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1. Introduction

Locally defined (or local) operators acting between the spaces of measurable (or integrable) functions were considered by
many authors. For more references on this theory see J. Appell and P.P. Zabrejko [1]. To define the notion of a local operator,
given an interval I ⊂ R denote by G = G(I) and H = H(I) two classes of functions ϕ : I → R. A mapping K : G → H will
be called a locally defined operator, briefly, a local operator, or more precisely a (G, H)-local operator if for every open interval
J ⊂ R and for all functions ϕ,ψ ∈ G , the implication

ϕ| J∩I = ψ | J∩I ⇒ K (ϕ)| J∩I = K (ψ)| J∩I

holds true (cf. [2–6]). In the present paper we are mainly interested in such operators in the case where G = H is the class
of nondecreasing and continuous functions denoted by CM+(I).

Local operators mapping the space Cm(I) of m-times continuously differentiable functions in an interval I ⊂ R into
C0(I) and C1(I) (i.e., (Cm, C0)-local operators and (Cm, C1)-local operators) were considered in [2]. In our recent papers
[3,4] we extend the main results of [2] to the space of Whitney differentiable functions. As a corollary we obtained that
K : C0(I) → C0(I) is local iff there exists a function h : I × R → R such that, for all ϕ ∈ C0(I),

K (ϕ)(x) = h
(
x,ϕ(x)

)
(x ∈ I),

and h is continuous on I ×R, that is K is a Nemytskii operator of a generator h (cf. also [2,3]). A similar result holds true for
local operators K : Cm(I) → Cm(I), m � 1 (cf. [4,6]). However, in the case m = 1, the function h need not be even continuous
on I × R. This shows that the form of a (G, H)-locally defined operator strongly depends on the nature of the function
spaces G and H which are its domains and ranges, respectively.

The main result of this paper says that a locally defined operator maps CM+(I) into itself if, and only if, it is a Nemytskii
(superposition) operator generated by a function that is continuous in both variables and nondecreasing with respect to
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each variable (Section 3). Applying this result, in Section 4, we obtain the characterization of (CM+,CM−)-, (CM−,CM+)-,
(CM−,CM−)-locally defined operators.

2. Auxiliary results

In the sequel, N, N0, R denote, respectively, the set of positive integers, nonnegative integers and the set of real num-
bers.

Let I ⊂ R be an interval. In this paper a function f : I → R is called nondecreasing if f (x1) � f (x2) for all x1, x2 ∈ I ,
x1 < x2 and, increasing if f is nondecreasing and one-to-one. A function f : I → R is referred to as nonincreasing (decreasing)
if − f is nondecreasing (respectively, increasing).

From now on, C0(I) stands for a family of real continuous functions defined on I , and M+(I), M−(I) denote, respectively,
a family of nondecreasing and nonincreasing functions f : I → R. We write CM+(I) for C0(I) ∩ M+(I) and CM−(I) for
C0(I) ∩ M−(I).

We start with the following

Lemma 1. Let I ⊂ R be an interval and x0 ∈ I be fixed. Suppose that an operator K : CM+(I) → CM+(I) is locally defined. Then for all
ϕ1,ϕ2 ∈ CM+(I) the following implication holds true:

ϕ1(x0) < ϕ2(x0) ⇒ K (ϕ1)(x0) � K (ϕ2)(x0). (1)

Proof. Put a = inf I and b = sup I . Assume first that x0 ∈ int I and suppose, contrary to our claim, that there exist two
functions ϕ1,ϕ2 ∈ CM+(I) such that ϕ1(x0) < ϕ2(x0) and K (ϕ1)(x0) > K (ϕ2)(x0). By the continuity of K (ϕ1) and K (ϕ2)

there exists a real r, 0 < r � min{ x0−a
4 ,

b−x0
4 } such that for all x ∈ I , |x − x0| < 2r,

∣∣K (ϕ1)(x) − K (ϕ1)(x0)
∣∣ <

K (ϕ1)(x0) − K (ϕ2)(x0)

2
(2)

and

∣∣K (ϕ2)(x) − K (ϕ2)(x0)
∣∣ <

K (ϕ1)(x0) − K (ϕ2)(x0)

2
. (3)

Define γ : I → R by the formula

γ (x) =

⎧⎪⎨
⎪⎩

ϕ1(x) for x ∈ (−∞, x0 − r) ∩ I,
ϕ2(x0+r)−ϕ1(x0−r)

2r (x − x0 + r) + ϕ1(x0 − r) for x ∈ [x0 − r, x0 + r),

ϕ2(x) for x ∈ [x0 + r,∞) ∩ I.

It is obvious that γ ∈ CM+(I).
Since

γ |(x0−2r,x0−r) = ϕ1|(x0−2r,x0−r), γ |(x0+r,x0+2r) = ϕ2|(x0+r,x0+2r), (4)

according to the definition of a local operator, we have

K (γ )|(x0−2r,x0−r) = K (ϕ1)|(x0−2r,x0−r), K (γ )|(x0+r,x0+2r) = K (ϕ2)|(x0+r,x0+2r). (5)

Choose an arbitrary point x1 ∈ (x0 − 2r, x0 − r) and x2 ∈ (x0 + r, x0 + 2r). Of course x1 < x2 and, by (5),

K (γ )(x1) = K (ϕ1)(x1), K (γ )(x2) = K (ϕ2)(x2).

Hence, taking into account (2) and (3), we obtain

∣∣K (γ )(x1) − K (ϕ1)(x0)
∣∣ <

K (ϕ1)(x0) − K (ϕ2)(x0)

2

and

∣∣K (γ )(x2) − K (ϕ2)(x0)
∣∣ <

K (ϕ1)(x0) − K (ϕ2)(x0)

2
.

Therefore

K (ϕ1)(x0) − K (γ )(x1) <
K (ϕ1)(x0) − K (ϕ2)(x0)
2
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and

K (γ )(x2) − K (ϕ2)(x0) <
K (ϕ1)(x0) − K (ϕ2)(x0)

2
.

Adding these two inequalities we get

K (ϕ1)(x0) − K (γ )(x1) + K (γ )(x2) − K (ϕ2)(x0) < K (ϕ1)(x0) − K (ϕ2)(x0),

whence

K (γ )(x2) < K (γ )(x1),

which contradicts the nondecreasing monotonicity of K (γ ). This proves that our lemma holds true for every x0 ∈ int I .
Assume now that a, the left endpoint of I , belongs to I and put x0 := a. Take an arbitrary pair of functions ϕ1,ϕ2 ∈

CM+(I) and assume that ϕ1(x0) < ϕ2(x0). By the continuity of ϕ1,ϕ2 for an arbitrary sequence xk ∈ int I (k ∈ N), convergent
to x0, there exists k0 ∈ N such that

ϕ1(xk) < ϕ2(xk), k � k0, k ∈ N.

According to what has been proved,

K (ϕ1)(xk) � K (ϕ2)(xk), k � k0, k ∈ N,

whence, by the continuity of K (ϕ1) and K (ϕ2) at x0, letting k → ∞, we get

K (ϕ1)(x0) � K (ϕ2)(x0).

Similarly, we can prove that (1) is fulfilled when x0 is the right endpoint of I . This completes the proof. �
Lemma 2. Let I ⊂ R be an interval and let (x0, y0) ∈ I × R, x0 < sup I be fixed. Then for every sequence (xk, yk) ∈ I × R satisfying
the condition

xk+1 < xk; yk+1 � yk, k ∈ N; lim
k→∞

(xk, yk) = (x0, y0), (6)

there exists a function γ ∈ CM+(I) such that, for all k ∈ N0 ,

γ (xk) = yk.

Proof. Take an arbitrary sequence (xk, yk) ∈ I × R, k ∈ N, satisfying (6) and define a sequence of functions γk : I → R, k ∈ N,
in the following way:

γk(x) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y0 for x ∈ (−∞, x0] ∩ I,
yk−y0
xk−x0

(x − x0) + y0 for x ∈ (x0, xk],
yi−yi−1
xi−xi−1

(x − xi−1) + yi−1 for x ∈ (xi, xi−1], i ∈ {2, . . . ,k},
y1 for x ∈ (x1,∞) ∩ I.

Let us observe that

γk(x0) = y0, γk(xk) = yk = γk+l(xk), k, l ∈ N, (7)

and for every x ∈ I\{xk: k ∈ N0} there exists k0 ∈ N such that

γk(x) = γk0(x), k � k0, k ∈ N. (8)

Put

γ (x) = lim
k→∞

γk(x), x ∈ I.

By (7) and (8), the function γ is well defined. Moreover, γ is nondecreasing and γ (xk) = yk , for all k ∈ N0. Since the
sequence (γk)k∈N tends uniformly to γ , the function γ is continuous. This completes the proof. �
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Similarly, we can get the following

Remark 1. If (x0, y0) ∈ I × R where x0 > inf I and (xk, yk) ∈ I × R is a sequence satisfying the condition

xk < xk+1; yk � yk+1, k ∈ N; lim
k→∞

(xk, yk) = (x0, y0), (9)

then there exists a function γ ∈ CM+(I) such that, for all k ∈ N0, γ (xk) = yk .

Lemma 3. Let I ⊂ R and x0 ∈ I be fixed. Suppose that K : CM+(I) → CM+(I) is locally defined. Then:

1◦ for all ψ1,ψ2 ∈ CM+(I) the following implication holds

ψ1(x0) = ψ2(x0) ⇒ K (ψ1)(x0) = K (ψ2)(x0); (10)

2◦ if ϕk ∈ CM+(I),

ϕk+1 � ϕk, k ∈ N, (11)

and the sequence (ϕk)k∈N is uniformly convergent, then

lim
k→∞

K (ϕk)(x0) = K (ϕ)(x0), (12)

where ϕ := limk→∞ ϕk.

Proof. We begin by showing that the lemma holds true in the case where x0 ∈ int I . To prove 1◦ take ψ1,ψ2 ∈ CM+(I) such
that ψ1(x0) = ψ2(x0). Then γ : I → R defined by

γ (x) :=
{

ψ1(x) for x � x0, x ∈ I,

ψ2(x) for x > x0, x ∈ I,

belongs to CM+(I). Since

γ |(−∞,x0)∩I = ψ1|(−∞,x0)∩I , γ |(x0,+∞)∩I = ψ2|(x0,+∞)∩I ,

according to the definition of a local operator, we have

K (γ )|(−∞,x0)∩I = K (ψ1)|(−∞,x0)∩I , K (γ )|(x0,+∞)∩I = K (ψ2)|(x0,+∞)∩I .

Hence, by the continuity of K (γ ), K (ψ1) and K (ψ2), we get

K (ψ1)(x0) = K (γ )(x0) = K (ψ2)(x0),

which implies (10).
To show 2◦ assume that a sequence ϕk ∈ CM+(I), k ∈ N, satisfying (11) is uniformly convergent to ϕ . Then obviously

ϕ ∈ CM+(I).
Fix an ε > 0. Since all the functions K (ϕk), k ∈ N, are continuous, there exists a δk > 0 such that the following implication

holds

x ∈ I, |x − x0| < δk ⇒ ∣∣K (ϕk)(x) − K (ϕk)(x0)
∣∣ < ε, k ∈ N. (13)

Let us choose a sequence (xk)k∈N such that

xk − x0 < δk, k ∈ N; lim
k→∞

xk = x0

and

xk > x0, xk+1 < xk, k ∈ N. (14)

In view of (11) and (14), we have

ϕk+1(xk+1) � ϕk(xk+1) � ϕk(xk), k ∈ N,

which means that the sequences (xk)k∈N and (ϕk(xk))k∈N satisfy the conditions of Lemma 2 with yk = ϕk(xk) for k ∈ N, and
y0 = ϕ(x0). Thus there exists a function γ ∈ CM+(I) such that

γ (xk) = ϕk(xk), k ∈ N, γ (x0) = ϕ(x0).
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Hence, making use of (13), we get
∣∣K (ϕk)(x0) − K (ϕ)(x0)

∣∣ �
∣∣K (ϕk)(xk) − K (ϕk)(x0)

∣∣ + ∣∣K (ϕk)(xk) − K (ϕ)(x0)
∣∣

� ε + ∣∣K (γ )(xk) − K (γ )(x0)
∣∣.

Since K (γ ) is continuous, this inequality implies that

lim
k→∞

K (ϕk)(x0) = K (ϕ)(x0),

that is 2◦ holds true. This completes the proof in the case when x0 ∈ int I .
Now assume that x0 is the left endpoint of I .
To show (10) take an arbitrary pair of functions ψ1,ψ2 ∈ CM+(I) such that ψ1(x0) = ψ2(x0). If there exists a sequence

(xk)k∈N such that

ψ1(xk) = ψ2(xk), xk > x0, k ∈ N; lim
k→∞

xk = x0, (15)

then, according to the first part of the proof, K (ψ1)(xk) = K (ψ2)(xk) for all k ∈ N, and, by the continuity of ψ1,ψ2 at x0,
letting k tend to the infinity, we obtain the desired conclusion.

If (15) is not fulfilled then there exists a δ0 > 0 such that ψ1(x) 	= ψ2(x) for all x ∈ (x0, x0 + δ0). There is no loss of
generality in supposing that

ψ1(x) < ψ2(x), x ∈ (x0, x0 + δ0). (16)

Assume first that ψ1 is not constant on any right neighbourhood of x0 for some δ ∈ (0, δ0). In this case we construct the
sequence (xk)k∈N in the following way. Choose a point x1 ∈ (x0, x0 + δ). Since ψ1(x1) < ψ2(x1), the equality ψ1(x0) = ψ2(x0),
the monotonicity and the Darboux property of ψ2, imply that there is x2 ∈ (x0, x1) such that ψ2(x2) = ψ1(x1). Similarly for
x3 ∈ (x0, x2), chosen arbitrarily close to x0, we can find x4 such that ψ2(x4) = ψ1(x3). Repeating this procedure, by induction,
we can construct a sequence (xk)k∈N such that

xk ∈ I, xk+1 < xk, ψ1(x2k−1) = ψ2(x2k), ψ1(x2k+1) < ψ2(x2k), k ∈ N.

Put

y0 := ψ1(x0) = ψ2(x0)

and

yk :=
{

ψ1(xk) for odd k,

ψ2(xk) for even k.

Since (xk)k∈N and (yk)k∈N fulfil the assumption of Lemma 2, there exists a function γ ∈ CM+(I) such that

γ (x2k−1) = ψ1(x2k−1), γ (x2k) = ψ2(x2k), k ∈ N.

Now, according to what has already been proved, we get

K (γ )(x2k−1) = K (ψ1)(x2k−1), K (γ )(x2k) = K (ψ2)(x2k), k ∈ N.

Hence, by the continuity of K (γ ), K (ψ1) and K (ψ2) at x0, letting k → ∞, we get (10).
If ψ1 is constant on (x0, x0 + δ) and (16) holds for some δ ∈ (0, δ0) then, obviously, there exists a sequence of increasing

and continuous functions ϕk : [x0, x0 + δ] → R, ψ1 < ϕk < ψ2, ϕk+1 � ϕk , k ∈ N, uniformly convergent to ψ1 such that

ϕk(x0) = ψ1(x0) = ψ2(x0).

Hence, by the previous case, we obtain

K (ϕk)(x0) = K (ψ2)(x0), k ∈ N. (17)

Taking into account the monotonicity of K (ϕk), k ∈ N, on (x0, x0 + δ), we get

K (ϕk)(x0) � K (ϕk)(x), k ∈ N, x ∈ (x0, x0 + δ),

and, consequently, by (17),

K (ψ2)(x0) � K (ϕk)(x). (18)

Since limk→∞ K (ϕk)(x) = K (ψ1)(x) for every x ∈ int I , we conclude that
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K (ψ2)(x0) � K (ψ1)(x), x ∈ (x0, x0 + δ),

whence, by the continuity of K (ψ1) at x0, we get

K (ψ2)(x0) � K (ψ1)(x0).

On the other hand, take an arbitrary x ∈ (x0, x0 + δ). Applying Lemma 1 for x, from (16) we get

K (ψ1)(x) � K (ψ2)(x), x ∈ (x0, x0 + δ).

Letting x → x0, by the continuity of K (ψ1) and K (ψ2) at x0, we get K (ψ1)(x0) � K (ψ2)(x0), which together with (18)
completes the proof of 1◦ .

When x0 is the right endpoint of I , the argument is similar.
Note, that having already proved (10) for the endpoints of I , in the same way as in the previous part of the proof of 2◦

we can also prove (12) for the endpoints. The proof is completed. �
Remark 2. Lemma 3 remains true if we replace (11) by

ϕk � ϕk+1, k ∈ N.

3. Main results

Theorem 1. Let I ⊂ R be an interval. A local operator K maps CM+(I) into itself if, and only if, there exists a unique function
h : I × R → R continuous in both variables and nondecreasing with respect to each variable such that, for all ϕ ∈ CM+(I),

K (ϕ)(x) = h
(
x,ϕ(x)

)
, x ∈ I. (19)

Proof. Assume first that a local operator K maps CM+(I) into itself. We begin with the construction of h. For an arbitrary
y0 ∈ R let us define a function P y0 : I → R by

P y0(x) := y0, x ∈ I. (20)

Of course P y0 , as a constant function, belongs to CM+(I). To construct the function h : I × R → R, fix arbitrarily x0 ∈ I ,
y0 ∈ R and put

h(x0, y0) := K (P y0)(x0). (21)

Since for all functions ϕ ,

ϕ(x0) = Pϕ(x0)(x0), (22)

by (10) and (21), we have

K (ϕ)(x0) = K (Pϕ(x0))(x0) = h
(
x0,ϕ(x0)

)
. (23)

To prove the uniqueness of h assume that g : I × R → R is such that

K (ϕ)(x) = g
(
x,ϕ(x)

)
for all ϕ ∈ CM+(I) and x ∈ I . To show that g = h let us fix arbitrarily x ∈ I , y ∈ R and take ϕ ∈ CM+(I) being a constant
function y.

Now, by (23), we have

g(x, y) = g
(
x,ϕ(x)

) = K (ϕ)(x) = h
(
x,ϕ(x)

) = h(x, y),

which proves the uniqueness of h and (19).
To prove that h is nondecreasing with respect to the first variable, fix y0 ∈ R, take arbitrary x1, x2 ∈ I , x1 < x2, and the

function P y0 : I → R defined by (20). According to (21) we have

h(x1, y0) − h(x2, y0) = K (P y0)(x1) − K (P y0)(x2)

and, by the monotonicity of K (P y0), we immediately get

h(x1, y0) − h(x2, y0) � 0.
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To show that h is nondecreasing with respect to the second variable, fix x0 ∈ I , take y1, y2 ∈ R, y1 < y2 and define
P y1 : I → R and P y2 : I → R by

P y1(x) := y1, P y2(x) := y2, x ∈ I.

Hence and from (21) we get

h(x0, y1) − h(x0, y2) = K (P y1)(x0) − K (P y2)(x0)

and, consequently, by Lemma 1,

K (P y1)(x0) − K (P y2)(x0) � 0,

which completes the proof that h is nondecreasing with respect to both variables on I × R.
The proof of the continuity of h is divided into the following five steps:

1◦ for every (x0, y0) ∈ I × R, x0 	= sup I and for every two sequences (xn)n∈N and (yn)n∈N convergent to x0 and y0, respec-
tively, such that

xn ∈ I, xn+1 < xn, xn > x0, n ∈ N, (24)

yn ∈ R, yn+1 � yn, yn � y0, n ∈ N, (25)

we have

lim
n→∞ h(xn, yn) = h(x0, y0); (26)

2◦ for every (x0, y0) ∈ I × R, x0 	= inf I and for every increasing sequence (xn)n∈N and nondecreasing sequence (yn)n∈N

convergent to x0 and y0, respectively, (26) is fulfilled;

(in particular, 1◦ and 2◦ show that h is continuous with respect to the first variable);

3◦ h is continuous with respect to the second variable;
4◦ for every (x0, y0) ∈ I × R and for every two sequences (xn)n∈N and (yn)n∈N convergent to x0 and y0, respectively, such

that

xn ∈ I, xn < xn+1, xn < x0, n ∈ N, (27)

yn ∈ R, yn+1 < yn, y0 < yn, n ∈ N, (28)

the equality (26) is fulfilled;
5◦ for every (x0, y0) ∈ I × R, x0 	= sup I and for every (xn)n∈N and (yn)n∈N convergent to x0 and y0, respectively, such that

xn ∈ I, xn+1 < xn, xn > x0, n ∈ N, (29)

yn ∈ R, yn < yn+1, yn < y0, n ∈ N, (30)

the equality (26) is fulfilled.

To prove 1◦ fix arbitrarily x0 ∈ I , x0 	= sup I , y0 ∈ R and take two sequences (xn)n∈N and (yn)n∈N which satisfy (24)
and (25), convergent to x0 and y0, respectively. By Lemma 2 there exists a function γ ∈ CM+(I) such that γ (xn) = yn for all
n ∈ N0. Thus, by (23), we have

h(xn, yn) − h(x0, y0) = h
(
xn, γ (xn)

) − h
(
x0, γ (x0)

) = K (γ )(xn) − K (γ )(x0)

and, applying the continuity of K (γ ), we get (26).
By Remark 2, step 2◦ may be proved in a similar way as 1◦ .
To prove 3◦ fix arbitrarily x0 ∈ I , y0 ∈ R. First we show that

lim
y→y+

0

h(x0, y) = h(x0, y0). (31)

To this end take an arbitrary real sequence (yn)n∈N such that

lim
n→∞ yn = y0, yn > y0, n ∈ N,

and choose a subsequence (ynk )k∈N such that

lim ynk = y0, ynk > y0, ynk+1 � ynk , k ∈ N. (32)

k→∞
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Define the constant functions P ynk
: I → R by the formula

P ynk (x) = ynk , x ∈ I.

Since (P ynk
)k∈N converges uniformly to P y0 , by (21), (32) and Lemma 3, we obtain

lim
k→∞

h(x0, ynk ) = lim
k→∞

K (P ynk
)(x0) = K (P y0)(x0) = h(x0, y0),

which proves (31).
Similarly, by Remark 2, we can show

lim
y→y−

0

h(x0, y) = h(x0, y0),

which completes the proof of 3◦ .
To prove 4◦ suppose, contrary to our claim, that there exists a real ε > 0, (x0, y0) ∈ I × R and two sequences (xn)n∈N

and (yn)n∈N convergent to x0, y0, respectively, which satisfy (27) and (28) such that |h(xn, yn) − h(x0, y0)| � ε.
Suppose first that

h(xn, yn) − h(x0, y0) � ε. (33)

By 3◦ there exists n0 ∈ N such that for all n � n0, n ∈ N,

h(x0, yn) − h(x0, y0) < ε.

Hence and by (33) we get

h(xn, yn) � h(x0, y0) + ε > h(x0, yn), n � n0, n ∈ N,

which contradicts the fact that h is nondecreasing with respect to the first variable.
Suppose now that

h(xn, yn) − h(x0, y0) � −ε, n � n0, n ∈ N. (34)

Taking into account the continuity of h with respect to the first variable, there exists n0 ∈ N such that for all n � n0, n ∈ N,

h(x0, y0) − h(xn, y0) < ε.

Hence and by (34) we get

h(xn, yn) � h(x0, y0) − ε < h(xn, y0), n � n0, n ∈ N,

which contradicts the fact that h is nondecreasing with respect to the second variable.
By a similar reasoning we can show 5◦ .
To prove the converse implication suppose that there exists a continuous and nondecreasing function h : I × R → R such

that (19) is fulfilled and take an arbitrary ϕ ∈ CM+(I). We shall show that K (ϕ) ∈ CM+(I).
To this end fix arbitrarily x1, x2 ∈ I , x1 < x2. By (19) and the monotonicity of ϕ we have

K (ϕ)(x1) = h
(
x1,ϕ(x1)

)
� h

(
x1,ϕ(x2)

)
� h

(
x2,ϕ(x2)

) = K (ϕ)(x2),

which shows that K (ϕ) ∈ M+(I).
To show the continuity of K (ϕ), fix (x0, y0) ∈ I × R and assume that xn ∈ I , n ∈ N, is a sequence converging to x0. Thus,

by the continuity of ϕ and h,

lim
n→∞ K (ϕ)(xn) = lim

n→∞ h
(
xn,ϕ(xn)

) = h
(
x0,ϕ(x0)

) = K (ϕ)(x0),

which proves that K (ϕ) ∈ C0(I).
As, obviously, K is locally defined, the proof is completed. �

Definition. Let X ⊂ R and a function h : X × R → R be fixed. An operator K : R
X → R

X given by

K (ϕ)(x) = h
(
x,ϕ(x)

)
, ϕ ∈ R

X (x ∈ X),

is said to be the Nemytskii (or superposition) operator. The function h is referred to as the generator of the operator K .

Corollary 1. A local operator K maps CM+(I) into itself if, and only if, it is a Nemytskii (superposition) operator of the continuous in
both variables and nondecreasing with respect to each variable generator.
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Remark 3. The assumption that the domain and the range of the considered operator is contained in C0(I) is essential. To
show it consider the following

Example. Let K : M+(I) → M+(I) is defined by the formula

K (ϕ)(x) =
{

ϕ(x−) for x 	= inf I, x ∈ I,

ϕ(x) for x = inf I.

It is clear that K is locally defined, but it is not of the form K (ϕ)(x) = h(x,ϕ(x)) for any h : I × R → R.

4. The results for three remaining cases

A simple application of Theorem 1 allows to characterize the local operators in the three remaining cases. We begin with
the case when K : CM−(I) → CM−(I).

Theorem 2. Let I ∈ R be an interval. A local operator K maps CM−(I) into itself if, and only if, there exists a unique function
h : I × R → R continuous in both variables, nonincreasing with respect to the first variable and nondecreasing with respect to the
second variable such that, for all ϕ ∈ CM−(I),

K (ϕ)(x) = h
(
x,ϕ(x)

)
, x ∈ I.

Proof. Let K : CM−(I) → CM−(I) be a local operator. Define K1 : CM+(I) → CM+(I) by

K1(ϕ) := −K (−ϕ), ϕ ∈ CM+(I) (x ∈ I). (35)

As K1 is local, by Theorem 1, there exists a unique function h1 : I × R → R which is continuous in both variables, nonde-
creasing with respect to each variable and, for all ϕ ∈ CM+(I),

K1(ϕ)(x) = h1
(
x,ϕ(x)

)
, x ∈ I.

Put

h(x, y) := −h1(x,−y).

Hence, taking into account (35) and replacing ϕ by −ϕ , we obtain

K (ϕ)(x) = −K1(−ϕ)(x) = −h1
(
x,−ϕ(x)

) = h
(
x,ϕ(x)

)
(x ∈ I),

for all ϕ ∈ CM−(I). As the required properties of the function h are evident, this completes the proof. �
Corollary 2. A local operator K maps CM−(I) into itself if, and only if, it is a Nemytskii operator of the continuous in both variables,
nonincreasing with respect to the first variable and nondecreasing with respect to the second variable generator.

In a similar way we obtain the following

Theorem 3. An operator K is (CM+,CM−)-local if, and only if, there exists a unique function h : I × R → R continuous in both
variables and nonincreasing with respect to each variable such that, for all ϕ ∈ CM+(I),

K (ϕ)(x) = h
(
x,ϕ(x)

)
, x ∈ I.

Theorem 4. An operator K is (CM−,CM+)-local if, and only if, there exists a unique function h : I × R → R continuous in both
variables, nondecreasing with respect to the first variable and nonincreasing with respect to the second variable such that, for all
ϕ ∈ CM−(I),

K (ϕ)(x) = h
(
x,ϕ(x)

)
, x ∈ I.

Corollary 3. An operator K is (CM+,CM−)-local or (CM−,CM+)-local if, and only if, it is a Nemytskii operator of the continuous and
suitably monotone in both variables generator.

We end with the following
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Remark 4. Let I ⊂ R be an interval.

1◦ If an operator K is (CM+,CM−)-local and (CM−,CM−)-local then, obviously, K is constant, that is there is a function
b ∈ CM−(I) such that

K (ϕ) = b, ϕ ∈ CM+(I) ∪ CM−(I).

2◦ If an operator K is (CM+,CM+)-local and (CM−,CM−)-local then

K (ϕ) = h ◦ ϕ, ϕ ∈ CM+(I) ∪ CM−(I),

for some nondecreasing continuous function h : R → R.
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