
J. Math. Anal. Appl. 351 (2009) 29–42
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Homogenization of low-cost control problems on perforated domains

T. Muthukumar ∗, A.K. Nandakumaran

Department of Mathematics, Indian Institute of Science, Bangalore-560012, India

a r t i c l e i n f o a b s t r a c t

Article history:
Received 16 August 2007
Available online 27 September 2008
Submitted by D.L. Russell

Keywords:
Homogenization
Two-scale convergence
Optimal control
Perforated domain
Low-cost control

The aim of this paper is to study the asymptotic behaviour of some low-cost control
problems in periodically perforated domains with Neumann condition on the boundary of
the holes. The optimal control problems considered here are governed by a second order
elliptic boundary value problem with oscillating coefficients. It is assumed that the cost of
the control is of the same order as that describing the oscillations of the coefficients. The
asymptotic analysis of small cost problem is more delicate and need the H-convergence
result for weak data. In this connection, an H-convergence result for weak data under
some hypotheses is also proved.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Let n � 2, Ω be a bounded open set in Rn and Y = (0,1)n be the reference cell. Let S , the hole, be an open subset of Y
and S̄ denote the closure of S in Rn . Let Y ′ = Y \ S̄ be the material part. If S + Zn = {x + k | x ∈ S and k ∈ Zn}, then, for a
parameter ε > 0 tending to zero, we set Sε = ε(S + Zn). Note that the open set Rn \ S̄ε is periodically perforated with the
reference periodic cell εY ′ . We define a periodically perforated domain Ωε as,

Ωε = Ω ∩ (
Rn \ S̄ε

)
.

Let χ be the characteristic function of Y ′ in Y , i.e.,

χ(y) =
{

1 if y ∈ Y ′,
0 if y ∈ S.

We extend χ periodically to whole of Rn and shall denote this extension also by χ . Observe that

Ωε =
{

x ∈ Ω

∣∣∣ χ(
x

ε

)
= 1

}
.

Let χ0 denote the ratio of the measure of Y ′ to the measure of Y , i.e.,

χ0 = |Y ′|
|Y | = |Y ′|.

Assume that the constant χ0 is strictly positive. The holes Sε may either be isolated or connected, and they may also meet
the boundary ∂Ω . We also assume that the open set Rn \ S̄ε is connected and that the boundaries are all of Lipschitz type.
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We remark that the hypothesis on the holes Sε and the perforated domain Ωε are similar to that of [2], and are stated here
only for completeness sake.

We shall denote the norm in L2(Ω) by ‖ · ‖2 and the norm in L2(Ωε) by ‖ · ‖2,Ωε . For a function g defined on Ωε , we
shall denote by g̃ its extension by zero on the holes Ω ∩ S̄ε . The symbol C will always denote a generic positive constant
independent of ε.

Let a,b, c and d be given constants such that 0 < a � b and 0 < c � d. Let A = A(x, y) be an n × n matrix, Y -periodic
in y, such that,

a|ξ |2 � A(x, y)ξ.ξ � b|ξ |2 a.e. in x and y, ∀ξ = (ξi) ∈ Rn.

The above assumptions on A implies that the matrix is in [L∞(Ω × Y )]n×n . We shall, in addition, assume that A is in
C[Ω; L∞

per(Y )]n×n , i.e., the entries of the matrix are continuous functions with respect to x ∈ Ω and with their values in the
Banach space of essentially bounded measurable functions, Y -periodic in y. We remark that the results of this article remain
valid if C[Ω; L∞

per(Y )]n×n is replaced by either L∞[Ω; Cper(Y )]n×n or L∞
per[Y ; C(Ω̄)]n×n . The weakest possible assumption on

A(x, y) = (aij(x, y)) is that aij(x, x
ε ) is measurable and satisfies∫

Ω

∣∣∣∣aij

(
x,

x

ε

)∣∣∣∣2

dx →
∫
Ω

∫
Y

∣∣aij(x, y)
∣∣2

dy dx.

Let B = B(x, y) be a matrix with entries from L∞(Ω × Y ), Y -periodic in y satisfying

c|ξ |2 � B(x, y)ξ.ξ � d|ξ |2 a.e. in x and y, ∀ξ = (ξi) ∈ Rn.

Also, B satisfies the other hypotheses as that of A. In addition, we assume that B is symmetric. This assumption will not
play any role in the homogenization process and is inherited from the optimal control problem.

Let Uε be a closed convex subset of L2(Ωε), called the admissible control set and f ∈ L2(Ω). Given θε ∈ Uε , let the cost
functional Jε be defined as,

Jε(θε) = Fε(uε, θε) + ε

2
‖θε‖2

2,Ωε
(1.1)

where uε = uε(θε) ∈ H1(Ωε) is the unique solution of⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−div

(
A

(
x,

x

ε

)
∇uε

)
= f + θε in Ωε,

A

(
x,

x

ε

)
∇uε.ν = 0 on ∂Ωε \ ∂Ω,

uε = 0 on ∂Ω ∩ ∂Ωε ,

(1.2)

and ν is the unit outward normal on ∂Ωε \ ∂Ω .
The aim of this article is to study the limiting behaviour of the system (1.1)–(1.2) in the following two situations:

(a) When Fε(uε, θε) is a Dirichlet-type integral, i.e.,

Fε(uε, θε) = 1

2

∫
Ωε

B

(
x,

x

ε

)
∇uε(θε).∇uε(θε)dx. (1.3)

(b) When Fε(uε, θε) is the L2-norm of the state, i.e.,

Fε(uε) = 1

2

∥∥uε(θε)
∥∥2

2,Ωε
. (1.4)

It is a classical result from the calculus of variations that there exists a unique θ∗
ε ∈ Uε such that

Jε
(
θ∗
ε

) = min
θε∈Uε

Jε(θε). (1.5)

The main results of this paper are: Theorem 2.1, Theorem 3.3, Theorem 3.7 and Theorem 4.4. In this article, we study the
situation where the Neumann condition is imposed on the boundary of the holes and the Dirichlet condition on the exterior
boundary (cf. (1.2)). In fact, the results will remain valid (locally inside Ω) when the Neumann condition is imposed both
on the boundary of holes and on the exterior boundary (cf. [2]). However, the problem with Dirichlet condition on the holes
is more delicate and is the topic of a future article.

The ε factor appearing in the second term of the right-hand side of the cost functional (1.1) is, usually, in literature called
the cost of the control. The fact that this is of ε order motivates the name low-cost control. The low-cost control problems
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were first introduced by J. L. Lions (who called it ‘cheap’ control) in [14,15]. Several variants of low-cost control problems
have been studied by Kesavan and Saint Jean Paulin in [12], for non-perforated domains. The study is taken up further in
[8,19] for both perforated and non-perforated domains. In the above articles, the problems are considered in the general
(non-periodic) case using the method of oscillating test functions, introduced by L. Tartar (cf. [17,18,23]). In spite of these
studies, the problem has not been completely settled in its full generality. One major drawback is the lack of information
on the convergence of the optimal controls itself, except in some trivial cases (cf. [19]). The problem has only been settled
for particular cases of admissible control set.

In [8,19], the state-adjoint system governing the optimal control problem was homogenized for the non-perforated do-
main with the assumption that the control set was the set of all positive functions (positive cone) of the control space.
The perforated case was unsettled, even for the positive cone of the control space. In this paper, using the notion of two-
scale convergence (cf. [1,16,20,21]), we show that the state-adjoint system governing the optimal control problem can be
homogenized without any assumptions on the control set for both perforated and non-perforated domains.

However, we would like to note that the positive cone hypothesis on the admissible control set is not relaxed for the
homogenization process of the optimal control problem. This is due to the lack of characterisation of the optimal controls,
in general. The case of the positive cone gives a nice characterisation of the optimal controls in terms of the adjoint state
which cancels out the product of two weak limits. Such a characterisation is not available, in general.

This article settles the problem, in non-perforated case, left open in [12] and the perforated case left open in [8]. Also, the
positive cone hypothesis has been relaxed wherever possible. Moreover, it contains different approach to the results obtained
for non-perforated case which easily carry forward to the perforated case. Though this article announces only the results
concerning perforated domains, the results remain valid even for non-perforated domains with necessary modifications.

We end this section by recalling some preliminary notions used in the sequel. We first define the sequential notion of
K -lower limit in its full generality. A detailed study of this and related notions can be found in [5]. Let X be a topological
space and En be a sequence of subsets of X .

Definition 1.1. A point x ∈ X is said to be in the sequential K -lower limit of En w.r.t. the topology in X if and only if there
exists k ∈ N and a sequence {xn} converging to x in X such that xn ∈ En , for all n � k.

We now recall the notion of two-scale convergence. We refer to [1,16,20,21] for a detailed study of the same and certain
applications.

Definition 1.2. A sequence of functions {vε} in L2(Ω) is said to two-scale converge to a limit v ∈ L2(Ω × Y ) (denoted as

vε
2s
⇀ v) if∫

Ω

vεφ

(
x,

x

ε

)
dx →

∫
Ω

∫
Y

v(x, y)φ(x, y)dy dx, ∀φ ∈ L2[Ω; Cper(Y )
]
.

The most interesting property of two-scale convergence is the following compactness result.

Theorem 1.3. For any bounded sequence vε in L2(Ω), there exist a subsequence and v ∈ L2(Ω × Y ) such that, vε two-scale converges
to v along the subsequence. Also, if vε is bounded in H1(Ω), then v is independent of y and is in H1(Ω), and there exists v1 ∈
L2[Ω; H1

per(Y )] such that, up to a subsequence, ∇vε two-scale converges to ∇v + ∇y v1 .

The article is organized as follows: In Section 2, we prove H-convergence for weak data under some assumptions, one of
the main results of this article. This is significant by itself and we use this result for our analysis. In this section, we work in
the non-perforated set-up to fix ideas. However the results remain valid in the perforated case and are used with necessary
modification in the subsequent sections. In Section 3, we study (1.1) where Fε is the Dirichlet-type integral as given in (1.3).
In Section 4, we homogenize the system (1.1)–(1.2) under the situation (1.4).

2. H -convergence for weak data

We begin by recalling the notion of H-convergence. Let gε be a sequence in H−1(Ω) which converges to g strongly in
H−1(Ω). If vε is the solution of⎧⎨⎩ −div

(
A

(
x,

x

ε

)
∇vε

)
= gε in Ω,

vε = 0 on ∂Ω,

(2.1)

then, there exist v0 and a matrix A0 such that



32 T. Muthukumar, A.K. Nandakumaran / J. Math. Anal. Appl. 351 (2009) 29–42
vε ⇀ v0 weakly in H1
0(Ω),

A

(
x,

x

ε

)
∇vε ⇀ A0∇v0 weakly in

(
L2(Ω)

)n
.

⎫⎪⎬⎪⎭ (2.2)

Here v0 ∈ H1
0(Ω) is the unique solution of the homogenized problem{

−div(A0∇v0) = g in Ω,

v0 = 0 on ∂Ω.
(2.3)

Further, the i jth entry of the matrix A0 is given by

(A0)i j =
∫
Y

A(x, y)
[∇yμi(x, y) + ei

]
.
[∇yμ j(x, y) + e j

]
dy. (2.4)

The function μi , for 1 � i � n, is the solution of the cell problem{
−divy

(
A(x, y)

[∇yμi(x, y) + ei
]) = 0 in Y ,

y �→ μi(x, y) is Y -periodic,
(2.5)

where {e1, . . . , en} is the standard basis of Rn .
The above result is not true, in general, when gε converge weakly in H−1(Ω). However, it was shown in [6] that if, in

addition, gε are positive distributions of H−1(Ω), the H-convergence result remains valid. A very general study of the weak
converging data was done by L. Tartar and his result can be found in [3]. It involves a homogenized problem defined in
a complicated way (involving corrector functions) and which reduces to (2.3) under the strong convergence hypothesis of
data in H−1(Ω).

In this section, we give another hypothesis on the data under which the H-convergence remains valid.

Theorem 2.1. Let α < 1 be a fixed real number. Let vε ∈ H1
0(Ω) be the weak solution of (2.1), where gε ∈ L2(Ω) is such that gε ⇀ g

weakly in H−1(Ω) and εα gε is bounded in L2(Ω). Then, there exist v0 and a matrix A0 such that (2.2) is satisfied, where v0 ∈ H1
0(Ω)

is the unique solution of (2.3) and A0 is given by (2.4) and (2.5).

Proof. Let wε ∈ H1
0(Ω) be the solution of{

−�wε = gε in Ω,

wε = 0 on ∂Ω.
(2.6)

Then it is easy to see that wε is bounded in H1
0(Ω). In fact,

‖wε‖H1
0(Ω) � ‖gε‖H−1(Ω).

Thus, it follows from the two-scale convergence theory, that there exist w0 ∈ H1
0(Ω) and w1 ∈ L2[Ω; H1

per(Y )/R] such that,
up to a subsequence,

wε
2s
⇀ w0,

∇wε
2s
⇀ ∇w0(x) + ∇y w1(x, y).

⎫⎬⎭ (2.7)

Further, we see that the homogenized equation of (2.6) is{
−�w0 = g in Ω,

w0 = 0 on ∂Ω.
(2.8)

By choosing φ1 ∈ D(Ω), φ2 ∈ C∞
per(Y ) and setting

φ

(
x,

x

ε

)
= εφ1(x)φ2

(
x

ε

)
∈ D

[
Ω; C∞

per(Y )
]

as a two-scale test function for (2.6), we have

ε

∫
Ω

∇wε.∇φ1φ2

(
x

ε

)
dx +

∫
Ω

∇wε.∇yφ2

(
x

ε

)
φ1 dx = ε1−α

∫
Ω

εα gεφ1(x)φ2

(
x

ε

)
dx.
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By passing to the two-scale limit, we get∫
Ω

∫
Y

[∇w0 + ∇y w1(x, y)
]
.∇yφ2(y)φ1(x)dx dy = 0.

Since
∫

Y ∇yφ2(y)dy = 0, we have for every φ1 ∈ D(Ω),∫
Ω

φ1(x)

[∫
Y

∇y w1(x, y).∇yφ2(y)dy

]
dx = 0.

Thus, for almost every x ∈ Ω ,∫
Y

∇y w1(x, y).∇yφ2(y)dy = 0,

which implies �y w1(x, y) = 0, where w1 is Y -periodic. Thus, w1 is a function independent of y and ∇y w1 = 0. Therefore
in (2.7) we, in fact, have

∇wε
2s
⇀ ∇w0(x).

Observe that the solution vε of (2.1) is bounded in H1
0(Ω). Thus, there exist v0 ∈ H1

0(Ω) and v1 ∈ L2[Ω; H1
per(Y )/R]

such that, up to a subsequence,

vε
2s
⇀ v0,

∇vε
2s
⇀ ∇v0(x) + ∇y v1(x, y).

⎫⎬⎭ (2.9)

Now an usual two-scale analysis of (2.1) by replacing gε with Eq. (2.6) and by choosing φ(x, x
ε ) = φ1(x) + εφ2(x, x

ε ) as
the two-scale test function will yield,∫

Ω

∫
Y

{
A(x, y)

[∇v0 + ∇y v1(x, y)
] − ∇w0

}
.
{∇φ1(x) + ∇yφ2(x, y)

}
dx dy = 0.

Then, the usual arguments of decoupling and Eq. (2.8) together will yield (2.3) and the convergences (2.2). �
3. Dirichlet-type integral of state in cost functional

Let Uε be a closed convex subset of L2(Ωε). The optimal control problem is to minimise in Uε , the cost functional Jε
given as,

Jε(θε) = 1

2

∫
Ωε

B

(
x,

x

ε

)
∇uε.∇uε dx + ε

2
‖θε‖2

2,Ωε
, ∀θε ∈ Uε, (3.1)

where uε ∈ H1(Ωε) is the unique solution of⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−div

(
A

(
x,

x

ε

)
∇uε

)
= f + θε in Ωε,

A

(
x,

x

ε

)
∇uε.ν = 0 on ∂Ωε \ ∂Ω,

uε = 0 on ∂Ω ∩ ∂Ωε,

(3.2)

and ν is the unit outward normal on ∂Ωε \ ∂Ω .
Let θ∗

ε ∈ Uε be the unique optimal control and u∗
ε be the state corresponding to θ∗

ε (cf. (3.12)). The solution space of (3.2)
is given as,

Vε = {
u ∈ H1(Ωε)

∣∣ u = 0 on ∂Ω ∩ ∂Ωε

}
and u∗

ε ∈ Vε . We now state a Poincaré inequality result of Ωε , proved in [2].

Lemma 3.1. (See [2, Lemma A.4].) There exists a positive constant C , independent of ε, such that

‖v‖2,Ωε � C‖∇v‖2,Ωε , ∀v ∈ Vε.
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The above lemma gives an equivalent norm on Vε as, ‖v‖Vε = ‖∇v‖2,Ωε .
We introduce the adjoint optimal state associated to the optimal control problem. Let p∗

ε ∈ Vε be the solution of,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−div

(
t A

(
x,

x

ε

)
∇p∗

ε

)
= −div

(
B

(
x,

x

ε

)
∇u∗

ε

)
in Ωε,(

t A

(
x,

x

ε

)
∇p∗

ε − B

(
x,

x

ε

)
∇u∗

ε

)
.ν = 0 on ∂Ωε \ ∂Ω,

p∗
ε = 0 on ∂Ω ∩ ∂Ωε.

(3.3)

Then the optimality condition, in terms of the adjoint optimal state, is∫
Ωε

(
p∗
ε + εθ∗

ε

)(
θε − θ∗

ε

)
dx � 0, ∀θε ∈ Uε. (3.4)

Note that the symmetry hypothesis on B comes in hand only to derive the optimality condition (3.4).
In the rest of the section we will consider control sets, Uε , satisfying the following hypothesis:

(H1) There exists ηε ∈ Uε such that {η̃ε} is bounded in L2(Ω).

The motivation for this hypothesis will be clear in next lemma. We shall now show that the admissible sets satisfying
(H1) are in abundance. Let U be a closed convex subset of L2(Ω) and Uε be the set of all elements of U restricted to Ωε .
Observe that Uε is a closed convex subset of L2(Ωε). Let θ ∈ U , then by choosing ηε = θ |Ωε we note that Uε satisfies (H1),
since ‖ηε‖2

2,Ωε
� ‖θ‖2

2.

Lemma 3.2. Let the admissible set Uε satisfy the hypothesis (H1), then {u∗
ε} and {p∗

ε} are bounded in Vε . Also, there exists θ∗ ∈
H−1(Ω) such that, for a subsequence,

θ̃∗
ε ⇀ θ∗ weakly in H−1(Ω) (3.5)

and

ε1/2θ̃∗
ε ⇀ 0 weakly in L2(Ω). (3.6)

Proof. Let vε be the state corresponding to the control θε = ηε in (3.2). Then, it is clear, from the hypotheses on A(x, x
ε )

that vε is bounded uniformly with respect to ε in Vε , since,

‖vε‖Vε � C

a

∥∥∥∥χ(
x

ε

)
f + η̃ε

∥∥∥∥
2
.

Hence, it follows from (1.5) that

Jε
(
θ∗
ε

)
� Jε(ηε).

Therefore, from (3.1) we obtain that {u∗
ε} and {ε 1

2 θ∗
ε } are bounded in Vε and L2(Ωε), respectively. Moreover, from (3.3),

{p∗
ε} is bounded in Vε . For v ∈ H1

0(Ω), consider∣∣∣∣ ∫
Ω

θ̃∗
ε v dx

∣∣∣∣ =
∣∣∣∣ ∫
Ωε

θ∗
ε v dx

∣∣∣∣ =
∣∣∣∣ ∫
Ω

Aε∇̃u∗
ε.∇v dx −

∫
Ω

χ

(
x

ε

)
f v dx

∣∣∣∣ �
(

b
∥∥u∗

ε

∥∥
Vε

+ C

∥∥∥∥χ(
x

ε

)
f

∥∥∥∥
2

)
‖v‖H1

0(Ω).

Therefore {θ̃∗
ε } is bounded in H−1(Ω) and thus there exists θ∗ ∈ H−1(Ω) such that, up to a subsequence, (3.5) holds and

hence (3.6) holds. �
Our objective is to know whether θ∗ is an optimal control of a problem similar to (3.1)–(3.2). We deduce from the

a priori estimates obtained in Lemma 3.2 that there exist u∗, p∗ ∈ H1
0(Ω) and u1, p1 ∈ L2[Ω; H1

per(Y ′)/R] such that, up to a
subsequence,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ũ∗
ε

2s
⇀ u∗(x)χ(y),

∇̃u∗
ε

2s
⇀ χ(y)

[∇u∗(x) + ∇yu1(x, y)
]
,

p̃∗
ε

2s
⇀ p∗(x)χ(y),

∇̃p∗
ε

2s
⇀ χ(y)

[∇p∗(x) + ∇y p1(x, y)
]
.

The above results can be derived from the two-scale convergence analysis which we skip (cf. [1]).
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Observe that the right-hand side of both (3.2) (written for θε = θ∗
ε ) and (3.3) involve functions whose extensions to Ω

are only weakly compact in H−1(Ω). A homogenization result is not available, in general, for such equations.
We shall now define some cell problems which will be used in the sequel to identify the limit problem. For 1 � i � n,

let the function μi ∈ H1
per(Y ′)/R be the solution of the cell problem⎧⎨⎩

−divy
(

A(x, y)
[∇yμi(x, y) + ei

]) = 0 in Y ′,
A(x, y)

[∇yμi(x, y) + ei
]
.ν = 0 on ∂Y ′ \ ∂Y ,

y �→ μi(x, y) is Y -periodic.
(3.7)

A note of caution that we are using the same notation μi as in (2.5). But in the rest of the article μi will always denote
the solution of (3.7). The distinction is clear if one keeps in mind that we are dealing with the perforated situation in this
article.

Let ωi ∈ H1
per(Y ′)/R be the solution of the adjoint cell problem⎧⎪⎨⎪⎩

−divy
(t A(x, y)

[∇yωi(x, y) + ei
]) = 0 in Y ′,

t A(x, y)
[∇yωi(x, y) + ei

]
.ν = 0 on ∂Y ′ \ ∂Y ,

y �→ ωi(x, y) is Y -periodic,

(3.8)

and let ψi ∈ H1
per(Y ′)/R be the solution of the cell problem⎧⎪⎨⎪⎩

−divy
(t A(x, y)∇yψi(x, y) + B(x, y){∇yμi + ei}

) = 0 in Y ′,[t A(x, y)∇yψi(x, y) + B(x, y){ei + ∇yμi}
]
.ν = 0 on ∂Y ′ \ ∂Y ,

y �→ ψi(x, y) is Y -periodic.

(3.9)

We now provide the homogenization theorem for the state and adjoint-state equations. The non-perforated analogue of
the following theorem was proved in [8,19] under the hypothesis that the admissible control set is the positive cone of
L2(Ω). The theorem given below relaxes this hypothesis on the admissible control set, thus proving the result in its full
generality both for fixed domains and varying domains with Neumann condition on the holes.

Let the homogenized matrix A0 be defined as,

(A0)i j =
∫
Y ′

A(x, y)
[∇yμi(x, y) + ei

]
.
[∇yμ j(x, y) + e j

]
dy (3.10)

and the transpose of A0, t A0, is given by a similar equation written for the function ωi (cf. (4.9)). Let B� be given as,(
B�

)
ei =

∫
Y ′

{
B(x, y)

[∇yμi(x, y) + ei
] + t A(x, y)∇yψi(x, y)

}
dy. (3.11)

Theorem 3.3. Let Uε satisfy the hypothesis (H1) and let u∗
ε be the solution of⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−div

(
A

(
x,

x

ε

)
∇u∗

ε

)
= f + θ∗

ε in Ωε,

A

(
x,

x

ε

)
∇u∗

ε.ν = 0 on ∂Ωε \ ∂Ω,

u∗
ε = 0 on ∂Ω ∩ ∂Ωε,

(3.12)

and p∗
ε be the solution of (3.3). Then, χ0u∗ and χ0 p∗ are the weak limits of ũ∗

ε and p̃∗
ε , respectively, in H1

0(Ω) where (u∗, p∗) ∈
H1

0(Ω) × H1
0(Ω) solves⎧⎪⎨⎪⎩

−div
(

A0∇u∗) = χ0 f + θ∗ in Ω,

−div
(t A0∇p∗ − B�∇u∗) = 0 in Ω,

u∗ = p∗ = 0 on ∂Ω.

(3.13)

The control θ∗ is as obtained in (3.5).

Proof. Since Uε satisfies (H1), the results of Lemma 3.2 remain valid. Let ρ∗
ε ∈ Vε be the solution of⎧⎪⎨⎪⎩

−�ρ∗
ε = θ∗

ε in Ωε,

∇ρ∗
ε .ν = 0 on ∂Ωε \ ∂Ω,

ρ∗ = 0 on ∂Ω ∩ ∂Ω .

(3.14)
ε ε
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Then, ∥∥ρ∗
ε

∥∥2
Vε

�
∥∥θ∗

ε

∥∥
H−1(Ω)

∥∥Pερ
∗
ε

∥∥
H1

0(Ω)
,

where Pε is an extension operator (cf. [4, Lemma 1]) from Vε to H1
0(Ω) such that ‖∇(Pε v)‖2 � C‖∇v‖2,Ωε , for all v ∈

Vε , and the constant C is independent of ε. Thus, ∇̃ρ∗
ε is bounded in (L2(Ω))n . Also, by Lemma 3.1, ρ̃∗

ε is bounded in
L2(Ω). Thus, by the two-scale convergence theory, there exist ρ∗ ∈ H1

0(Ω) and ρ1 ∈ L2[Ω; H1
per(Y ′)/R] such that, up to a

subsequence,⎧⎨⎩ ρ̃∗
ε

2s
⇀ ρ∗(x)χ(y),

∇̃ρ∗
ε

2s
⇀ χ(y)

[∇ρ∗(x) + ∇yρ1(x, y)
]
.

(3.15)

It is easy to see that the homogenized equation of (3.14) is⎧⎨⎩ −�ρ∗ = 1

χ0
θ∗ in Ω,

ρ∗ = 0 on ∂Ω.

(3.16)

Arguing as in the proof of Theorem 2.1 with the obvious modification for perforated domain, we have the first equation
of (3.13) as the homogenized state equation. We also have that,

u1(x, y) =
n∑

i=1

μi(x, y)
∂u∗

∂xi
(x).

We shall now show that the second equation of (3.13) is the homogenized equation corresponding to adjoint equa-
tion (3.3). In the case of (3.3), gε = −div(B(x, x

ε )∇u∗
ε) may not satisfy the hypotheses of Theorem 2.1, but here we obtain

the limit equation using the divergence form of gε .
We choose φ(x, x

ε ) = φ1(x) + εφ2(x, x
ε ) as a two-scale test function in (3.3), and passing to the limit, we have∫

Ω

∫
Y

t A(x, y)χ(y)
{∇p∗ + ∇y p1(x, y)

}
.
[∇φ1(x) + ∇yφ2(x, y)

]
dy dx

=
∫
Ω

∫
Y

B(x, y)χ(y)
{∇u∗ + ∇yu1(x, y)

}
.
[∇φ1(x) + ∇yφ2(x, y)

]
dy dx.

By choosing φ1 = 0 and the cell problems (3.8) and (3.9), we deduce that

p1 =
n∑

i=1

[
ψi(x, y)

∂u∗

∂xi
(x) + ωi(x, y)

∂ p∗

∂xi
(x)

]
and by choosing φ2 = 0, we get the second equation of (3.13). �
Remark 3.4. Let uε be the solution of (3.2) and if θ̃ε ⇀ θ strongly in H−1(Ω), then∫

Ωε

Bε∇uε.∇uε dx →
∫
Ω

B�∇u0.∇u0 dx (3.17)

where B� is as given in (3.11) and u0 = u0(θ) ∈ H1
0(Ω) is the unique solution of{

−div(A0∇u0) = χ0 f + θ in Ω,

u0 = 0 on ∂Ω .

A0 is given as in (3.10). This result is, in a sense, the ‘generalised’ energy convergence. This fact has been observed in
[9,11]. We, however, remark that (3.17) is not true, in general, when θ̃ε ⇀ θ weakly in H−1(Ω). A one dimensional example
establishing this fact for the non-perforated domain can be found in [19].

Remark 3.5. If B0 is the homogenized limit of the sequence B(x, x
ε ), then, in general, B� �= B0. For more such interesting

properties of B� and its applications we refer to [7,9–11,13,22].
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Now that we have identified the limit state equation, it now remains for us to find the limit cost functional and to prove
that θ∗ is its optimal control.

Using p∗
ε as a test function in (3.12) and u∗

ε as a test function in (3.3), one can rewrite the cost functional Jε(θ∗
ε ) as,

Jε
(
θ∗
ε

) = 1

2

∫
Ωε

(
f + θ∗

ε

)
p∗
ε dx + ε

2

∥∥θ∗
ε

∥∥2
2,Ωε

. (3.18)

The above functional (3.18) involves product of two weakly converging sequence, namely,
∫
Ωε

θ∗
ε p∗

ε dx, whose limit is un-
known in general. This makes the problem difficult to tackle in a general admissible control set Uε .

We could identify the limit cost functional only in the situation when the control set is the set of all positive elements of
L2(Ωε), i.e., the positive cone of L2(Ωε). More precisely, let Uε = {θ ∈ L2(Ω) | θ � 0 a.e. in Ωε} be the closed convex subset
of L2(Ω). Observe that the elements of Uε restricted to Ωε is the set of all positive elements of L2(Ωε). Let U ′ be the
sequential K -lower limit of Uε with respect to the strong topology in L2(Ω). We shall now establish that U ′ is non-empty.
If U denotes the positive cone of L2(Ω), i.e., U = {θ ∈ L2(Ω) | θ � 0 a.e. in Ω}, then U is a subset of Uε for all ε. Thus, U is
a subset of U ′ and hence U ′ is non-empty.

Let V ′ be the strong closure of U ′ in H−1(Ω). Since U ′ is convex, V ′ is same as the weak closure of U ′ in H−1(Ω).

Remark 3.6. If V is the strong closure of U in H−1(Ω) then V is the set of all positive distributions of H−1(Ω). In other
words, V is the positive cone of H−1(Ω). We refer to [19] for a proof of this fact. Also, observe that V is a subset of V ′ .
Since U is convex, V is same as the weak closure of U in H−1(Ω).

Theorem 3.7. Let Uε = {θ ∈ L2(Ω) | θ � 0 a.e. in Ωε}. Then

Jε
(
θ∗
ε

) → 1

2

∫
Ω

B�∇u∗.∇u∗ dx − 1

2

〈
θ∗, p∗〉

H−1(Ω),H1
0(Ω)

(3.19)

where θ∗ is as obtained in Lemma 3.2, u∗, p∗ are as obtained in (3.13) and B� is given by (3.11). Also, p∗ ∈ U and hence in V ′ .
Further, if 〈θ∗, p∗〉H−1(Ω),H1

0(Ω) = 0, then θ∗ minimizes

J (θ) = 1

2

∫
Ω

B�∇u.∇u dx (3.20)

over V ′ , where u = u(θ) solves{
−div(A0∇u) = χ0 f + θ in Ω,

u = 0 on ∂Ω,
(3.21)

and the convergences (3.5) and (3.6) hold for the entire sequence.

Proof. Observe that 0 ∈ Uε for all ε. Thus, the set of all elements of Uε restricted to Ωε (the positive cone of L2(Ωε))
satisfies the hypothesis (H1). Hence the results of Lemma 3.2 and Theorem 3.3 remain valid.

Since the admissible set is now the positive cone of L2(Ωε), the optimality condition (3.4) implies that εθ∗
ε = (p∗

ε)
− . This

equality will in turn imply that∫
Ωε

θ∗
ε p∗

ε dx = −ε
∥∥θ∗

ε

∥∥2
2,Ωε

. (3.22)

Thus, Jε(θ∗
ε ) (cf. (3.18)) reduces to

Jε
(
θ∗
ε

) = 1

2

∫
Ωε

f p∗
ε dx

and passing to the limit will yield

Jε
(
θ∗
ε

) → 1

2

∫
Ω

χ0 f p∗ dx.

Using p∗ and u∗ as test functions in the state and adjoint-state equation of (3.13), respectively, we have∫
Ω

χ0 f p∗ dx =
∫
Ω

B�∇u∗.∇u∗ dx − 〈
θ∗, p∗〉

H−1(Ω),H1
0(Ω)

.

Thus, (3.19) holds true.
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Using (3.22), we rewrite the optimality condition (3.4) as,∫
Ωε

p∗
εθ dx +

∫
Ωε

(
ε

1
2 θ∗

ε

)(
ε

1
2 θ

)
dx � 0, ∀θ ∈ Uε.

In particular, the above inequality holds for all θ ∈ U . Thus, passing to the limit, we deduce that∫
Ω

χ0 p∗θ dx � 0, ∀θ ∈ U .

This implies p∗ � 0, i.e., p∗ ∈ U and hence p∗ ∈ V ′ .
For θ ∈ V ′ , let J be defined as in (3.20) where u solves (3.21). Recall that θ∗

ε is the minimiser of Jε over Uε , i.e.,

Jε
(
θ∗
ε

)
� Jε(θ), ∀θ ∈ Uε. (3.23)

Given θ ∈ U ′ , there exists δ > 0 and a sequence θε → θ strongly in L2(Ω) such that θε ∈ Uε for all ε < δ. Observe that

‖θε‖2
2,Ωε

� ‖θε‖2
2, ∀ε < δ,

and hence

‖θ̃ε‖2
2 � ‖θε‖2

2, ∀ε < δ.

Thus ε‖θε‖2
2,Ωε

→ 0. Thus, passing to the limit in (3.23) (also using Remark 3.4), we deduce

1

2

∫
Ω

B�∇u∗.∇u∗ dx − 1

2

〈
θ∗, p∗〉

H−1(Ω),H1
0(Ω)

� J (θ), ∀θ ∈ U ′.

Since V ′ is the strong closure of U ′ in H−1(Ω), we actually have (using Remark 3.4)

J
(
θ∗) − 1

2

〈
θ∗, p∗〉

H−1(Ω),H1
0(Ω)

� J (θ), ∀θ ∈ V ′.

Observe that θ̃∗
ε ∈ U ⊂ Uε . Thus, the weak limit of θ̃∗

ε in H−1(Ω) is in V ⊂ V ′ by Remark 3.6. Therefore, if
〈θ∗, p∗〉H−1(Ω),H1

0(Ω) = 0, then θ∗ minimises J over V ′ . The strict convexity of J would then imply the uniqueness of

θ∗ and thus the convergences (3.5) and (3.6) hold for the entire sequence. �
Remark 3.8. We note that though we have identified the possible limit cost functional as (3.20), the possible limit admissible
set as V ′ and the possible homogenized state equation as (3.21), we are unable to prove that θ∗ minimises J in V ′ in
general. However, we prove θ∗ is a minimiser of J in V ′ under the hypothesis that 〈θ∗, p∗〉H−1(Ω),H1

0(Ω) = 0. Considering the

fact that
∫
Ωε

θ∗
ε p∗

ε dx � 0 (cf. (3.22)) and 〈θ∗, p∗〉H−1(Ω),H1
0(Ω) � 0, one would expect that 〈θ∗, p∗〉H−1(Ω),H1

0(Ω) = 0. However,

we have no means of proving this hypothesis.

In the next section, we shall study an optimal control problem with a different cost functional (cf. (1.4)) where the
difficulties noted in the above remark are overcome for the positive cone situation.

4. L2-norm of state in the cost functional

Let Uε be a closed convex subset of L2(Ωε). The optimal control problem is to minimise the cost functional Jε given as,

Jε(θε) = 1

2
‖uε‖2

2,Ωε
+ ε

2
‖θε‖2

2,Ωε
, (4.1)

for all θε ∈ Uε , where uε ∈ H1(Ωε) is the unique solution of (3.2). From classical theory, there exists a unique θ∗
ε ∈ Uε which

minimises Jε in Uε . Let u∗
ε ∈ Vε be the state corresponding to θ∗

ε .
We now introduce the adjoint optimal state associated to the optimal control problem. Let p∗

ε ∈ Vε be the solution of,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−div

(
t A

(
x,

x

ε

)
∇p∗

ε

)
= u∗

ε in Ωε,

t A

(
x,

x

ε

)
∇p∗

ε.ν = 0 on ∂Ωε \ ∂Ω,

p∗
ε = 0 on ∂Ω ∩ ∂Ωε.

(4.2)

Then the optimality condition is as given in (3.4).
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Lemma 4.1. Let Uε satisfy the hypothesis (H1), then {p∗
ε} is bounded in Vε . Also, {u∗

ε} and {ε1/2θ∗
ε } are bounded in L2(Ωε). Thus,

there exist u0(x, y) ∈ L2(Ω × Y ), p∗ ∈ H1
0(Ω) and p1 ∈ L2[Ω; H1

per(Y ′)/R] such that, for a subsequence,

ε1/2θ̃∗
ε ⇀ 0 weakly in L2(Ω), (4.3)

ũ∗
ε

2s
⇀ u0(x, y), (4.4)

p̃∗
ε

2s
⇀ p∗(x)χ(y), (4.5)

and

∇̃p∗
ε

2s
⇀ χ(y)

[∇p∗(x) + ∇y p1(x, y)
]
. (4.6)

The limit p∗ solves⎧⎪⎨⎪⎩
−div

(t A0∇p∗) =
∫
Y ′

u0(x, y)dy in Ω,

p∗ = 0 on ∂Ω,

(4.7)

and

p1 =
n∑

i=1

ωi(x, y)
∂ p∗

∂xi
(x). (4.8)

The entries of t A0 are given as

(t A0
)

i j =
∫
Y ′

t A(x, y)
[∇yωi(x, y) + ei

]
.
[∇yω j(x, y) + e j

]
dy (4.9)

where ωi(x, y) is the solution to the cell problem (3.8).

Proof. Let vε be the state corresponding to the control ηε , given by the hypothesis (H1), in (3.2). Then, as argued in

Lemma 3.2, vε is bounded uniformly with respect to ε in Vε . Hence, it follows from (1.5) that {u∗
ε} and {ε 1

2 θ∗
ε } are both

bounded in L2(Ωε). Moreover, from (4.2), {p∗
ε} is bounded in Vε . Thus there exist θ ′ ∈ L2(Ω), u0(x, y) ∈ L2(Ω × Y ), p∗ ∈

H1
0(Ω) and p1 ∈ L2[Ω; H1

per(Y ′)/R] such that, for a subsequence,

ε1/2θ̃∗
ε ⇀ θ ′ weakly in L2(Ω),

and (4.4)–(4.6) are satisfied.
Now an usual two-scale analysis of (4.2) will yield (4.7) and (4.8). It now only remains to prove that θ ′ = 0.
Let qε ∈ Vε be the solution of⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−div

(
A

(
x,

x

ε

)
∇qε

)
= ε

1
2
(

f + θ∗
ε

)
in Ωε,

A

(
x,

x

ε

)
∇qε.ν = 0 on ∂Ωε \ ∂Ω,

qε = 0 on ∂Ω ∩ ∂Ωε.

(4.10)

By linearity, qε = ε
1
2 u∗

ε . Since, ε
1
2 θ∗

ε is bounded in L2(Ωε), qε is bounded in Vε and thus, by Lemma 3.1, qε is bounded in
L2(Ωε). This together with the fact that ũ∗

ε is bounded in L2(Ω) will imply that, for a subsequence,

q̃ε → 0 strongly in L2(Ω).

Thus, the homogenized equation of (4.10) is the zero equation, which implies that θ ′ = 0. �
Remark 4.2. In the above lemma, we conclude that θ ′ = 0 which cannot be done, in general. This argument is also valid in
Lemma 3.2. However, there the estimate on the optimal controls was enough to conclude this, which is not available in the
present situation.
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Remark 4.3. The above lemma is the counterpart of Lemma 3.2 for the problem considered in this section. In contrast to
the problem in Section 3, here we do not have a priori bound on θ̃∗

ε even in H−1(Ω) (as in Lemma 3.2). Hence, we also
do not have an estimate of u∗

ε in Vε . Hence the homogenization of the state equation is not achieved as in Theorem 3.3.
In other words, one is unable to address this problem for an arbitrary admissible set Uε , in general. However, in the next
theorem we shall study the positive cone case which will offer some estimates on the optimal controls. Also, in the above
lemma, we have homogenized the adjoint-state equation (as in Theorem 3.3). In the next theorem we homogenize the state
equation, as well, for the positive cone case.

Let Uε = {θ ∈ L2(Ω) | θ � 0 a.e. in Ωε} be the closed convex subset of L2(Ω). The elements of Uε restricted to Ωε is the
set of all positive elements of L2(Ωε). Let U ′ be the sequential K -lower limit of Uε with respect to the strong topology in
L2(Ω). U ′ is non-empty. Let V ′ be the strong closure of U ′ in H−1(Ω). Let U denote the positive cone of L2(Ω). Let V be
the strong closure of U in H−1(Ω).

Theorem 4.4. Let Uε = {θ ∈ L2(Ω) | θ � 0 a.e. in Ωε}. Then {u∗
ε} and {θ̃∗

ε } are bounded in Vε and H−1(Ω), respectively, and there
exists θ∗ ∈ H−1(Ω) such that

θ̃∗
ε ⇀ θ∗ weakly in H−1(Ω). (4.11)

Also, u0(x, y) = χ(y)u∗(x) where u∗ ∈ H1
0(Ω) solves{

−div
(

A0∇u∗) = χ0 f + θ∗ in Ω,

u = 0 on ∂Ω.
(4.12)

Moreover, p∗ ∈ U and 〈θ∗, p∗〉H−1(Ω),H1
0(Ω) = 0. Further, θ∗ minimises

J (θ) = 1

2

∫
Ω

χ0u2 dx

over V ′ , where u = u(θ) solves (3.21) and

Jε
(
θ∗
ε

) → J
(
θ∗). (4.13)

Proof. Observe that Uε satisfies the hypothesis (H1), since 0 ∈ Uε for all ε. Therefore the results of Lemma 4.1 remain
valid. Also, the optimality condition (3.4) implies that εθ∗

ε = (p∗
ε)

− and thus (3.22) holds. An argument similar to the one
in Theorem 3.7 will show that p∗ ∈ U .

Using u∗
ε as a test function in the weak form of the state equation satisfied by u∗

ε (cf. (3.12)), we have∫
Ωε

A

(
x,

x

ε

)
∇u∗

ε.∇u∗
ε dx =

∫
Ωε

(
f + θ∗

ε

)
u∗

ε dx =
∫
Ωε

f u∗
ε dx + ε−1

∫
Ωε

(
p∗
ε

)−
u∗

ε dx.

Now, using (p∗
ε)

− as a test function in the weak form of the adjoint equation (4.2), we have∫
Ωε

(
p∗
ε

)−
u∗

ε dx =
∫
Ωε

t A

(
x,

x

ε

)
∇(

p∗
ε

)−
.∇p∗

ε dx = −
∫
Ωε

t A

(
x,

x

ε

)
∇(

p∗
ε

)−
.∇(

p∗
ε

)−
dx

and hence we derive the equality,∫
Ωε

A

(
x,

x

ε

)
∇u∗

ε.∇u∗
ε dx + ε−1

∫
Ωε

A

(
x,

x

ε

)
∇(

p∗
ε

)−
.∇(

p∗
ε

)−
dx =

∫
Ωε

f u∗
ε dx. (4.14)

Since {u∗
ε} is bounded in L2(Ωε), we deduce from (4.14) that {u∗

ε} and {ε−1/2(p∗
ε)

−} are bounded in Vε . Therefore, there
exist u∗ ∈ H1

0(Ω) and u1 ∈ L2[Ω; H1
per(Y ′)/R] such that u0(x, y) = χ(y)u∗(x) and, up to a subsequence,

∇̃u∗
ε

2s
⇀ χ(y)

[∇u∗(x) + ∇yu1(x, y)
]
.

Now, arguing as in Lemma 3.2, we show that {θ̃∗
ε } is bounded in H−1(Ω) and thus there exists θ∗ ∈ H−1(Ω) such that

(4.11) holds, for a subsequence. Now, arguing as in the proof of Theorem 3.3, we show that u∗ solves (4.12).
Moreover, we have (cf. [2, Theorem A.1])∥∥u∗

ε

∥∥2
2,Ωε

→ χ0
∥∥u∗∥∥2

2,∥∥ε−1/2(p∗
ε

)−∥∥
2,Ωε

= ∥∥ε1/2θ∗
ε

∥∥
2,Ωε

→ 0.

⎫⎬⎭
Thus, passing to the limit in Jε(θ∗

ε ) we have (4.13).
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On the other hand, using p∗
ε as a test function in (3.12) and u∗

ε as a test function in (3.3), one can rewrite the cost
functional Jε(θ∗

ε ) as in (3.18). Now, using (3.22), Jε(θ∗
ε ) reduces to

Jε
(
θ∗
ε

) = 1

2

∫
Ωε

f p∗
ε dx

and passing to the limit will yield

Jε
(
θ∗
ε

) → 1

2

∫
Ω

χ0 f p∗ dx.

Using p∗ and u∗ as test functions in (4.12) and (4.7), respectively, we have∫
Ω

χ0 f p∗ dx = J
(
θ∗) − 1

2

〈
θ∗, p∗〉

H−1(Ω),H1
0(Ω)

.

Therefore, (4.13) implies that 〈θ∗, p∗〉H−1(Ω),H1
0(Ω) = 0. Now an argument analogous to the one in the proof of Theorem 3.7

will show that θ∗ minimises J in V ′ . The strict convexity of J would then imply the uniqueness of θ∗ and thus the
convergences (4.11) and (4.3) hold for the entire sequence. �
Remark 4.5. The above theorem differs from Theorem 3.7 in the sense that we now have the fact that∫

Ωε

θ∗
ε p∗

ε dx = −ε
∥∥θ∗

ε

∥∥2
2,Ωε

→ 0.

In other words, we have identified the limit of the product of the two weakly converging sequence. This was possible due
to (4.14) and similar equality is not available for the problem in Section 3.

5. Conclusion

We have studied the asymptotic behaviour of some low-cost control problems left open in [12,19]. The results are proved
for perforated domains but they remain valid for non-perforated domains as well, with necessary modification. We prove
an H-convergence result for weak data (cf. Theorem 2.1) which forms the backbone of the article. It would be interesting
to see if the difficulties discussed in Remark 3.8 could be overcome.
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