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1. Introduction

Let d be a fixed positive integer and N be the set of all nonnegative integers. In this paper we consider stochas-

tic processes indexed by set N, which is equipped with the following partial order: for z = (z1,22,...,24), W =
(W1, Wa,...,wg) € N4, z< w if and only if z; < w; for all i. Let e; be the element for which the ith coordinate is 1
and all other coordinates are 0. We set |z| = Zlez,- for z=1(z1,22,...,29),  ={z € Nd: z < t} for fixed t € N4, and

I(zy={wel: w<z},p@={wel: w<z, |z—w|=1},,d@)={wel: w>z, |[w—2z|=1}forzel.

Let (§£2,F,P) be a complete probability space, X = {X(z), z € I} be a real valued integrable stochastic process and
{}'ZX, z € I} be the natural filtration of X which satisfies the following conditions: _7-"(’)( contains all P-null sets of F, and if
z< w, then FX C FX.

An {fz’(}—stopping point is a random variable T taking values in I such that {T =z} € }-Zx for all z € I. A tactic is
a family ({I"(k), 0 <k < |t|}, ) which satisfies the following conditions: I"'(0) =0 P-a.e., I'(k) is an {]-';‘}-stopping point
for all k < |t|, '(k+ 1) ed(I"(k)) P-ae. forall k<|t|]—1, "'(k+1) is fl’f(k)-measurable for all k < |t| — 1, and 7 is an
{}'I’S(k), 0 < k < |t|}-stopping time, where f,’f(k) ={AeF: An{I'(k) =z} e FX for all z € I}. We call a stopping point T is
accessible if there exists a tactic ({I"(k)}, T) such that T = I'(t) P-a.e.,, and denote the set of all accessible stopping points
by A(X). Then the multiparameter optimal stopping problem is to find a stopping point T* € A(X) (a tactic ({I"'*(k)}, T*))
such that

VIXIi= E[X(T")] = sup E[XD](E[X(r*(z*))] = S E[X(r@)]).

The discrete time multiparameter optimal stopping problems have been studied by many authors, for example, Cairoli
and Dalang [2], Krengel and Sucheston [13], Lawler and Vanderbei [14], Mandelbaum [15], Mandelbaum and Vanderbei [16],
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and Mazziotto [17]. Furthermore the general multiparameter stochastic processes and the set-indexed stochastic processes
have been studied by Edgar and Sucheston [4] and Ivanoff and Merzbach [11]. The notion of accessibility of a stopping point
plays an important role in the general theory of multiparameter optimal stopping problems, hence the notions of tactic
and optional increasing path have been introduced. In order to construct an optimal stopping point and to characterize
an optimal value in the case where the index set is finite, the method of backwards induction is used. In this paper, we
should remark the following: as stated above, we consider the multiparameter optimal stopping problems for the stochastic
process indexed by the finite index set I in the class of all accessible stopping points. And also the optimal stopping point
construction by using the method of backwards induction belongs to the class of accessible stopping points (see Cairoli and
Dalang [2, pp. 79-82]). Therefore other conditions, for example, the conditional independence property, are not assumed
excepting some conditions on the integrability.

Now in this paper we shall compare the expected reward of a player with complete foresight E[max;<; X(z)] and the
expected reward of a player using stopping points supycaxy E[X(T)]. This relation is called a prophet inequality, which has
been studied by many authors, for example, Hill [6,7], Hill and Kertz [8-10], Krengel and Sucheston [12] in the case of one-
parameter optimal stopping problems, and Krengel and Sucheston [13], Tanaka [18,19] in the case of multiparameter optimal
stopping problems. Especially, Hill and Kertz [10] contains very nice introduction to prophet theory for one-parameter
optimal stopping problems.

By the way, it is well known that we give the topology of convergence in distribution on a family of random variables.
The general theory of convergence in distribution is due to Billingsley [1]. Let X" = {X"(z), z€ I} and X = {X(2), z € I},
which are defined on (22", 7", P") and (£2, F, P) respectively, be real valued integrable stochastic processes. The corre-
sponding probability distributions to these processes are defined on (R!, B(R')), where B(R!) is the Borel o-field of R!.

A sequence of stochastic processes {X"} converges in distribution to the stochastic process X (we write X" 2 X) if, for all
bounded continuous functions on R,

Jlim £ (x")] = £[ 00

where E" and E denote the expectation with respect to P" and P respectively.

Elton [5] discussed lower semicontinuity and continuity properties of optimal stopping value of a one-parameter discrete
time stochastic process mainly in the case where the index set is finite (see Chow, Robbins and Siegmund [3] for the theory
of a one-parameter optimal stopping problem).

We shall give the extension of Elton’s results in the case of one-parameter stochastic processes to in the case of multi-
parameter stochastic processes in the first place, and show the existence of the best constant of a prophet inequality for a
multiparameter optimal stopping problem, to which lower semicontinuity property is applied to the second.

This paper is organized as follows. In Section 2 we discuss the partition of a state space corresponding to a tactic.
In Section 3 we prove the lower semicontinuity of optimal stopping value with respect to the multiparameter stochastic
processes stated in this section. In Section 4 we give two examples which show the importance of the assumptions in
the theorem of the previous section. In Section 5 we discuss a prophet inequality for a multiparameter optimal stopping
problem, to which lower semicontinuity property is applied.

2. A partition corresponding to a tactic

Let IT,.,: R'™ — RI® be a projection for z< w and we set X(z) := {X(w): w < z} for a stochastic process
{X(2), zel} and z € 1. We consider (£2, F, P), X={X(w), wel}and {J’-‘;‘, z € I} introduced in Section 1.

Throughout this paper, for all z € I, we say that a certain property discussed on R'®, Q, holds with PX@ if P(X(Z) sat-
isfies the property Q) =1, and denote the complement of a set S by S€.

Lemma 2.1. Let ({I"(k), 0 <k < |t|}, T) be a tactic with respect to {]—'X} Then there exzstfamllles ofBorel sets {B ,i=1,2,...,d},
{Bg, zed(e)} (i=1,2,....,d), ..., {BY, wed®@)} (zel-{t}), and {A%}, (A i,i_12 dh AR 1z =k A<k

[t —1), {A'ttl} satisfying thefollowmg conditions:

(1) B € B(R) and {By, i=1,2,...,d} is a partition of R with PX©,
(2) (21) Foriand z e d(e;), B, € B(R'®"), and {B,, z € d(e;)} is a mutually distinct family of subsets of R'®) and | J, 4, B, =
11;3(BE) with PX@,
(2.2) Fori#k,zed(e;) and w € d(ey), n;;,(Bg,_) N Ht_;k(B

) UL Useden) T (B) = R! with PXO,

t.e

Wy — g with PXO,

€k

(3) (3.1) Forzand w €d(z), BY ¢ B(R’(Z)) and {BY', w € d(z)} is a mutually distinct family of subsets of R"® and | J ¢, BY =
Usepn M5 -~ (B?) with pX@,

(32) Forz#w (|z] =|w|),r €d(2) and s € d(w), I, J(B) NI} (BS,) = @ with pX®,
(3.3) Fork, Uzer, 1712k Usep(n) Ht’s (B?) = R! with P’““.
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(4) AY € B(R). -
(5) (5.1) Fori, Ay € B(R'®) and A}, () BE, with X0,
(52) Fori#k, 1'1;€1 (AL) N IO ) (AL ) = 0 with pX®,
(53) ULy T, (AL) NI (AQ) = ¥ with pX®,
(6) (6.1) Forkand z (|z| =k), A% € B(R'®) and A% € |, q(,) B, with PX@).
(6.2) Fork, zand w (12| = |w| =k), [T, } (A%) N [T}, (A%,) = @ with PX©,
(6:3) Fork, UZo Urer, jrice e (AD) 0 Uzey, i 102 (A%) = and A% € (2o Mrer, it r<z ot (ADC) with 20
(7) (71) Al e B(RY).
(72) A AU Urer, e T (AD = B and AY € (I ey, e Ty ((AHE) with PXO,
(73) AN UUL Urer, e 155 (AY = R with PXO,
(8) (8.1) Fori, {I'(1) =e;} = {X(0) € B&'} P-a.e.
(8.2) Fork,z (|z|=k)and w € d(2), {"(k+1) =w, (k) =z} = {m € BY} P-ae.
(8.3) {t =0} ={X(0) € AY} P-ae.
(8:4) Forkand z (|2l =k), {t =k, I'(k) = 2} = (X(2) € A%} = (X(©) € 1} (A¥)} P-ae.

Conversely, we can construct a tactic by using the families of Borel sets satisfying the above conditions (1)—(7).

Proof. We construct partitions by using the definition of a tactic in Section 1. Since I"(0) =0 P-a.e., we have {I"(0) =0} =
{X(0) € R} P-a.e. Since fl’f(o) =7FXand I'(1) is fl’f(o)—measurable, for each i there exists a set BS' € B(R) such that

[r()=ei}={X() e By} P-ae.

Because of

[Tr=e}n|{r)=e)=0
for i #k, and

O{F(l):ei}:

we may assume that

d
B NBg*#¢ and | JBF =R
i=1
If it is necessary, we may set

d-1

k—1
BS =By N ()(B5) and BE:=[)(BY) .
i=1

i=1

Therefore we have the assertions (1) and (8.1).
Because the assertions (2) are the special cases of (3), we prove only (3). Since I'(k + 1) is F r(k) -measurable, for each z

(Izl = k), w € d(2), there exists a set BY € B(R'®) such that
[Fk+1)=w,I'(k)=z}={XE@ B} P-ae.
For w, w’ €d(2) (w #w),
{rk+D=w,rk=z}n{rk+1=w,rk=z=0,
which follows
{X—(ZSEB;”}H{WGBZ"/}:Q
And also

U {r&k+n=w.rky=z}={ri=z}= | J {rey=zrk-1=s},

wed(z) sep(2)
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which follows

U X@eBy}= | (X&) e B}

wed(z) sep(2)
and then
{X(z)e U B;V}:{x_(z3e U 17;;(35)}.
wed(2) sep(2)

Hence, if it is necessary, by redefining the sets as stated above, we have the assertions (3.1) and (8.2).
For z#w (|z] = |w)), r €d(2), s ed(w),
{Tk+D)=r,r)y=z}n{rk+1)=s Tk =w}=0,

which follows

(X e 12 ()} 0 (X € 113, (83)} = 9.
hence, we have the assertion (3.2). And also
2= | {ro=2= | Ul{rk+n=rriv=z= |J U{ro=zrk-1n=s}
zel, |z|=k zel, |z|=kred(2) zel, |z|=k sep(2)
which follows
{meR’}:{X(t e U U ng;(Bg)},
zel, |z|=k sep(2)

then we have the assertion (3.3).
Since {t =0} € fr(n)' there exists a set AO € B(R) such that {t =0} ={X(0) € AO} P-a.e., which follows (4) and (8.3).
Because the assertions (5) are the special cases of (6), we prove only (6). Since {t =k} € ]:1“ we have {t =k,
I'(k) =z} € FX, and there exists a set AX € B(R'®) such that

(O

[t=k k) =2} = {X@) e A} = [X(©) e 17} (A¥)} P-ae.
Since {t =k, I'(k) = z} C {t =k}, we have
(x@eajc|x@e U gl
red(z)
which follows (6.1). Since, for z, w (|z| = |w| =k),
{[t=k.rk)=z}n{r=k T'k)=w}=0,
we have
(X0 e 11 (A9} 0 {XE € 115 (A3)} =2,
which follows (6.2). Since {t =k} N U’g;(]){r ={} =0, we have

k—1
(e U mio]olsacd U )=

zel, |z|=k ¢=0rel, |r|=t

which follows (6.3).

Since f,’f(lm =FX and {t = |t|} € F¥ , there exists a set A€ B(R") such that

(len”
[t=1ltl}= {Wt) € A‘f‘} P-ae.

Since {t =|t|} N U'tl 1{t ={}=¢ and Um {t =€} = £, we have

[t]—1
e |x@eU U i) -o
£=0 rel, |r|=¢

and
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Itl-1
(XE eal)u {m e U ajl@ah={X®er'} P-ae.,
=0 rel, |r|=¢

which follows (7.2) and (7.3).
Conversely, when the families of Borel sets satisfying the above conditions (1)-(7) are given, we can construct a tactic
({@(k), 0<k<|t|}, n) adapted to the stochastic process X as follows:
@(0) =o,
®(1)=e; on {X(0) € By},
®(2)=e;+e; on U {m63§i+ej},
sep(ei+ej)

oky=z on | J {X()eBZ} (Iz1=k).
sep(2)

o(|t]) =t,

p=0 on {X(0) € AJ},

uw=1 on U{WGA;},

lzl=1
u=k on | J{X@ <Ak}
|z|=k

w=|t| on {XTtS € A‘t”}.

The proof is completed. O
3. Lower semicontinuity

Theorem 3.1. Let C be a family of integrable d-parameter stochastic processes whose negative parts are uniformly integrable. Then
V is lower semicontinuous with respect to the topology of convergence in distribution. That is, if X", X € C, X" =D> X, then

liminfV (X") > V (X).
n—oo

Proof. Let X" = {X"(z), ze I} and X = {X(z), z € I} € C be defined on (2", F", P" {FX', zeI}) and (2, F, P, {FX, zel})
respectively. From X € C, there exists a tactic with respect to {]-'x", zel}, {I'(k)}, T) such that V[X]=E[X(I"(1))].
By Lemma 2.1, there exist families of Borel sets {Bg", i=1,2,...,d}, {Bgi, zed(ep} (i=1,2,....d), ..., {BY, wed(2)}

(zel —{t}), and {Ag}, {A}?i, i=1,2,....d}, .‘.,{A’g, Izl =k} A <k<|t]—1), {Alttl} satisfying the conditions (1)-(8) in
Lemma 2.1.

For any ¢ > 0, there exists § = §(&) > 0 such that max,¢y fs [X(2)|dP < W whenever P(S) < §, because [ is finite.
i=1 i

By the approximation theorem, for all ze I — {t} and w € d(z), there exists C} € B(R'®) such that
P(X(Z)eBY ACY) <as and P(X(z)€dC¥)=0,
and for all k and z € I (|z] =k), there exists DX € B(R'®) such that
P(X(z) e A¥AD¥) <ps and P(X(Z) caD¥) =0,

dg 1

d— d . S = 1
where d = max{d, [, (1 + )}, « 2 GO [ () an T T

We define {EY, zeI—{t}, wcd(2)} as follows:
Egl — Cg]
E2 =& n(co),
i1
Egi — Cgi N ﬂ(cgz)C’
=1
d—1

Eg'=[(c5)",

=1
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and for k and i’]‘.ea(ek) (j=1,2,...,m),

ek+el.,§ _1 e ek+ei,{
Ee, :Hek,O(EO )ﬂcek ’
ek+ei§ -1 e ek+ei§ ek+ei;1( c
Eek = Hek,o (EO ) N Cf-’k N (Cek ) ’
ek+eik. ) . ek+eik. j-1 ek+eik c
i_ - k J ¢
Eek - Hek,o(EO ) n Cek n ﬂ(cek ) ’
=1
— e +e,
Eek+ek Ek ke C
ek ek
and for z and leOl(Z) (]:1,2 ..... n,
Z+€ z U +e,~%
sep(2)
z+e;z ez z+e;z
2 _ —1(pz B €
E, - U nz s (Es) ne, ¢z ’
sEp(2)
z+e;z Z+€ 2 1 ztez
E=Un . nE S
sep(2) =1
z+e iz U h z+e; z
sep(2) =1

and we set E; = R!.
The family {E{, i} is a partition of R, and we have

P(X(0) € By' AEG')=P(X(0) € Bg' ACy') <ad <dad <6,
P(X(0) € (B 0 (B5) ) & (521 (¢5)°)

P(X(0) € (B ACE)U((BS) A (c2)))

P(X(0) € Bg* ACg?) + P(X(0) € By' ACy!)

P(X(0) € Bg? A EQ?)

NN

<28 <das < 6,

i—1 i—1
P(X(0) € BS AEY) = P(X(o) € (Bgf n ﬂ(Bgf)C> A (cgf n ﬂ(cgf)c»

=1

i—1

(X(o)e (Bs acgyulJ((B C))
=1
i—1

< P(X(0) € By ACH) + Z P(X(0) € By' ACpY)
=1

<iad <dué <34,

P(X(0) € By' AEg') = P(X(o) © <CH(B?)C) . (dh](cf;ﬂ)c))

=1

d—1
c c
< P(X(o) e [ J((BS)" a(cgr) ))
=1

d—1
<Y P(X(0) € By ACS)
=1

<d—-1Nas <das <.
ek+e-l§

For k, the family {E,, . j} is a partition of H&}O(Eﬁ"), and satisfies the conditions (2.1) and (2.3) in Lemma 2.1(2). We

have

~
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extek exte, k

P(X(er) € By, * A Ee, P(X(ek) € ( SL(BE)NBe, N (1)(Be,

1 €l<+€il; j-1 extek c
A Heko Ek jﬂﬂ(cek Z)

=1
exte ) extek

PX(e,) . (B) A 1. (ES)) + P(X(ek) € Be, * ACo, )

ek+ey£( c e‘k-!—e‘i;Z c

-1
+ZP (X(ex) € (B, )" A (Cep
=1

ek+e k ek+e k ek+e Kk ek—o—ei,Z

j—1
< P(X(0) € B& AEX) + P(X(er) € By, ' A Co, N+ P(X(e)eBe, ‘AC, )
=1

<kad+ad+ (j—1ad <2das <6,

erte erte m 1 ek‘f’ek C m—1 ek+ek C
P(X(ex) €Be, ™ AE,, ™)= (X(ek)e< eklo(ng) ) (nejo Eg¥) ﬂ

_ B — ek+ek c ex+e., c
P(X(e) € 1, (Bg¥) & 1T, (ES)) Z (X(ex) € ( BN (N
m—1 exte exte
< P(X(0) € Bgt AEg¥) + Z (X(ex) €Be, ' ACy, )
=1

<kad+ (m—1)as <2dad < 3.

z+e;z
For z, the family {E, ’,j} is a partition of USGP(Z) 17;51 (E?), and satisfies the conditions (3.1) and (3.3) in Lemma 2.1(3).

We have
Jj— 1

ztez  ztez Z*“ + Z
P(X@DeB, ' AE, ’):P(X—(ZSG( U md(B:)nB B, )

sep(z) Z:l

z+e j-1 .z
(Y e fmﬂ@”'”"))

sep(z) =1
z+e;z z+e;z
P(X(z e |JmiB)a | m >+P(X(z)e3 Tac, 7y
sep(2) sep(z)

j-1 z+e;z z+e;z
+Y P(X@e (B, ) a(c

=1

z+e;z z+e;z
< Z P(X(Z)e (BZ)AH (E?))—{—P(X(Z)EB jACZ j)

sEp(2)

i1 z+e;z z+e ,z
+ P(X(Z) € B, LN C, )

=1

<d(2d"7"+d772 4. fd)as +ad + (d — Das <6,

n—1 _
P(meB;eiéAE?eiﬁ):P(X(z e( U mi a6 ) ) ( U 7 (E)n ﬂ <) ))

sep(2) =1 sep(2)
n-1 +e;z +e;z
<P(me U mie)a U n EZ>+Z P(R@e (B, Ha(c )
sep(z) sep(2)
n-1 +e;z z+e;z
<Y P(X@ e} (B) A} (D) + Y P(X®) X@eB, ©AC, ‘)
sep(2) =1

<d(2d"7M +d#72 4 d)as + (d — Das <.
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Furthermore we have H[le(Ured(Z) E) = H{\}/(Ured(w) E7,) forall z, w (z £ w).
Next we define {F§, k,zel, |z| =k} as follows:
FO=D,
= U Eznpinm((p9)).
red(z)

= EnDin O 1 ((FEH©

red(z) sz, 5#2

R = (I ((F)).

zZ#t

By the construction of F§, this family satisfies the conditions (4), (5.1), (5.2), (5.3), (6.1), (6.2), (7.1), (7.2) and (7.3) in
Lemma 2.1, and we have for z (|z| =k),

m nts F|5| ﬂ Hts F‘S‘ m F|5| m ﬂ Htr FZ

5<z,5%2 5Kz, 5#2 |s\gk—l,s7{z £=0]r|=¢

which follows the condition (6.3) in Lemma 2.1. We have
P(X(0) € AQ A FQ) = P(X(0) € AQ A DY) < B <38,

P(meA;iAF;i)zp(me( U B, nAL N, ) ( U E, mD;l_mn‘;})((Dg)C)»

red(e;) red(e;)
< P(X(e,-) € < U Bgi) A < U Ef,l_)) + P(X(e) € Ay AD,)
red(e;) red(e;)

+ P(X(er) € Mg ((49)) & 1155 ((D5) )
< ) P(X(e))  (By, AEL)) + P(X(ei) € Ay N DY) + P(X(0) € A A DY)
red(e;)

1
<dBS+BS+ BS < — <3,

@I TTL (1 + )
P(X—(ZSEA’Z‘AFE):P(X(Z e(UBrﬂAkﬂ M m(a* ) (UET nokn (N 1

red(z) s<z, 5%z red(z) sz, 5#2

)

<Y P(X@ e (ByAEY))+P(X@ e ALnDY + > P(X@) e ;1 (A a 1] (F)))

red(z) $<z,5#2

d
<dﬂ§+/38+<1_[(1+2i)—1) = !

8
1 @)= TIL, 1 +6)

< — 1d <4
Gd) =K T (1 + 1)

P(X(®) e Al A F') = <X(z)eﬂ17tl (al¢ )7) a1 ((FF) ))

z#t z#£t
<Y P(X@ e M7 ((AF)) & 13 ((F))
z#t

d It
! 1
< (E(]+fi)>z(3d)[| =R H( ) .

Gk [T (14t
z+e;z

4 z+e;z ; z+e;z
By our definition, E, ' =Jscp( mlEHNC, 'n ﬂﬁ;} (C, 'OF for z and iZea(z) (j=1,2,...,nm), we have

z+e;z

iz z+e;z j—1 z+e;z c
JE, fga( U m EZ)>U8C fua(ﬂ( 20 )

sep(z) =1
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Z+€z - z+ez
c |J am}(Ef)uac, U
sep(2) =1
z+e;z j—1 Z+€z
c | mleE)vac, TulJac, .
sep(2) =1
therefore
z+e;z zten j—1 e,
PG ok )< Y P(X@ <l (0F) + PG coc, )+ Y P(RE cac, ).
sep(2) =

And also we have

P(X(0) € 3Eq') < P(X(0) € 3Co") + Z P(X(0) €3C;') =0,
¢

P(X(er) € DECT) < P(X(er) € Iy, ', (9ESY)) + P(X(e) € 0Ce ™) + Y P(X(er) € aCek ™)
€

< P(X(0) € 9Eg) + P(X(er) € 9CET) + Y P(X(ep) € 9Ce ™)
12

=0.
Inductively we have P(X(z) € 9E}') =0 for w € d(z2).
By our definition F¥ =, cq¢;) E5 N D% N (MNsy sz Mg ((FFH), we have

P(X@D edF) < 3 P(X@ e E)+P(XD D) + 3 P(XG) e FLY),
red(z) s<z, sz
moreover
P(X(0) € 9F) = P(X(0) € D) =0,
P(X(er) € dFy) < Y P(X(er) € 0E,) + P(X(ei) € 0D, ) + P(X(ex) € 9FY)

red(ey)

< Y P(X(er) € 9L ) + P(X(ei) € 3D}, ) + P(X(ex) € 3DY)
red(eg)

=0.

Inductively we obtain P(X(2) € 9F?) =0.
Now, using {E}), ze I —{t}, wed(2)}, {Ff, k,zel, |z| =k} and X", we define ({&"(k), 0 <k <|t]}, u™) by

2"(0) =o,
®"(1)=e; on {X"(0) € Eg},

P"2)=ej+e; on | J [X(s) e ESFOIY,
sep(ej+ej)
"(ky=z on | J {X"(s) € EZ} (121 =k),

s€p(z)

o"(|t]) =t,

pw"=0 on {X"(0) € F2},
pu'=1 on [ J{X"@eF}}

|z|=1
u'=k on U {X"(2) € Fé‘}
|z|=k

ut=1t| on {X"(t) e F'}.
Then ({@"(k), 0 <k < |t|}, u™) is a tactic.
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Now we estimate the optimal value.

I¢] It]

VIXI=E[X(IF )] =) Y E[X@Nrao=zc=i] =) Y E[X@1 xGieay]

k=0 |z|=k k=0 |z|]=k
It]

= Z Z { / X(2)dP + / X(z)dP — / X(z)dP}

k=0lzl=k " r Ferky [X(z)eA’;—F§] (X@eFk—aY
€]

<y / X(z)dP +]_[(1 +t7)

)
k=0 |z|=k —2 i=1 M, a+t)
(X@)eFk)
By our assumption on C, there exists A > 0 such that

sup / |X”(z)|dP”<% and max / X(2)dP <
zn Hizl(] +ti) z

{(XM2)<—2} {X(@ 21}

£
[T +6)
Let f be the bounded continuous function defined by

o) _{ (It <2,
asgn(t) (t] > A).

For X = (xw, wel)eR! and C € B(R!), we set h,(¥) = f(x,)1c(X). Then h; is bounded measurable and the set of
discontinuous points of h; is 9C.

Since P(X(z) € 9F') = 0, we obtain, for C = Htle(F‘Zzl),
/hZ(Y)P(m ed}’):ff(X(z))lnt_Zl(Fy‘)(m)P(da)): f f(X@) Pdw).
R! §2 X@eF)

Then, from X" 2, X, we obtain

lim f f(X"(2) PM(dw) = / f(X(@) Pw).

n—oo
(X" (@eF) (X@eFs)
Therefore,
liminf / X"(2) P"(da)):liminf{ / f(X"(2) P"(dw) + / (X"(2) — 1) P"(dw)
n—oo n—oo
(X"@eF) (X" @eF) (X" @eFn(xn2)>1)
+ (X"(2) + 1) P"(dw) }
(X" @ eFIN(X" (2)<—2)
> lim / f(X"2) P”(da))—di}
ool Li(1+0)
(X"@)eFf)
&
= f(X@)Pdw) — ————
/ [T, +t)

{(X@eFs

= / X(2) P(dw) + / (A — X(2)) P(dw)

2|

(X@DeFHy (X@DeFn(X@)>n)
I
+ / (=»—X@) P(dw) — ————
. [T, (1 +16)
(X@DeF (X (@) <-1)
&
> / X(2) P(dw) + / (=X (@) P(dw) — —
. . [Tizi (1 + 1)
(X@eFS) (X@eF)INx@>1)

= / X(2) P(dw) —

(X@eFrY

Zid ,
[Ti (1 + 1)
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el el
VX" z E' X" (@M (u)] = D0 Y E' X @ erdo=zpn=in] = ) D E"[X @1 giear |
k=0 |z|=k k=0 |z|=k
[la} It]

d
o . &
iminf V(X" > ) liminf E* (X" @1 zagiean] 2 D D E[X@1xgeay] 2] Ja )
=0 |z/=k k=0 |z]=k i=1 [Tim (1 + 1)

> V[X] —3e.

Since ¢ is arbitrary, we have liminf;_, o V (X") > V (X). The proof is completed. O

4. Examples

In this section we shall state two examples studied in Elton [5]. In the theory of multiparameter optimal stopping
problems in the case where d = 2, it is known that if the filtration {F,, z € I} satisfies the conditional independence
property, that is, F, and F, are conditionally independent given F,., for each z, w € I, then all {{F,}-stopping points
are accessible. In general, this fact fails to hold in case of the higher dimension, that is, d > 3. However, considering the
multiparameter optimal stopping problems in the class of all accessible stopping points as stated in Section 1, we can use
the method of backwards induction and calculate the optimal values without the conditional independence property.

Example 4.1. Even when we are restricted to a family of uniformly bounded stochastic processes, V is not continuous.

Let d=2, t=(1,1) and X" = {X"(0,0), X"(1,0), X"(0, 1), X"(1, 1)} have range

0100 1000 1-|—1100 11+100
500 5,000 5+ LOO )L+ 00,

with probability }l and X ={X(0,0), X(1,0), X(0,1), X(1, 1)} have range

1 1 1 1
0,-,00),15.000),(5.1,0,0),{1,-,0,0
|(0:2:00) (z000)-(3:109). (1300))

with probability 1.
Then C = {X",X} is a family of uniformly bounded stochastic processes and X" :D> X, and we have V(X") = % and
VX)= g. This shows that V is not continuous.

Example 4.2. When we are restricted to a family of i.i.d. stochastic processes, V is not lower semicontinuous without the
assumption of the uniformly integrability.

let d =3, t=(1,1,1) and X" = {X"(0,0,0), X"(1,0,0), X*(0, 1,0), X*(0, 0, 1), X"(1,1,0), X"(1,0, 1), X"(0, 1, 1),
X"(1,1,1)} be an independent sequence defined by

: i 1
0 with probability 1 — N

X"(2) = _ o
with probability T

_nz
and X = {X(0,0,0), X(1,0,0), X(0,1,0), X(0,0,1), X(1,1,0), X(1,0, 1), X(0,1,1), X(1,1, 1)} be defined by X(z) =0 with
probability 1.

Then C = {X", X} is a family of integrable stochastic processes, which fails to satisfy the uniformly integrability, and

X" :D> X. We have V(X") = —1 and V (X) =0 and therefore V is not lower semicontinuous.
5. Application to multiparameter prophet inequalities

The prophet inequalities for one-parameter optimal stopping problems have been studied by many authors. In this sec-
tion we shall formulate a prophet inequality for a multiparameter optimal stopping problem.

Let X = {X(2), z €I} be an integrable d-parameter stochastic process. We term multiparameter prophet inequality any

inequality which compares E[max(X)] = E[maxze; X(2)] to V[X] = supreax) E[X(T)].

Theorem 5.1. Let C be a tight and closed family of integrable d-parameter stochastic processes which is uniformly integrable.
Then

sup{E*[max(X*)] — V[X*]: X* e C}
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is attained on C and for each y € {E*[max(X*)]: X* € C},
inf{V[X*]: X* e C, E*[max(X*)] = y}

is attained on C.

Proof. By Prohorov’s theorem and our assumption on closedness, C is compact. The map X* — E*[max(X*)] is continuous,
because of our assumption of the uniformly integrability and the mapping theorem on the convergence of weak convergence.
By Theorem 3.1 and our assumption of theorem, —V is upper semicontinuous and hence E*[max(X*)] — V[X*] is upper
semicontinuous. This completes the proof. O
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