first sum are the ones in the neighbourhood of 0. But the zeros in the
second sum on the right approach those of L

(m)
n−m(x) and hence, using (8), we get

n

1 − m
= lim

α→−m

m∑
k=1

1

xk(α)
+ n − m

1 + m
, (11)

which gives (7). �
2. q-Laguerre polynomials

For 0 < q < 1, the q-Laguerre polynomials may be defined by

L(α)
n (x, q) = (qα+1;q)n

(q;q)n

n∑
k=0

(q−n;q)kq
k(k+1)/2+k(n+α)

(qα+1;q)k(q;q)k
(1 − q)kxk, (12)

where we use the standard notation

(a;q)n =
{

1, n = 0,

(1 − a)(1 − aq) · · · (1 − aqn−1), n = 1,2, . . . .

The definition (12) is that given by Moak [5] and in [2, p. 210]. The definition given in [4, p. 108]
has x replaced by (1 − q)−1x.
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Note that L
(α)
n (x, q) → L

(α)
n (x) as q → 1− so if we use xk(α;q) for the zeros of L

(α)
n (x, q)

then xk(α;q) → xk(α), as q → 1−.
It is an easy matter to show that

L(−m)
n (x, q) = (−x)m(1 − q)m

(q;q)n−m

(q;q)n
L

(m)
n−m(x, q), m = 1,2, . . . , n. (13)

We may proceed as in Section 1, to get
n∑

k=1

1

xk(α;q)
= qα+1(1 − qn)

1 − qα+1
, α �= −1, . . . ,−n, (14)

which reduces to (8) as q → 1−, and

lim
α→−m

m∑
k=1

1

xk(α;q)
= qn−1(1 − q−m)(1 + q − qm−n − q−n)

(1 − qm−1)(1 − q−m−1)
, m = 2, . . . , n, (15)

which reduces to (7) as q → 1−.

3. Sums of powers of the zeros

Here we consider power sums

Sr =
n∑

k=1

x−r
k , r = 1,2, . . . ,

of the zeros of L
(α)
n (x). If we write(

n + α

n

)−1

L(α)
n (x) =

n∏
k=1

(
1 − x

xk(α)

)
= 1 +

n∑
k=1

akx
k,

then the sums Sj are related to the coefficients aj by [3, §3]:

S1 = −a1, Sr = −rar −
r−1∑
i=1

aiSr−i , r = 2,3, . . . .

In particular S2 = a2
1 − 2a2, giving, in the Laguerre case,

S2 = n2 + n(α + 1)

(α + 1)2(α + 2)
.

We may argue as in the proof of Theorem 1 that

n2

(1 − m)2
− n(n − 1)

(m − 1)(m − 2)
= lim

α→−m

n∑
k=1

1

xk(α)2

= lim
α→−m

m∑
k=1

1

xk(α)2
+ lim

α→−m

n∑
k=m+1

1

xk(α)2
.

As in Section 1, the zeros in the second sum on the right approach those of L
(m)
n−m(x) and hence,

with the notation of Theorem 1,
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n2

(1 − m)2
− n(n − 1)

(m − 1)(m − 2)
= lim

α→−m

m∑
k=1

1

xk(α)2
+ (n − m)2

(1 + m)2

− (n − m)(n − m − 1)

(m + 1)(m + 2)
. (16)

This leads to

lim
α→−m

m∑
k=1

1

xk(α)2
= − (n − m)(n + 1)

(m + 1)2(m + 2)
− n(n − m + 1)

(m − 1)2(m − 2)
, 3 � m � n. (17)

It makes sense that the above sum is meaningless for m = 2 since we do not expect the required
cancellation in that case; x1(α)2 and x2(α)2 are positive numbers which both approach 0 as
α → −2+.

We may apply the same method to the q-Laguerre polynomials to get

lim
α→−m

m∑
k=1

1

x2
k (α;q)

= (1 − qn)2

(1 − qm−1)2
− 2q(1 − qn)(1 − qn−1)

(1 + q)(1 − qm−1)(1 − qm−2)

− q2m+2(1 − qn−m)2

(1 − qm+1)2
+ 2q2m+4(1 − qn−m)(1 − qn−m−1)

(1 + q)(1 − qm+1)(1 − qm+2)
, (18)

which reduces to (17) as q → 1−.

4. Jacobi polynomials

The reason for the described behaviour of the zeros of Laguerre polynomials lies in their
hypergeometric character as exhibited in (2). In fact our results may be extended to a general class
of pFq with a numerator parameter −n and a denominator parameter α + 1, even in some cases
where the extra parameters depend on α. We confine attention to the case of Jacobi polynomials.

As in [6, (4.21.2)], we may define the Jacobi polynomial P
(α,β)
n (x), for general complex

numbers α and β by

P (α,β)
n (x) = 1

n!
n∑

k=0

(
n

k

)
(n + α + β + 1)k(α + k + 1)n−k

(
x − 1

2

)k

(19)

or by

P (α,β)
n (x) =

(
n + α

n

)
2F1

(
−n, n + α + β + 1;α + 1; 1 − x

2

)
, (20)

with a limiting definition for α = −1, . . . ,−n, from which it follows [6, (4.22.2)] that, for 1 �
m � n,(

n

m

)
P (−m,β)

n (x) =
(

n + β

m

)(
x − 1

2

)m

P
(m,β)
n−m (x). (21)

From the explicit formula (20) or from the differential equation for the Jacobi polynomials,
we have, for α �= −1, . . . ,−n,

n∑
k=1

1

1 − xk(α,β)
= n(n + α + β + 1)

2(α + 1)
. (22)

From this we can get
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Theorem 2. Let x1(α,β), . . . , xk(α,β) be the m(2 � m � n) zeros of P
(α,β)
n in a neighbourhood

of x = 1 for α ∼ −m. Then

lim
α→−m

m∑
k=1

1

1 − xk(α,β)
= n(n − m + β + 1)

2(1 − m)
− (n − m)(n + β + 1)

2(m + 1)
. (23)

Limits of sums of higher powers and q-extensions are obtainable as before.
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