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In this paper, the robust H∞ filtering problem for a class of neutral stochastic systems
is discussed. The system under consideration contains parameter uncertainties, Itô-type
stochastic disturbances, time-varying delay. The parameter uncertainties are assumed
to be time-varying norm-bounded. Using the stochastic Lyapunov stability theory and
Itô’s differential rule, a full-order filter is designed for all admissible uncertainties and
time-varying delay, which is expressed in the form of linear matrix inequality (LMI).
The dynamics of the filtering error systems are guaranteed to be robust stochastically
mean square asymptotically stable, while achieving a prescribed stochastic robust H∞
performance level. At the end of this paper, a numerical example is given to demonstrate
the usefulness of the proposed method.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Stochastic modeling has come to play an important role in many branches of science and industry, an area of particular
interest has been the automatic control and filter design of stochastic systems, and a great number of results on this subject
has been reported in the literatures; see, for example [1–4], and references therein. In 1998, D. Hinrichsen obtained a very
important and useful stochastic bounded real lemma for the research of stochastic H∞ control in the literature [6], and the
lemma was applied in the filter design [10]. The classic results of H2/H∞ control for deterministic systems which were
reported in [13] were also extended to the stochastic systems in the literature [11]. Then, in the following two decades,
stochastic robust H∞ control and H∞ filter design for the stochastic systems has attracted more and more attention of
many experts and has been one of the hottest research areas in the control theory world; see, for example [5,7–12], and
the references therein.

Time delay and systems uncertainties are often the two main sources of instability, oscillation and poor performance of
control systems, which are encountered in various engineering systems, such as communication, electronics, hydraulic and
chemical systems. Therefore, in recent twenty years, considerable attention has been devoted to the studies for stochas-
tic time-delay systems and stochastic uncertain systems, and a great number of results have been reported and various
approaches also have been proposed in the literatures; see, for example [14–20], and the references therein.

On the other hand, it is well known that Kalman filtering approach is one of the most popular and most effective ways to
deal with the filtering problems [21]. This approach is based on the assumption that the system model is exactly known and
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its disturbances are stationary Gaussian noise with known statistics. However, these assumptions are not exactly satisfied in
practical applications [22–24]. Therefore, in the past decade, much research has been discussed depending on the technique
of H∞ filtering, see, for example [25–27], and the references therein.

In this paper, we mainly discuss the robust H∞ filtering design problem for a class of neutral stochastic uncertain
systems with time-varying delay. The rest of the paper is organized as follows: the description of the systems and two
lemmas are given in Section 2; in Section 3, the two main results are studied; and a numerical example is given in Section 4
to show the validity of the results and the effectiveness of the proposed approach; Section 5 includes this paper.

Notations. Throughout this paper, for symmetric matrices X and Y , the notation X � Y (respectively, X > Y ) means that
the matrix X − Y is positive semi-definite (respectively, positive definite). I is an identity matrix with appropriate dimen-
sions; the subscript “T ” represents the transposition. E(·) denotes the expectation operator with respect to some probability
measure P . L2[0,∞) is the space of square integrable vector functions over [0,∞); let (Ω, F , P ) be a complete probabil-
ity space which relatives to an increasing family (Ft)t>0 of σ algebras (Ft)t>0 ⊂ F , where Ω is the samples space, F is
σ algebra of subsets of the sample space and P is the probability measure on F . ‖ · ‖E2 = ‖E(·)‖2, while ‖ · ‖2 stands for
the usual L2[0,∞) norm, Rn and Rn×n denote the n-dimensional Euclidean space and the set of all n × m real matrices
respectively.

2. Problem formulation

A class of neutral stochastic uncertain systems with time-varying delay is considered in this paper

(Σ) d
[
x(t) − D(t)x

(
t − τ (t)

)] = [
A0(t)x(t) + A1(t)x

(
t − τ (t)

) + G0 v(t)
]

dt

+ [
H0(t)x(t) + H1(t)x

(
t − τ (t)

) + G1 v(t)
]

dw(t), (2.1)

dy(t) = [
Ā0(t)x(t) + Ā1(t)x

(
t − τ (t)

) + Ḡ0 v(t)
]

dt + [
H̄0(t)x(t) + H̄1(t)x

(
t − τ (t)

) + Ḡ1 v(t)
]

dw(t), (2.2)

z(t) = Cx(t), (2.3)

x(t) = ϕ(t), ∀t ∈ [−h,0], (2.4)

where x(t) ∈ Rn is the system state; v(t) ∈ R p is the disturbance input of the system which belongs to L2[0,∞), where
L2[0,∞) denotes the space of square integrable vector functions over [0,∞); y(t) ∈ Rr is the system measured output;
z(t) ∈ Rq is the system control output; w(t) is a zero-mean real scalar Wiener process on a probability space (Ω, F , P ).
Moreover we assume

E
(
dw(t)

) = 0, E
(
dw(t)2) = dt.

In the stochastic systems (Σ), τ (t) is the system time-varying delay satisfying

0 � τ (t) � h < ∞, τ̇ (t) � μ < 1 (2.5)

where h, μ are known nonzero constants, φ(t) is a real-valued initial function on [−τ ,0] and Ai(t) = Ai + ΔAi(t), Āi(t) =
Āi + Δ Āi(t), H j(t) = H j + ΔH j(t), H̄ j(t) = H̄ j + ΔH̄ j(t), i, j = 0,1, D(t) = D + ΔD(t), and Ai , C , H j , i, j = 0,1, G , Āi , H̄ j ,
i, j = 0,1, Ḡ are known real matrices with appropriate dimension, ΔAi(t), Δ Āi(t), ΔH j(t), ΔH̄ j(t), i, j = 0,1, are unknown
matrices with time-varying uncertainties, which satisfy the following conditions[

ΔAi(t) ΔH j(t)
Δ Āi(t) ΔH̄ j(t)

]
=

[
M1
M2

]
F (t)[ Ni R j ], (2.6)

ΔD(t) = E F (t)L (2.7)

where M1, M2, Ni , R j , E , L, i, j = 0,1, are known matrices with appropriate dimensions, F (t) : R → Rk×l is an unknown
time-varying matrix function, which satisfies

F T (t)F (t) � I, ∀t > 0. (2.8)

The parameter uncertainties are said to be admissible if (2.6)–(2.8) hold.
In this paper, our aim is to design a linear stochastic full-order filter in the following form:

(ΣK ) dξ(t) = AK ξ(t)dt + B K dy(t), (2.9)

ẑ(t) = C K ξ(t) (2.10)

where ξ(t) ∈ Rn is the filter state, ẑ(t) ∈ Rq is the estimation of z(t) in systems (Σ), the matrices Ak , Bk and Ck are the
filter matrices with appropriate dimensions, which are to be designed.

Defining η(t) = [ xT (t) ξ T (t) ]T , e(t) = z(t) − ẑ(t), then we obtain the filtering error stochastic system as follows:
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(Σc) d
[
η(t) − Dc(t)η

(
t − τ (t)

)] = [
Ac0(t)η(t) + Ac1(t)η

(
t − τ (t)

) + Gc0 v(t)
]

dt

+ [
Hc0(t)η(t) + Hc1(t)η

(
t − τ (t)

) + Gc1 v(t)
]

dw(t), (2.11)

e(t) = Ccη(t) (2.12)

where Aci(t) = Aci + ΔAci(t), Hcj(t) = Hcj + ΔHcj(t), i, j = 0,1, Dc(t) = Dc + ΔDc(t), Ac0 = ( A0 0
B K Ā0 AK

)
, Ac1 = ( A1 0

B K Ā1 0

)
,

Gc0 = ( G0

Bk Ḡ0

)
, Hc0 = ( H0 0

B K H̄0 0

)
, Hc1 = ( H1 0

B K H̄1 0

)
, Gc1 = ( G1

Bk Ḡ1

)
, Cc = (C −C K ), Dc = ( D 0

0 0

)
. The uncertainties satisfy the ad-

missible conditions as follows:

ΔDc(t) =
(

ΔD(t) 0
0 0

)
=

(
E
0

)
F (t) ( L 0 ) , (2.13)

ΔAc0(t) =
(

ΔA0(t) 0
B K Δ Ā0(t) 0

)
=

[
M1

B K M2

]
F (t) [ N0 0 ] , (2.14)

ΔAc1(t) =
(

ΔA1(t) 0
B K Δ Ā1(t) 0

)
=

[
M1

B K M2

]
F (t) [ N1 0 ] , (2.15)

ΔHc0(t) =
(

ΔH0(t) 0
B K ΔH̄0(t) 0

)
=

[
M1

B K M2

]
F (t) [ R0 0 ] , (2.16)

ΔHc1(t) =
(

ΔH1(t) 0
B K ΔH̄1(t) 0

)
=

[
M1

B K M2

]
F (t) [ R1 0 ] . (2.17)

Combining (2.13)–(2.17), we obtain

[
ΔAc0(t) ΔAc1(t) ΔHc0(t) ΔHc1(t)

] = M̄ F (t) [ N̄0 N̄1 R̄0 R̄1 ] , (2.18)

ΔDc(t) = Ē F (t)L̄ (2.19)

where M̄ = ( M1
Bk M2

)
, N̄0 = (N0 0), N̄1 = (N1 0), R̄0 = (R0 0), R̄1 = (R1 0), Ē = ( E

0

)
, L̄ = (L 0).

The stochastic robust H∞ filter design problems are studied in this paper, which can be formulated as follows: given
a prescribed attenuation level γ > 0, design a linear stochastic filter as the form of (2.9)–(2.10) such that the following two
purposes are satisfied:

(P1) The resulting filtering error stochastic system (Σc) is stochastically mean square asymptotically stable with the zero
disturbance input and for all admissible uncertainties;

(P2) Under zero-initial condition, the following inequality

‖e‖E2 < γ ‖v‖2 (2.20)

holds with the nonzero disturbance input and for all admissible uncertainties.

In the investigation of this paper, we shall mainly use linear matrix inequality (LMI), so we firstly give the following two
lemmas without proof.

Lemma 1. (See [28].) Let D, S and W > 0 be real matrices with appropriate dimensions, then for any nonzero vectors x and y with
appropriate dimensions, we have

2xT D S y � xT DW DT x + yT S T W −1 S y.

Lemma 2 (Schur complement). Given three constant matrices S1 , S2 , S3 , where S3 = S T
3 < 0 and S1 = S T

1 < 0, then

S1 − S T
2 S−1

3 S2 < 0 if and only if
( S1 S2

S2 S3

)
< 0 or

( S3 S2
S2 S1

)
< 0.

3. Main results

In this section, the LMI technology firstly is developed to design a stochastic robust H∞ filter (ΣK ) such that the neutral
stochastic filtering error system (Σc) with v(t) = 0 is stochastically mean square asymptotically stable.

Theorem 1. Consider the neutral stochastic uncertain systems (2.1)–(2.4) with v(t) = 0, there exists a linear stochastic full-order
filter (2.9)–(2.10), such that the resulting filtering error stochastic systems (2.11)–(2.12) are stochastically robust mean square asymp-
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totically stable for all admissible uncertainties (2.13)–(2.19), if there exist four constants ε0, ε1, ε2, ε3 > 0, two matrices X, Y with the
appropriate dimension and the symmetric positive matrices P1 , P2 , Q , such that the following LMI holds:

Θ =
⎛
⎜⎝

Θ11 Θ12 Θ13 Θ14
∗ Θ22 0 0
∗ ∗ Θ33 0
∗ ∗ ∗ Θ44

⎞
⎟⎠ < 0 (3.1)

where

Θ11 =
⎛
⎝Π ĀT

0 Y T + ε0 P1M1MT
2 Y T P1 A1

∗ X + X T + ε0Y M2MT
2 Y T Y Ā1

∗ ∗ ε1N T
1 N1 − (1 − μ)Q

⎞
⎠ ,

Π = Q + P1 A0 + AT
0 P1 + ε0 P1M1MT

1 P1,

Θ12 =
⎛
⎝ AT

0 ĀT
0 Y T (P−1

2 )T

0 0
AT

1 ĀT
1 Y T (P−1

2 )T

⎞
⎠ ,

Θ13 =
⎛
⎝ H T

0 H̄ T
0 Y T (P−1

2 )T

0 0
H T

1 H̄ T
1 Y T (P−1

2 )T

⎞
⎠ ,

Θ22 = Θ33 =
(

ε3M1MT
1 − P−1

1 ε3M1MT
2 Y T (P−1

2 )T

ε3 P−1
2 Y M2MT

1 ε3Y T (P−1
2 )T M2MT

2 Y T (P−1
2 )T − P−1

2

)
,

Θ14 =
⎛
⎝ 0 0 N T

0 P1M1 0 N T
0 RT

0
0 0 0 Y M2 0 0 0
D 0 0 0 LT N T

1 RT
1

⎞
⎠ ,

Θ44 = diag
(
ε2 E E T − P−1

1 ,−P−1
2 ,−ε0 I,−ε1 I,−ε2 I,−ε3 I,−ε3 I

)
.

Proof. Let P = diag(P1, P2), R = (I 0), Ak = P−1
2 X , Bk = P−1

2 Y , by the definition of Ac0, Ac1, Hc0, Hc1, M̄ , N̄i , R̄ j , i, j =
0,1, Ē , L̄, Dc , the LMI (3.1) is equivalent to the following LMI:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

J1 P Ac1 AT
c0 H T

c0 0 N̄ T
0 P M̄ 0 N̄ T

0 R̄ T
0

∗ J2 AT
c1 H T

c1 DT
c 0 0 L̄T N̄ T

1 R̄ T
1

∗ ∗ ε3M̄M̄T − P−1 0 0 0 0 0 0 0
∗ ∗ ∗ ε3M̄M̄T − P−1 0 0 0 0 0 0
∗ ∗ ∗ ∗ ε2 Ē Ē T − P−1 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ −ε0 I 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −ε1 I 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε2 I 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε3 I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε3 I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0 (3.2)

where J1 = RT Q R + P Ac0 + AT
c0 P + ε0 P M̄M̄T P , J2 = ε1 N̄ T

1 N̄1 − (1 − μ)RT Q R . From the admissible conditions (2.18)
and (2.19), we have⎛

⎜⎜⎜⎜⎝
0 PΔAc1(t) ΔH T

c0(t) ΔAT
c0(t) 0

∗ 0 ΔH T
c1(t) ΔAT

c1(t) ΔDT
c (t)

∗ ∗ −P−1 0 0
∗ ∗ ∗ −P−1 0
∗ ∗ ∗ ∗ −P−1

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

0
N̄ T

1
0
0
0

⎞
⎟⎟⎟⎠ F T (t)

⎛
⎜⎜⎜⎝

P M̄
0
0
0
0

⎞
⎟⎟⎟⎠

T

+

⎛
⎜⎜⎜⎝

P M̄
0
0
0
0

⎞
⎟⎟⎟⎠ F (t)

⎛
⎜⎜⎜⎝

0
N̄ T

1
0
0
0

⎞
⎟⎟⎟⎠

T

+

⎛
⎜⎜⎜⎝

0
L̄T

0
0
0

⎞
⎟⎟⎟⎠ F T (t)

⎛
⎜⎜⎜⎝

0
0
0
0
Ē

⎞
⎟⎟⎟⎠

T

+

⎛
⎜⎜⎜⎝

0
0
0
0
Ē

⎞
⎟⎟⎟⎠ F (t)

⎛
⎜⎜⎜⎝

0
L̄T

0
0
0

⎞
⎟⎟⎟⎠

T

+

⎛
⎜⎜⎜⎝

N̄ T
0 R̄ T

0

N̄ T
1 R̄ T

1
0 0
0 0

⎞
⎟⎟⎟⎠ F T (t)

⎛
⎜⎜⎜⎝

0 0
0 0
M̄ 0
0 M̄
0 0

⎞
⎟⎟⎟⎠

T

0 0
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� ε1

⎛
⎜⎜⎜⎝

0
N̄ T

1
0
0
0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

0
N̄ T

1
0
0
0

⎞
⎟⎟⎟⎠

T

+ ε−1
1

⎛
⎜⎜⎜⎝

P M̄
0
0
0
0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

P M̄
0
0
0
0

⎞
⎟⎟⎟⎠

T

+ ε2

⎛
⎜⎜⎜⎝

0
0
0
0
Ē

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

0
0
0
0
Ē

⎞
⎟⎟⎟⎠

T

+ ε−1
2

⎛
⎜⎜⎜⎝

0
L̄T

0
0
0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

0
L̄T

0
0
0

⎞
⎟⎟⎟⎠

T

+ ε3

⎛
⎜⎜⎜⎝

0 0
0 0
M̄ 0
0 M̄
0 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

0 0
0 0
M̄ 0
0 M̄
0 0

⎞
⎟⎟⎟⎠

T

+ ε−1
3

⎛
⎜⎜⎜⎝

N̄ T
0 R̄ T

0

N̄ T
1 R̄ T

1
0 0
0 0
0 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

N̄ T
0 R̄ T

0

N̄ T
1 R̄ T

1
0 0
0 0
0 0

⎞
⎟⎟⎟⎠

T

. (3.3)

By the Schur complement formula, and together with (3.3), the LMI (3.2) implies that⎛
⎜⎜⎜⎜⎝

RT Q R + P Ac0 + AT
c0 P + ε0 P M̄M̄T P + ε−1

0 N̄ T
0 N̄0 P Ac1 H T

c0 AT
c0 0

∗ −RT Q R(1 − μ) H T
c1 AT

c1 DT
c

∗ ∗ −P−1 0 0
∗ ∗ ∗ −P−1 0
∗ ∗ ∗ ∗ −P−1

⎞
⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎝

0 PΔAc1(t) ΔH T
c0(t) ΔAT

c0(t) 0

∗ 0 ΔH T
c1(t) ΔAT

c1(t) ΔDT
c (t)

∗ ∗ −P−1 0 0
∗ ∗ ∗ −P−1 0
∗ ∗ ∗ ∗ −P−1

⎞
⎟⎟⎟⎟⎠ < 0. (3.4)

Now, set v(t) = 0, we obtain the stochastic filtering error system as

d
[
η(t) − Dc(t)η

(
t − τ (t)

)] = [
Ac0(t)η(t) + Ac1(t)η

(
t − τ (t)

)]
dt + [

Hc0(t)η(t) + Hc1(t)η
(
t − τ (t)

)]
dw(t). (3.5)

Define the following Lyapunov function candidate for the systems in (3.3):

V (ηt , t) = (
η(t) − Dc(t)η

(
t − τ (t)

))T
P
(
η(t) − Dc(t)η

(
t − τ (t)

)) +
t∫

t−τ (t)

ηT (s)RT Q Rη(s)ds. (3.6)

Applying Itô formula, we have the stochastic differential as

dV (ηt , t) = LV (ηt , t)dt + 2
(
η(t) − Dc(t)η

(
t − τ (t)

))T
P
[

Hc0(t)η(t) + Hc1(t)η
(
t − τ (t)

)]
dw(t) (3.7)

where

LV (ηt, t) = (
η(t) − Dc(t)η

(
t − τ (t)

))T
P
[

Ac0(t)η(t) + Ac1(t)η
(
t − τ (t)

)]
+ [

Ac0(t)η(t) + Ac1(t)η
(
t − τ (t)

)]T
P
(
η(t) − Dc(t)η

(
t − τ (t)

))
+ [

Hc0(t)η(t) + Hc1(t)η
(
t − τ (t)

)]T
P
[

Hc0(t)η(t) + Hc1(t)η
(
t − τ (t)

)]
+ [

ηT (t)RT Q Rη(t) − ηT (
t − τ (t)

)
RT Q Rη

(
t − τ (t)

)(
1 − τ̇ (t)

)]
. (3.8)

By Lemma 1 and admissible condition (2.18), we have(
η(t) − Dc(t)η

(
t − τ (t)

))T
P
[

Ac0(t)η(t) + Ac1(t)η
(
t − τ (t)

)]
+ [

Ac0(t)η(t) + Ac1(t)η
(
t − τ (t)

)]T
P
(
η(t) − Dc(t)η

(
t − τ (t)

))
= ηT (t)

(
P Ac0(t) + AT

c0(t)P
)
η(t) + ηT (t)P Ac1(t)η

(
t − τ (t)

) + ηT (
t − τ (t)

)
AT

c1(t)Pη(t)

− ηT (
t − τ (t)

)
DT

c (t)P
[

Ac0(t)η(t) + Ac1(t)η
(
t − τ (t)

)]
− [

Ac0(t)η(t) + Ac1(t)η
(
t − τ (t)

)]T
P Dc(t)η

(
t − τ (t)

)
� ηT (t)

(
P Ac0 + AT

c0 P + ε0 P M̄M̄T P + ε−1
0 N̄ T

0 N̄0
)
η(t) + ηT (t)P Ac1(t)η

(
t − τ (t)

)
+ ηT (

t − τ (t)
)

AT
c1(t)Pη(t) + ηT (

t − τ (t)
)

DT
c (t)P Dc(t)η

(
t − τ (t)

)
+ [

Ac0(t)η(t) + Ac1(t)η
(
t − τ (t)

)]T
P
[

Ac0(t)η(t) + Ac1(t)η
(
t − τ (t)

)]
. (3.9)

Let ζ(t) = (η(t) η(t − τ (t)))T , noticing (3.8) and (3.9), we obtain

LV (ηt, t) � ζ T (t)Π(t)ζ(t) (3.10)
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where

Π(t) =

⎛
⎜⎜⎜⎝

RT Q R + P Ac0 + AT
c0 P + ε0 P M̄M̄T P

+ ε−1
0 N̄ T

0 N̄0 + H T
c0(t)P Hc0(t) + AT

c0(t)P Ac0(t)
P Ac1(t) + H T

c0(t)P Hc1(t) + AT
c0(t)P Ac1(t)

AT
c1(t)P + H T

c1(t)P Hc0(t) + AT
c1(t)P Ac0(t)

DT
c (t)P Dc(t) − RT Q R(1 − μ)

+ H T
c1(t)P Hc1(t) + AT

c1(t)P Ac1(t)

⎞
⎟⎟⎟⎠

=
(

RT Q R + P Ac0 + AT
c0 P + ε0 P M̄M̄T P + ε−1

0 N̄ T
0 N̄0 P Ac1(t)

AT
c1(t)P DT

c (t)P Dc(t) − RT Q R(1 − μ)

)

+
(

H T
c0(t)

H T
c1(t)

)
P

(
H T

c0(t)

H T
c1(t)

)T

+
(

AT
c0(t)

AT
c1(t)

)
P

(
AT

c0(t)

AT
c1(t)

)T

.

Thanks to Schur complement lemma, this is equivalent to the following matrix

⎛
⎜⎜⎜⎜⎝

RT Q R + P Ac0 + AT
c0 P + ε0 P M̄M̄T P + ε−1

0 N̄ T
0 N̄0 P Ac1(t) H T

c0(t) AT
c0(t) 0

∗ −RT Q R(1 − μ) H T
c1(t) AT

c1(t) DT
c (t)

∗ ∗ −P−1 0 0
∗ ∗ ∗ −P−1 0
∗ ∗ ∗ ∗ −P−1

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

RT Q R + P Ac0 + AT
c0 P + ε0 P M̄M̄T P + ε−1

0 N̄ T
0 N̄0 P Ac1 H T

c0 AT
c0 0

∗ −RT Q R(1 − μ) H T
c1 AT

c1 DT
c

∗ ∗ −P−1 0 0
∗ ∗ ∗ −P−1 0
∗ ∗ ∗ ∗ −P−1

⎞
⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎝

0 PΔAc1(t) ΔH T
c0(t) ΔAT

c0(t) 0

∗ 0 ΔH T
c1(t) ΔAT

c1(t) ΔDT
c (t)

∗ ∗ −P−1 0 0
∗ ∗ ∗ −P−1 0
∗ ∗ ∗ ∗ −P−1

⎞
⎟⎟⎟⎟⎠ .

From the LMI (3.4) we have

LV (ηt, t) � ζ T (t)Π(t)ζ(t) < 0 (3.11)

which implies the filtering error stochastic systems (2.11)–(2.12) are stochastically robust mean square asymptotically stable
for all admissible uncertainties. �

Now, based on Theorem 1, we are able to focus on the analysis of the H∞ performance of the filtering process in the
following theorem.

Theorem 2. Consider the neutral stochastic uncertain systems (2.1)–(2.4) with v(t) 	= 0, given a scalar γ > 0, then there exists
a linear stochastic full-order filter (2.9)–(2.10), such that the resulting filtering error stochastic systems (2.11)–(2.12) are stochastically
robust mean square asymptotically stable and satisfy ‖e‖E2 < γ ‖v‖2 for all admissible uncertainties (2.13)–(2.19) if there exist four
constants ε0, ε1, ε2, ε3 > 0, two matrices X, Y with appropriate dimension and the symmetric positive matrices P1 , P2 , Q , such that
the following LMI holds:

Θ =
⎛
⎜⎝

Θ11 Θ12 Θ13 Θ14
∗ Θ22 0 0
∗ ∗ Θ33 0
∗ ∗ ∗ Θ44

⎞
⎟⎠ < 0 (3.12)

where

Θ11 =

⎛
⎜⎜⎝

Π ĀT
0 Y T + ε0 P1M1MT

2 Y T P1 A1 P1G0

∗ X + X T + ε0Y M2MT
2 Y T Y Ā1 Y Ḡ0

∗ ∗ ε1N T
1 N1 − (1 − μ)Q 0

∗ ∗ ∗ −γ 2 I

⎞
⎟⎟⎠ ,

Π = Q + P1 A0 + AT
0 P1 + ε0 P1M1MT

1 P1,
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Θ12 =

⎛
⎜⎜⎝

AT
0 ĀT

0 Y T (P−1
2 )T

0 0

AT
1 ĀT

1 Y T (P−1
2 )T

G T
0 Ḡ T

0 Y T (P−1
2 )T

⎞
⎟⎟⎠ , Θ13 =

⎛
⎜⎜⎝

H T
0 H̄ T

0 Y T (P−1
2 )T

0 0

H T
1 H̄ T

1 Y T (P−1
2 )T

G T
1 Ḡ T

1 Y T (P−1
2 )T

⎞
⎟⎟⎠ ,

Θ22 = Θ33 =
(

ε3M1MT
1 − P−1

1 ε3M1MT
2 Y T (P−1

2 )T

ε3Y T (P−1
2 )T M2MT

1 ε3 P−1
2 Y M2MT

2 Y T (P−1
2 )T − P−1

2

)
,

Θ14 =

⎛
⎜⎜⎝

0 0 N T
0 P1M1 0 N T

0 RT
0 C T

0 0 0 Y M2 0 0 0 −C T
k

D 0 0 0 LT N T
1 RT

1 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎠ ,

Θ44 = diag
(
ε2 E E T − P−1

1 ,−P−1
2 ,−ε0 I,−ε1 I,−ε2 I,−ε3 I,−ε3 I,−I

)
.

In this case, the parameters of a desired filter in the form of (2.9)–(2.10) are Ak, Bk, Ck, then the filter is given by the following form:{
dξ(t) = AK ξ(t)dt + B K dy(t),
ẑ(t) = C K ξ(t)

(3.13)

where Ak = P−1
2 X, Bk = P−1

2 Y .

Proof. Consider the filtering error stochastic system with as follows:

(Σc) d
[
η(t) − Dc(t)η

(
t − τ (t)

)] = [
Ac0(t)η(t) + Ac1(t)η

(
t − τ (t)

) + Gc0 v(t)
]

dt

+ [
Hc0(t)η(t) + Hc1(t)η

(
t − τ (t)

) + Gc1 v(t)
]

dw(t), (3.14)

e(t) = Ccη(t). (3.15)

Because the LMI (3.12) implies the LMI (3.1) holds, therefore, by Theorem 1, we have the filtering error stochastic sys-
tems (3.14)–(3.15) are stochastically robust mean square asymptotically stable for all admissible uncertainties. Next, we shall
show that under the zero-initial condition, the systems (Σc) satisfy (P2) for any nonzero v(t) ∈ L[0,∞), to this target, we
consider the following Lyapunov function candidate for the systems (3.14)–(3.15)

V (ηt , t) = (
η(t) − Dc(t)η

(
t − τ (t)

))T
P
(
η(t) − Dc(t)η

(
t − τ (t)

)) +
t∫

t−τ (t)

ηT (s)RT Q Rη(s)ds. (3.16)

Applying Itô formula, we obtain the stochastic differential as

dV (ηt , t) = LV (ηt , t)dt + 2
(
η(t) − Dc(t)η

(
t − τ (t)

))T
P
[

Hc0(t)η(t) + Hc1(t)η
(
t − τ (t)

) + Gc1 v(t)
]

dw(t) (3.17)

where

LV (ηt, t) = (
η(t) − Dc(t)η

(
t − τ (t)

))T
P
[

Ac0(t)η(t) + Ac1(t)η
(
t − τ (t)

) + Gc0 v(t)
]

+ [
Ac0(t)η(t) + Ac1(t)η

(
t − τ (t)

) + Gc0 v(t)
]T

P
(
η(t) − Dc(t)η

(
t − τ (t)

))
+ [

Hc0(t)η(t) + Hc1(t)η
(
t − τ (t)

) + Gc1 v(t)
]T

P
[

Hc0(t)η(t) + Hc1(t)η
(
t − τ (t)

) + Gc1 v(t)
]

+ [
ηT (t)RT Q Rη(t) − ηT (

t − τ (t)
)

RT Q Rη
(
t − τ (t)

)(
1 − τ̇ (t)

)]
. (3.18)

Let ζ(t) = (η(t) η(t − τ (t)) v(t))T ; similar to the proof of Theorem 1, we have

LV (ηt, t) � ζ T (t)Π̃(t)ζ(t) (3.19)

where

Π̃(t) =
⎛
⎝ RT Q R + P Ac0 + AT

c0 P + ε0 P M̄M̄T P + ε−1
0 N̄ T

0 N̄ P Ac1(t) P Gc0

AT
c1(t)P DT

c (t)P Dc(t) − RT Q R(1 − μ) 0

G T
c0 P 0 0

⎞
⎠

+
⎛
⎝ H T

c0(t)

H T
c1(t)

T

⎞
⎠ P

⎛
⎝ H T

c0(t)

H T
c1(t)

T

⎞
⎠

T

+
⎛
⎝ AT

c0(t)

AT
c1(t)

T

⎞
⎠ P

⎛
⎝ AT

c0(t)

AT
c1(t)

T

⎞
⎠

T

.

Gc1 Gc1 Gc0 Gc0
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By the Schur complement lemma, this is equivalent to the following matrix⎛
⎜⎜⎜⎜⎜⎜⎜⎝

RT Q R + P Ac0 + AT
c0 P + ε0 P M̄M̄T P + ε−1

0 N̄ T
0 N̄ P Ac1(t) P Gc0 AT

c0(t) H T
c0(t) 0

AT
c1(t)P −RT Q R(1 − μ) 0 AT

c1(t) H T
c1(t) DT

c (t)

G T
c0 P 0 0 G T

c0 G T
c1 0

Ac0(t) Ac1(t) Gc0 −P−1 0 0

Hc0(t) Hc1(t) Gc1 0 −P−1 0

0 Dc(t) 0 0 0 −P−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Hence, considering the stochastic robust H∞ performance level for the filtering error stochastic systems (3.14)–(3.15), for
any t > 0, we define

J (t) = E

{ t∫
0

[
zT (s)z(s) − γ 2 v T (s)v(s)

]
ds

}
. (3.20)

Then, integrating both sides of (3.17) from 0 to t and taking expectations result in

E
(

V (ηt , t) − V (η0,0)
) = E

(
V (ηt , t)

) = E

t∫
0

LV (ηs, s)ds. (3.21)

Immediately we get

J (t) = E

{ t∫
0

[
zT

c (s)zc(s) − γ 2 v T (s)v(s) + LV (ηs, s)
]

ds

}
− E

(
V (ηt , t)

)

� E

{ t∫
0

[
zT

c (s)zc(s) − γ 2 v T (s)v(s) + LV (ηs, s)
]

ds

}

� E

{ t∫
0

[
ηT (s) ηT

(
s − τ (s)

)
v T (s)

]
Υ (s)

[
ηT (s) ηT

(
s − τ (s)

)
v T (s)

]T
ds

}
(3.22)

where

Υ (t) = Π̃(t) +
( C T

c Cc 0 0
0 0 0
0 0 −γ 2 I

)
. (3.23)

By using the Schur complement lemma and following the similar line as in the proof of Theorem 1, the LMI (3.12) implies
Υ (t) < 0. This, together with (3.22), we have

J (t) < 0. (3.24)

Therefore, the inequality ‖z‖E2 < γ ‖v‖2 holds. This completes the proof. �
4. Numerical example

In this section, we give an example to show the feasibility of the controller and the usefulness of the proposed techniques
in the paper.

Consider the uncertain neutral stochastic systems (2.1)–(2.4), the parameters are given as follows:

A0 =
(−3 0

0.2 −5

)
, A1 =

(−1 0.5
0 −1.5

)
, G0 =

(−0.2
−0.2

)
, D =

(
0.2 0
1 0.5

)
,

H0 =
(−2 0.5

1 −0.5

)
, H1 =

(−1 0.3
0.2 −1.5

)
, G1 =

(−0.2
0.2

)
, Ā0 =

(−10 0.5
0.2 −5

)
,

Ā1 =
(−1.5 0.4

0.5 −1

)
, H̄0 =

(
0.5 0.5
1 0

)
, Ḡ0 =

(−0.1
0.1

)
, H̄1 =

(
1 0.2

0.3 −1

)
,

Ḡ1 =
(−0.1

0.1

)
, C =

(
0.2 0
0.1 −0.3

)
, M1 =

(−0.2
0.1

)
, M2 =

(
0.1
0.1

)
, E =

(−0.2
0.1

)
,

N0 = (0.1 −0.1 ) , N1 = (−0.1 0.2 ) , R0 = (−0.2 0.1 ) ,

R1 = ( 0.1 −0.1 ) , L = (0.2 0.1 ) , μ = 0.3.
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In this example, attention is focused on the design of a full-order stochastic filter (Σk), such that the stochastic filtering error
system is stochastically mean square asymptotically stable for all admissible uncertainties and dissipation level γ = 0.9, for
this objective, we use the Matlab LMI Control Toolbox to solve the LMI (3.12), and obtain the solution as follows:

P1 =
(

14.6696 0.1740
0.1740 8.3139

)
, P2 =

(
35.4246 0

0 35.4246

)
, Q =

(
40.0139 −5.2180
−5.2180 43.6390

)
,

X =
(−22.2449 −6.0106

−3.0757 −22.2338

)
, Y =

(−0.0267 −0.0795
−0.0322 −0.1081

)
, Ck =

(
0.0308 0.0315
0.0052 0.0011

)
,

ε0 = 33.8610, ε1 = 34.1235, ε2 = 12.7109, ε3 = 1.5400.

Therefore, the full-order stochastic filter is given as follows:{
dξ(t) = AK ξ(t)dt + B K dy(t),
ẑ(t) = C K ξ(t)

where Ak = P−1
2 X = ( −0.6280 −0.1697

−0.0868 −0.6276

)
, Bk = P−1

2 Y = ( −0.0008 −0.0022
−0.0009 −0.0031

)
.

5. Conclusion

In this paper, the robust H∞ filtering design problems for a class of neutral stochastic uncertain systems with time-
varying norm bounded parameter uncertainties have been studied. The LMI approach and stochastic Lyapunov stability
theory have been used to design the full-order stochastic filter, which ensures the resulting stochastic filtering error systems
satisfy two purposes (P1) and (P2). At last, a numerical example has been given to show the validity of the result and the
effectiveness of the LMI approach.
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