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Abstract

We compute the limiting subdifferential ∂F (x̄) of the indefinite integral of the form F(x) = ∫ x
a f (t) dt where f is an essentially

bounded measurable function, or a function continuous on an interval containing x̄ ∈ R (except for, possibly, x̄), or a step-function
which has a countable number of steps around x̄. The related problem of computing the Aumann integral of the limiting subdiffer-
ential mapping ∂f (·), where f is a Lipschitz real function defined on an open set U ⊂ R

n, is also investigated.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The Clarke subdifferential is one of the most significant concepts in nonsmooth analysis; see [4]. Its nonconvex
counterpart, introduced in [7] and called the limiting subdifferential (or the Mordukhovich subdifferential), plays a
central role in variational analysis and set-valued analysis (see [7–11]). The problem of computing or estimating the
Clarke subdifferential of the integral functional

G(x) =
∫
Ω

g(x, t) dμ(t), (1.1)

where g is a real function defined on U × Ω , U is an open subset of a Banach space and (Ω,μ) is a positive measure
space, has been discussed in [4, Section 2.7]. As noted by Professor B.S. Mordukhovich, it would be interesting to
obtain some formulae for the limiting subdifferential of G(·). In this general setting, the problem has not been solved
so far.

In the first part of this paper, we will compute the limiting subdifferential ∂F (x̄) of the indefinite integral

F(x) =
x∫

a

f (t) dt, (1.2)
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where f is an essentially bounded measurable function, or a function continuous on an interval containing x̄ ∈ R

(except for, possibly, x̄), or a step-function which has a countable number of steps around x̄. Letting μ be the Lebesgue
measure on [a, b], Ω = [a, b], g(x, t) = f (t) for t ∈ [a, x] and g(x, t) = 0 for t ∈ (x, b], we see that

F(x) =
x∫

a

f (t) dt =
∫
Ω

g(x, t) dμ(t) =: G(x).

So, the function in (1.2) is a special case of that one given by (1.1). The limiting subdifferential ∂F (x̄) is the Painlevé–
Kuratowski limit of a family of the Fréchet subdifferentials ∂̂F (x), x ∈ [a, b]. We also present a formula for the
Fréchet subdifferential of F.

The second part of the paper gives a representation formula for the Aumann integral (a set-valued integral) of the
limiting subdifferential mapping ∂f (·), where f : U → R is a Lipschitz function on an open set U ⊂ R

n. Similar
formulae for the case of the Clarke subdifferential mapping ∂Cf (·) were given in our preceding paper [6]. From the
obtained results one can derive a formula of the Newton–Leibnitz type.

The rest of the paper is divided into 3 sections. The next section contains some definitions and results which are
needed in the sequel. Section 3 computes the Fréchet subdifferential and the limiting subdifferential of the function F

defined by (1.2). Formulae for the Aumann integral of the limiting subdifferential of a Lipschitz function are obtained
in Section 4.

2. Preliminaries

Most of our notations are standard. Some special symbols are introduced when they are needed. Unless otherwise
stated, all the spaces considered are Euclidean. In R

n, we always select the Euclidean norm ‖x‖ := (x2
1 +· · ·+ x2

n)1/2

and the Lebesgue measure m. For a set-valued mapping F : R
n ⇒ R

n, the expression

Lim sup
u→x

F (u) := {
x∗ ∈ R

n
∣∣ ∃uk → x, u∗

k → x∗, u∗
k ∈ F(uk) for k = 1,2, . . .

}
denotes the sequential Painlevé–Kuratowski upper/outer limit. If f : R

n → R := [−∞,+∞] is an extended-real-
valued function, then lim supf (x) and lim inff (x) denote the upper and lower limits in the classical (scalar) sense.
Recall that f is lower semicontinuous (l.s.c.) at a point x with |f (x)| < ∞ if

f (x) � lim inf
u→x

f (u).

We say that f is l.s.c. around x when it is l.s.c. at any point in some neighborhood of x.

Definition 2.1. (See [8].) Let f : R
n → R with |f (x)| < ∞ be l.s.c. around x. The Fréchet subdifferential of f at x

is the set ∂̂f (x) defined by

∂̂f (x) :=
{
x∗ ∈ R

n
∣∣∣ lim inf

u→x

f (u) − f (x) − 〈x∗, u − x〉
‖u − x‖ � 0

}
.

We put ∂̂f (x) := ∅ if |f (x)| = ∞. The limiting subdifferential of f at x is defined by

∂f (x) := Lim sup

u
f→x

∂̂f (u),

where “Lim sup” stands for the sequential Painlevé–Kuratowski upper/outer limit, and u
f→ x means u → x with

f (u) → f (x).

The set ∂̂f (x) is convex while, in general, the limiting subdifferential ∂f (x) may be nonconvex (see, e.g., Exam-
ple 3.2). The notion of Fréchet subdifferential is an extension of the notion of Fréchet derivative.

Theorem 2.1. (See [8, p. 90].) Let f : R
n → R with |f (x̄)| < ∞ be Fréchet differentiable at x̄. Then ∂̂f (x̄) = {f ′(x̄)}.
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Definition 2.2. (See [4].) Suppose that f : R
n → R is Lipschitz near x. The Clarke directional derivative of f at x in

direction v ∈ R
n is defined by

f 0(x;v) := lim sup
x′→x, t→0+

f (x′ + tv) − f (x′)
t

.

The Clarke subdifferential of f at x is the set

∂Cf (x) := {
ξ ∈ R

n
∣∣ 〈ξ, v〉 � f 0(x;v) for all v in R

n
}
.

The directional derivative of f at x in direction v ∈ R
n, denoted by f ′(x;v), is defined by

f ′(x;v) := lim
t→0+

f (x + tv) − f (x)

t
,

if the limit on the right-hand side exists. One says that f is Clarke regular at x if, for every v ∈ R
n, the directional

derivative f ′(x;v) exists and f ′(x;v) = f 0(x;v).

The next theorem establishes a relationship between the Clarke subdifferential ∂Cf (x̄) and the limiting subd-
ifferential ∂f (x̄). It was obtained in finite dimensions by B.S. Mordukhovich [7] and then in Asplund spaces by
B.S. Mordukhovich and Y. Shao [10].

Theorem 2.2. (See [10].) Let f : R
n → R be Lipschitz near x̄. Then

∂Cf (x̄) = co ∂f (x̄),

where “co” stands for “closed convex hull.”

The following result is due to J.M. Borwein and S.P. Fitzpatrick.

Theorem 2.3. (See [14].) Let g be locally Lipschitz on an interval I and x ∈ I. If ∂Cg(y) = [α(y),β(y)] for y ∈ I,

then

∂g(x) =
[
lim inf
y→x

α(y), lim sup
y→x+

β(y)
]
∪

[
lim inf
y→x− α(y), lim sup

y→x
β(y)

]
.

We now recall the concept of integral of set-valued mappings due to R.J. Aumann [2]. Let (Ω,A,μ) be a complete
σ -finite measure space, and G : Ω ⇒ R

n be a set-valued mapping from Ω into closed nonempty subsets of R
n. We

denote by G the set of all integrable selections [1, p. 326] of G, that is

G = {
g ∈ L1(Ω;R

n,μ
) ∣∣ g(x) ∈ G(x) μ-a.e. on Ω

}
.

Definition 2.3. (See [1, p. 327].) The integral of G on Ω is the set of integrals of the integrable selections of G∫
Ω

Gdμ :=
{ ∫

Ω

g dμ

∣∣∣ g ∈ G
}
,

where
∫
Ω

g dμ = (
∫
Ω

g1 dμ, . . . ,
∫
Ω

gn dμ) whenever g = (g1, . . . , gn).

Recall that a set-valued mapping G is said to be integrably bounded if there exists a nonnegative function k(·) ∈
L1(Ω;R,μ) such that G(x) ⊂ k(x)BRn a.e. on Ω , where

BRn := {
y ∈ R

n
∣∣ ‖y‖ � 1

}
.

Theorem 2.4. (See [1, p. 310].) Let G : Ω ⇒ R
n, where Ω is a measurable subset of R

n, be a closed set-valued
mapping with nonempty images. Then G is measurable.

The following property of the integral of set-valued mappings is used in the sequel.
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Theorem 2.5. (See [1, p. 330].) Let G : Ω ⇒ R
n be a measurable set-valued mapping with nonempty closed images,

where Ω is a measurable subset of R
n. If G is integrably bounded, then∫

Ω

G(x)m(dx) =
∫
Ω

coG(x)m(dx).

3. Limiting subdifferential of an indefinite integral

In this section we present some formulae for computing the Fréchet subdifferential and the limiting subdifferential
of some special classes of indefinite integrals.

Recall (see [12]) that a measurable function f : [a, b] → R is said to be essentially bounded on [a, b] if there exists
a real number M such that |f (x)| � M a.e. for x ∈ [a, b] (with respect to the Lebesgue measure). Let L∞[a, b] denote
the class of all essentially bounded measurable real functions on [a, b]. Let

f +(x) := inf
{
M

∣∣ ∃ε > 0 such that f (x′) � M a.e. for x′ ∈ [x − ε, x + ε]},
f ++ (x) := inf

{
M

∣∣ ∃ε > 0 such that f (x′) � M a.e. for x′ ∈ [x, x + ε]},
f −(x) := sup

{
M

∣∣ ∃ε > 0 such that f (x′) � M a.e. for x′ ∈ [x − ε, x + ε]},
f −− (x) := sup

{
M

∣∣ ∃ε > 0 such that f (x′) � M a.e. for x′ ∈ [x − ε, x]}.
It is clear that f −(x) � f −− (x) � f +(x) and f −(x) � f ++ (x) � f +(x). Therefore,[

f −(x), f ++ (x)
] ∪ [

f −− (x), f +(x)
] ⊂ [

f −(x), f +(x)
]
.

Theorem 3.1. Let f ∈ L∞[a, b] and F(x) := ∫ x

a
f (t) dt for all x ∈ [a, b]. Then for each x in (a, b), one has

∂F (x) = [
f −(x), f ++ (x)

] ∪ [
f −− (x), f +(x)

]
. (3.1)

Proof. It is known (see [4, p. 34] or [5, p. 96]) that F is a Lipschitz function and

∂CF(y) = [
f −(y), f +(y)

]
(3.2)

for all y ∈ [a, b]. By Theorem 2.3 we obtain

∂F (x) =
[
lim inf
y→x

f −(y), lim sup
y→x+

f +(y)
]
∪

[
lim inf
y→x− f −(y), lim sup

y→x
f +(y)

]
. (3.3)

By (3.2), (3.3) and Theorem 2.2, one has

f −(x) = lim inf
y→x

f −(y) and f +(x) = lim sup
y→x

f +(y). (3.4)

Next we will show that

f ++ (x) = lim sup
y→x+

f +(y). (3.5)

Indeed, for any δ > 0 there are M ∈ R and ε > 0 such that

f (x′) � M a.e. for x′ ∈ [x, x + ε]
and

f ++ (x) + δ � M.

Hence

f (x′) � f ++ (x) + δ a.e. for x′ ∈ [x, x + ε]. (3.6)

For any y ∈ (x, x + ε), there exists ε′ > 0 such that

[y − ε′, y + ε′] ⊂ [x, x + ε].
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By (3.6) we have

f +(y) � f ++ (x) + δ for all y ∈ (x, x + ε).

Hence

lim sup
y→x+

f +(y) � f ++ (x) + δ.

Since δ > 0 is arbitrary, one has

lim sup
y→x+

f +(y) � f ++ (x). (3.7)

If (3.5) does not hold, then by (3.7) there is δ0 > 0 such that

lim sup
y→x+

f +(y) < f ++ (x) − δ0.

Hence there exists ε > 0 such that

f +(y) < f ++ (x) − δ0 for all y ∈ (x, x + ε). (3.8)

Now we will prove that

f (x′) � f ++ (x) − δ0 a.e. for x′ ∈ (x, x + ε). (3.9)

From (3.8) it follows that for each y ∈ (x, x + ε) there exist εy > 0 and My < f ++ (x) − δ0 such that

Vy := (y − εy, y + εy) ⊂ (x, x + ε)

and

f (x′) � My a.e. for x′ ∈ Vy.

Hence

f (x′) � f ++ (x) − δ0 a.e. for x′ ∈ Vy. (3.10)

Since {Vy | y ∈ (x, x + ε)} is an open cover of (x, x + ε), there is a countable subcover {Vyj
| j = 1,2, . . .} of

{Vy | y ∈ (x, x + ε)}. So (3.10) implies (3.9), and thus

f ++ (x) � f ++ (x) − δ0.

This is impossible. Therefore, (3.5) holds. Similarly, we have

f −− (x) = lim inf
y→x− f −(y). (3.11)

From (3.3)–(3.5) and (3.11) it follows that

∂F (x) = [
f −(x), f ++ (x)

] ∪ [
f −− (x), f +(x)

]
.

This completes the proof. �
We now give several examples to illustrate the computation of the limiting subdifferential by using the for-

mula (3.1). They also show that if f ∈ L∞[a, b] and F(x) := ∫ x

a
f (t) dt for all x ∈ [a, b], then ∂F (x) may be

either a single closed interval or a disjoint union of two closed intervals.

Example 3.1. Let E be a measurable set in [0,1] with the property that the intersection of any nonempty open interval
in [0,1] with both E and its complement has positive Lebesgue measure. Such sets do exist (see [13, p. 307]). Let χE

be the characteristic function of E, i.e., χE(t) = 1 if t ∈ E and χE(t) = 0 otherwise. Define F(x) = ∫ x

0 χE(t) dt for
all x ∈ [0,1] and put f (t) := χE(t). It is easy to see that f ∈ L∞[0,1] and

f +(x) = f ++ (x) = 1 and f −(x) = f −− (x) = 0 for all x ∈ (0,1).

Thus, by Theorem 3.1 we have ∂F (x) = [0,1] for all x ∈ (0,1).
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Remark 3.1. Since ∂F (x) = [0,1] for all x ∈ (0,1), by Theorem 2.2 one has ∂CF(x) = [0,1] for all x ∈ (0,1). The
last formula is due to R.T. Rockafellar (see [3, p. 191]).

Example 3.2. Let E be defined as in Example 3.1. Take any x0 ∈ E ∩ (0,1), and define the function f : [0,1] → R

by

f (t) =

⎧⎪⎨
⎪⎩

1 if t ∈ [x0,1] ∩ E,

0 if t ∈ [x0,1]\E,

2 if t ∈ [0, x0) ∩ E,

3 if t ∈ [0, x0)\E.

Let F(x) := ∫ x

a
f (t) dt for all x ∈ [0,1]. It is clear that f ∈ L∞[0,1] and

f +(x0) = 3, f ++ (x0) = 1, f −(x0) = 0, f −− (x0) = 2.

Hence, by Theorem 3.1,

∂F (x0) = [0,1] ∪ [2,3].

Corollary 3.1. In addition to the assumptions of Theorem 3.1, suppose that ∂̂F (x) �= ∅. Then one has

∂F (x) = [
f −(x), f +(x)

]
,

and thus ∂F (x) = ∂CF(x).

Proof. We have

x∗ ∈ ∂̂F (x) ⇔

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

lim inf
u→x+

∫ u

x
f (t) dt

u − x
� x∗,

lim sup
u→x−

∫ u

x
f (t) dt

u − x
� x∗.

(3.12)

For δ > 0 there exist ε > 0 and M ∈ R such that

M < f ++ (x) + δ and f (x′) � M a.e. for x′ ∈ [x, x + ε].
The latter implies that

f (x′) � f ++ (x) + δ a.e. for x′ ∈ [x, x + ε].
Hence

lim inf
u→x+

∫ u

x
f (t) dt

u − x
� f ++ (x) + δ.

Since δ > 0 is arbitrary, we have

lim inf
u→x+

∫ u

x
f (t) dt

u − x
� f ++ (x). (3.13)

Similarly, one has

f −− (x) � lim sup
u→x−

∫ u

x
f (t) dt

u − x
. (3.14)

Since ∂̂F (x) �= ∅, from (3.12)–(3.14) we deduce that f −− (x) � f ++ (x). Therefore, by Theorem 3.1 we obtain ∂F (x) =
[f −(x), f +(x)], which completes the proof. �
Remark 3.2. From Corollary 3.1 it follows that if ∂F (x) is nonconvex, then ∂̂F (x) = ∅.
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Example 3.3. Let {rk}k∈N be the set of rational numbers in (a, b) ⊂ R, a < b. For each k ∈ N, choose δk > 0 as small
as (rk − δk, rk + δk) ⊂ (a, b) and δk < 2−(k+3)(b − a). Put A := ⋃∞

k=0(rk − δk, rk + δk) and P := [a, b]\A. Since A is
an open set in R, one has A = ⋃∞

m=0(am, bm), where {(am, bm)}m∈N is a sequence of disjoint open intervals. Define
a function f : [a, b] → R by

f (x) =
{

0 if x ∈ P,

(x − am)2(x − bm)2 sin 1
(bm−am)(x−am)(x−bm)

if x ∈ (am, bm).

It is known (see [6]) that f is Lipschitz on [a, b], and for every x ∈ A,

f ′(x) = 2(x − am)(x − bm)(2x − am − bm) sin
1

(bm − am)(x − am)(x − bm)

− 2x − am − bm

bm − am

cos
1

(bm − am)(x − am)(x − bm)
.

Besides, f ′(x) = 0 for all x ∈ P. For each x ∈ [a, b], let F(x) := ∫ x

a
f ′(t) dt. Since f is Lipschitz on [a, b], we have

f (x) = f (a) + F(x) for each x ∈ [a, b]. Hence

∂CF(x) = ∂Cf (x), ∂F (x) = ∂f (x)

and

∂̂F (x) = ∂̂f (x) �= ∅
for every x ∈ [a, b]. By Corollary 3.1, ∂F (x) = ∂CF(x) for all x ∈ (a, b). On the other hand, by [6, Example 4.1] we
have

∂Cf (x) =
{ [−1,1] if x ∈ P,

{f ′(x)} if x ∈ A.

Therefore,

∂f (x) =
{ [−1,1] if x ∈ P,

{f ′(x)} if x ∈ A.

Proposition 3.1. Let f ∈ L1[a, b], where L1[a, b] is the space of Lebesgue integrable real functions on the interval
[a, b], −∞ < a < x̄ < b < +∞, and F(x) := ∫ x

a
f (t) dt for all x ∈ [a, b]. Suppose that f is continuous on some

neighborhood of x̄ except, possibly, at x̄; and limx→x̄− f (t) := α ∈ R, limx→x̄+ f (t) := β ∈ R. Then we have the
following assertions:

(i) If α = −∞ and β = +∞, then ∂̂F (x̄) = ∂F (x̄) = R.

(ii) If α = −∞ and β ∈ R, then ∂̂F (x̄) = ∂F (x̄) = (−∞, β].
(iii) If α ∈ R and β = +∞, then ∂̂F (x̄) = ∂F (x̄) = [α,+∞).

(iv) If α = +∞ and β = −∞, then ∂̂F (x̄) = ∂F (x̄) = ∅.

(v) If α = +∞ and β ∈ R, then ∂̂F (x̄) = ∅ and ∂F (x̄) = {β}.
(vi) If α ∈ R and β = −∞, then ∂̂F (x̄) = ∅ and ∂F (x̄) = {α}.
(vii) If α,β ∈ R, then

∂̂F (x̄) =
{ [α,β] for α � β,

∅ for β < α
and ∂F (x̄) =

{ [α,β] for α � β,

{α,β} for β < α.

Proof. Assume that f is continuous on U := (x̄ − δ, x̄) ∪ (x̄, x̄ + δ) ⊂ [a, b] for some δ > 0. We have

x∗ ∈ ∂̂f (x̄) ⇔

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

lim inf
x→x̄+

∫ x

x̄
f (t) dt

x − x̄
� x∗,

lim sup
−

∫ x

x̄
f (t) dt

x − x̄
� x∗.

(3.15)
x→x̄
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If β ∈ R, then for any x ∈ (x̄, x̄ + δ), one has∫ x

x̄
f (t) dt

x − x̄
= f (θx) for some θx ∈ (x̄, x).

Therefore,

lim inf
x→x̄+

∫ x

x̄
f (t) dt

x − x̄
= lim inf

x→x̄+ f (θx) = β. (3.16)

If β = +∞ or β = −∞, then it is easy to see that

lim inf
x→x̄+

∫ x

x̄
f (t) dt

x − x̄
= β. (3.17)

Similarly,

lim sup
x→x̄−

∫ x

x̄
f (t) dt

x − x̄
= α. (3.18)

From (3.15)–(3.18) it follows that

∂̂F (x̄) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[α,β] if α,β ∈ R and α � β,

∅ if α = +∞ or β = −∞ or α > β,

R if α = −∞ and β = +∞,

(−∞, β] if α = −∞ and β ∈ R,

[α,+∞) if α ∈ R and β = +∞.

Since f is continuous on U, F(x) is Fréchet differentiable and F ′(x) = f (x) for all x ∈ U. By Theorem 2.1, ∂̂F (x) =
{f (x)} for all x ∈ U. Hence

Lim sup

x
x �=x̄→ x̄

∂̂F (x) =

⎧⎪⎨
⎪⎩

{α,β} if α,β ∈ R,

{α} if α ∈ R and |β| = +∞,

{β} if |α| = +∞ and β ∈ R,

∅ if |α| = |β| = +∞.

From what has already been said we obtain the assertions (i)–(vii). �
Proposition 3.2. Suppose {tn}, {τn}, {αn}, and {βn} are sequences of real numbers such that a = t0 < t1 < · · · < tn <

tn+1 < · · · < x̄ < · · · < τn+1 < τn < · · · < τ1 < τ0 = b, limn→∞ tn = limn→∞ τn = x̄, both
∑∞

n=1 αn(tn − tn−1) and∑∞
n=1 βn(τn−1 − τn) converge absolutely. Consider the indefinite integral F : [a, b] → R given by F(x) := ∫ x

a
f (t) dt

for all x ∈ [a, b], where

f (t) =
⎧⎨
⎩

αi if ti−1 � t < ti, i = 1,2, . . . ,

α0 if t = x̄,

βj if τj � t < τj−1, j = 1,2, . . . .

Putting

α := − lim inf
k→∞

∑∞
i=k+1 αi(ti − ti−1)

tk − x̄
, β := lim inf

k→∞

∑∞
i=k+1 βi(τi−1 − τi)

τk − x̄
,

and

Ω :=
{

lim
ik→∞αik

}
∪

{
lim

jk→∞βjk

}
∪ Lim sup

i
N1→∞

[αi,αi+1] ∪ Lim sup

j
N2→∞

[βj+1, βj ],

where N1 := {i ∈ N : αi � αi+1}, N2 := {j ∈ N : βj+1 � βj }, {limik→∞ αik } and {limjk→∞ βjk
} are the set of all the

cluster-points of sequences {αk} and {βk}, respectively, we have the following assertions:
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(i) If α = −∞ and β = +∞, then ∂̂F (x̄) = ∂F (x̄) = R.

(ii) If α = −∞ and β ∈ R, then ∂̂F (x̄) = (−∞, β] and ∂F (x̄) = Ω ∪ (−∞, β].
(iii) If α ∈ R and β = +∞, then ∂̂F (x̄) = [α,+∞) and ∂F (x̄) = Ω ∪ [α,+∞).

(iv) If α = +∞ or β = −∞, then ∂̂F (x̄) = ∅ and ∂F (x̄) = Ω.

(v) If α,β ∈ R, then

∂̂F (x̄) =
{ [α,β] for α � β,

∅ for β < α
and ∂F (x̄) =

{ [α,β] for α � β,

{α,β} for β < α.

Proof. Clearly, f is a measurable function and

b∫
a

∣∣f (t)
∣∣dt =

∞∑
n=1

∣∣αn(tn − tn−1)
∣∣ +

∞∑
n=1

∣∣βn(τn−1 − τn)
∣∣.

Since both the series
∑∞

n=1 αn(tn − tn−1) and
∑∞

n=1 βn(τn−1 − τn) converge absolutely, |f | is integrable on [a, b] and
so is f. By some easy computations, one has

F(x) =

⎧⎪⎨
⎪⎩

∑k
i=1 αi(ti − ti−1) + αk+1(x − tk) if x ∈ [tk, tk+1),∑∞
i=1 αi(ti − ti−1) if x = x̄,

F (x̄) + ∑∞
i=k+1 βi(τi−1 − τi) + βk(x − τk) if x ∈ (τk, τk−1].

For x ∈ (a, b)\{x̄}, by Proposition 3.1, we get

∂̂F (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{αi} if x ∈ (ti−1, ti),

{βj } if x ∈ (τj , τj−1),

[αi,αi+1] if x = ti and i ∈ N1,

[βj+1, βj ] if x = τj and j ∈ N2,

∅ otherwise,

(3.19)

where i, j ∈ N. It is clear that F(x) is continuous at x̄. Therefore,

∂F (x̄) = Lim sup
x→x̄

∂̂F (x) = ∂̂F (x̄) ∪ Lim sup

x
x �=x̄→ x̄

∂̂F (x).

It follows from (3.19) that Lim sup
x

x �=x̄→ x̄
∂̂F (x) = Ω. By Definition 2.1, we have

x∗ ∈ ∂̂f (x̄) ⇔

⎧⎪⎪⎨
⎪⎪⎩

lim inf
x→x̄+

F(x) − F(x̄)

x − x̄
� x∗,

lim sup
x→x̄−

F(x) − F(x̄)

x − x̄
� x∗.

For each k ∈ N there exists i ∈ {k, k + 1} such that

F(τi) − F(x̄)

τi − x̄
= min

x∈[τk+1,τk]
F(x) − F(x̄)

x − x̄
.

Hence,

lim inf
x→x̄+

F(x) − F(x̄)

x − x̄
= lim inf

k→∞
F(τk) − F(x̄)

τk − x̄
= β.

Similarly, lim supx→x̄− F(x)−F(x̄)
x−x̄

= α. Therefore,

∂̂F (x̄) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[α,β] if α,β ∈ R and α � β,

∅ if α = +∞ or β = −∞ or α > β,

R if α = −∞ and β = +∞,

(−∞, β] if α = −∞ and β ∈ R,

[α,+∞) if α ∈ R and β = +∞.

(3.20)

The desired assertions (i)–(v) follow from (3.19) and (3.20). �
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4. The Aumann integral of the limiting subdifferential mapping

Our main result of this section reads as follows.

Theorem 4.1. Let f : U → R be a Lipschitz function defined on an open subset U of R
n and Ω be a measurable

subset of U with m(Ω) < ∞. Then we have∫
Ω

∂f (x)m(dx) =
{
x∗ ∈ R

n
∣∣∣ 〈

x∗, v
〉
�

∫
Ω

f 0(x;v)m(dx) for all v ∈ R
n

}
, (4.1)

where ∂f (x) and f 0(x;v) denote, respectively, the limiting subdifferential of f at x and the Clarke generalized
directional derivative of f at x in direction v.

Proof. Suppose that f is Lipschitz of rank 
 on an open subset U of R
n. Then the set-valued mapping ∂f (·) : U ⇒ R

n

is closed, and thus ∂f (x) is closed for all x ∈ U ; see [3, p. 199]. By Theorem 2.2, one has co ∂f (x) = ∂Cf (x) �= ∅
(thus ∂f (x) �= ∅) for all x ∈ U. Hence, by Theorem 2.4 the set-valued mapping ∂f (·) is measurable. Moreover,
m(Ω) < ∞, and ‖x∗‖ � 
 for all x∗ ∈ ∂f (x) and for all x ∈ U ; see [8, p. 86]. Hence, ∂f (·) is integrably bounded on
Ω, and by Theorem 2.5 we get∫

Ω

∂f (x)m(dx) =
∫
Ω

co∂f (x)m(dx).

On the other hand, co ∂f (x) = ∂Cf (x) for all x ∈ Ω. Therefore,∫
Ω

∂f (x)m(dx) =
∫
Ω

∂Cf (x)m(dx). (4.2)

The following assertions hold (see [4]):

(i) For each v ∈ R
n, the mapping f 0(·;v) is measurable.

(ii) For all v1, v2 ∈ R
n and x in Ω, one has∣∣f 0(x;v1) − f 0(x;v1)

∣∣ � k(x)‖v1 − v2‖,
where k(x) := 
 for all x ∈ Ω .

(iii) For each x ∈ Ω, the function f 0(x; ·) is convex (thus Clarke regular) on R
n.

Since m(Ω) < ∞, k(·) ∈ L1(Ω;R). Hence,

∂CF(v) =
∫
Ω

∂Cf 0(x; ·)(v)m(dx) for all v ∈ R
n,

where F(v) := ∫
Ω

f 0(x;v)m(dx); see [4, pp. 75–76]. Since F and f 0(x; ·) are convex functions satisfying F(0) = 0
and f 0(x;0) = 0, one has ∂Cf 0(x;0) = ∂Cf (x) and

∂CF(0) =
{
x∗ ∈ R

n
∣∣∣ 〈

x∗, v
〉
�

∫
Ω

f 0(x;v)m(dx) for all v ∈ R
n

}
.

Therefore,∫
Ω

∂Cf (x)m(dx) =
{
x∗ ∈ R

n
∣∣∣ 〈

x∗, v
〉
�

∫
Ω

f 0(x;v)m(dx) for all v ∈ R
n

}
. (4.3)

Combining (4.2) and (4.3) we have (4.1). �
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Recall [4, p. 30] that a mapping f : X → Y, where X and Y are Banach spaces, is said to be (Hadamard) strictly
differentiable at x0 ∈ X if there exists a continuous linear operator Dsf (x0) : X → Y such that

lim
x→x0, t→0+

f (x + tv) − f (x)

t
= Dsf (x0)v

and the convergence is uniform for v in compact sets. Let f : R
n → R be Lipschitz near x. It is known (see [4, p. 33])

that ∂Cf (x) reduces to a singleton if and only if f is strictly differentiable at x, and ∂Cf (x) = {Dsf (x)}. If f is
Fréchet differentiable and Clarke regular at x, then ∂Cf (x) = {f ′(x)}.

Corollary 4.1. If f is a real Lipschitz function defined on an interval [a, b] ⊂ R, then

f (b) − f (a) ∈
b∫

a

∂f (x) dx (4.4)

and the equality

b∫
a

∂f (x) dx = {
f (b) − f (a)

}
(4.5)

is valid if and only if f is strictly differentiable almost everywhere on [a, b].

Proof. Since f is a Lipschitz function defined on an interval [a, b] ⊂ R, f is Fréchet differentiable a.e. on [a, b] and
f (b) − f (a) = ∫ b

a
f ′(x) dx. Put

D = {
x ∈ [a, b] ∣∣ f is differentiable at x

}
.

We have

m
([a, b]\D) = 0 and

〈
f ′(x), v

〉
� f 0(x;v) for all x ∈ D and v ∈ R, (4.6)

where m stands for the Lebesgue measure on R. Hence〈 b∫
a

f ′(x) dx, v

〉
=

b∫
a

〈
f ′(x), v

〉
dx �

b∫
a

f 0(x;v)dx for all v ∈ R.

By Theorem 4.1, one has f (b) − f (a) ∈ ∫ b

a
∂f (x) dx. If f is strictly differentiable a.e. on [a, b], then ∂f (x) reduces

to a singleton a.e. for x ∈ [a, b]. Hence (4.5) holds. Now we suppose that the equality (4.5) is valid. For each v ∈ R, it
follows from (4.1), (4.5) and (4.6) that 〈f ′(x), v〉 = f 0(x;v) a.e. for x ∈ [a, b]. Put Ω1 := {x ∈ D ∩ [a, b] | f ′(x) =
f 0(x,1)} and Ω−1 := {x ∈ D ∩ [a, b] | −f ′(x) = f 0(x,−1)} and Ω = Ω1 ∩ Ω−1. One has m([a, b]\Ω) = 0 and
〈f ′(x), v〉 = f 0(x;v) for all x ∈ Ω and v ∈ R. This means that f is both Fréchet differentiable and Clarke regular at
any x ∈ Ω. Hence f is strictly differentiable at any x ∈ Ω. This finishes the proof. �
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