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In this paper we construct a dynamical process (in general, multivalued) generated by the
set of solutions of an optimal control problem for the three-dimensional Navier–Stokes
system. We prove the existence of a pullback attractor for such multivalued process. Also,
we establish the existence of a uniform global attractor containing the pullback attractor.
Moreover, under the unproved assumption that strong globally defined solutions of the
three-dimensional Navier–Stokes system exist, which guaranties the existence of a global
attractor for the corresponding multivalued semiflow, we show that the pullback attractor
of the process coincides with the global attractor of the semiflow.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

The study of the asymptotic behavior of the weak solutions of the three-dimensional (3D for short) Navier–Stokes system
is a challenging problem which is still far to be solved in a satisfactory way. In particular, the existence of a global attractor
in the strong topology is an open problem for which only some partial or conditional results are given (see [3,4,6,15,
17–20,31]). Concerning the existence of trajectory attractors some results are proved in [13,23,29]. The main difficulty in
this problem (but not the only one!) is to prove the asymptotic compactness of solutions (see [2] for a review on these
questions).

With respect to the attractor in the weak topology some results are proved in [15,20]. Also, the Kneser property (that is,
the compactness and connectedness of the attainability set for the weak solutions) in both the weak and strong topologies
is studied in [21,22].

In this paper we consider an optimal control problem associated with the 3D Navier–Stokes system which, in our point
of view, could give some light on all these questions. Namely, let us consider the problem⎧⎪⎪⎨

⎪⎪⎩
∂ y

∂t
− ν�y + (u · ∇)y = −∇p + f ,

div y = 0,

y|∂Ω = 0, y(τ ) = uτ ,

(1)
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where Ω ⊂ R
3 is a bounded open subset with smooth boundary, ν > 0 and u is a control function belonging to a suitable

set Uτ (see Section 3). Then we will solve the following optimality problem: to find a pair {u, y} such that y is a solution
of (1) associated to u and an appropriate functional Jτ (u, y) attaches its infimum at (u, y).

We note first that this problem is non-autonomous. Also, we cannot guarantee uniqueness of the problem for a given
initial data yτ , although for a given u the solution to (1) is unique. The reason is that more than one pair {u, y} can exist as
a solution of the optimality problem. Hence, in order to study the asymptotic behavior of solutions of such problem we use
the theory of pullback attractors for multivalued processes developed in [9] (see also [1,7,8]). This theory generalizes the
theory of pullback attractors for single-valued processes and cocycles, which has been studied intensively in the last years
(see e.g. [5,10,11,16,12,24,25,28,32], among many others).

We prove first that the optimal problem has at least one solution for every initial data in the phase space H , and then
we construct a multivalued process associated to these solutions. The main theorem of the paper states the existence of a
strictly invariant pullback attractor for this process. Moreover, we prove the existence of a uniform global attractor for the
process in the sense of [27] (see also [14] for the single-valued case), which contains the whole pullback attractor.

Finally, in the last section, we study the relationship of the pullback attractor of the optimal control problem with the
global attractor of the 3D Navier–Stokes systems under the unproved condition that globally defined strong solutions exist
for any initial data in V . In particular, we prove that in this case the global attractor of the Navier–Stokes systems coincides
with the pullback attractor. This result shows that there exists a close relation between the dynamics of the solutions of
the optimal control problem and the dynamics of the solutions of the 3D Navier–Stokes system. Therefore, we hope that
the optimal control problem will help us in the future to gain an insight into the problem on the existence of the global
attractor for the 3D Navier–Stokes system.

2. Pullback attractors for multivalued processes

In this section we will recall and extend some well-known general results on pullback attractors for multivalued pro-
cesses [9].

Let X be a complete metric space with the metric ρ , P (X) be the set of all non-empty subsets of X , and β(X) be the
set of all non-empty, bounded subsets of X . Put Rd = {(t, s) ∈ R

2: t � s}.

Definition 1. U : Rd × X �→ P (X) is called a multivalued process (m-process for short) if:

1. U (τ , τ , x) = x, ∀τ ∈ R, ∀x ∈ X ;
2. U (t, τ , x) ⊆ U (t, s, U (s, τ , x)), ∀t � s � τ , ∀x ∈ X .

U is called strict if in 2. a strict equality holds.

For t ∈ R, B ∈ β(X) we define the omega-limit set

ω(t, B) =
⋂
s�t

⋃
τ�s

U (t, τ , B).

Let dist(A, B) = supy∈A infx∈B ρ(y, x). We shall denote by O ε(B) = {y ∈ X: dist(y, B) < ε} an ε-neighborhood of B.

Definition 2. The family of compact sets {Θ(t)}t∈R is called a pullback attractor if:

1. For any t ∈ R the set Θ(t) attracts every B ∈ β(X) in the pullback sense, that is,

dist
(
U (t, τ , B),Θ(t)

) → 0, as τ → −∞; (2)

2. Θ(t) ⊆ U (t, s,Θ(s)), ∀t � s (negatively semi-invariance);
3. Θ(t) is the minimal closed pullback attracting set for all t ∈ R.

The pullback attractor is strictly invariant if Θ(t) = U (t, s,Θ(s)), ∀t � s.

We shall extend now a general result on pullback attractors proved in [9].

Theorem 1. Let us suppose that there exists a family of compact sets {K (t)}t∈R satisfying (2) and that the map x �→ U (t, τ , x) has
closed graph for all t � τ . Then there exists a pullback attractor {Θ(t)}t∈R , Θ(t) ⊂ K (t), ∀t ∈ R, defined by

Θ(t) =
⋃

B∈β(X)

ω(t, B).

Moreover, if there exists a closed set B0 ∈ β(X) such that for all B ∈ β(X),
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sup
τ∈R

dist
(
U (s + τ , τ , B), B0

) → 0, as s → +∞,

then Θ(t) = ω(t, B0) ⊂ B0.

In addition, if U is strict, then Θ(t) = U (t, s,Θ(s)), for any t � s, i.e. Θ(t) is invariant.

Proof. The existence of the pullback attractor is proved in [9, Theorem 18]. Further, we can write

ω(t, B) =
⋂
T �0

⋃
s�T

U (t, t − s, B).

In view of [9, Theorem 6] the set ω(t, B) is non-empty, compact and attracts B in the pullback sense. Also, ω(t, B) ⊂
U (t, s,ω(s, B)), for all t � s [9, p. 160].

So, putting τs = t − s, from⋃
s�T

U (t, t − s, B) =
⋃
s�T

U (τs + s, τs, B) ⊂ O ε(B0), ∀T � T (B, ε),

for an arbitrary small ε > 0, it follows that ω(t, B) ⊂ B0 and, hence, Θ(t) ⊂ B0.
On the other hand,

ω(t, B) ⊂ U
(
t, s,ω(s, B)

) ⊂ U (t, s, B0) → ω(t, B0), as s → −∞.

So, ω(t, B) ⊂ ω(t, B0) and it follows that Θ(t) = ω(t, B0).
If U is strict, then from

ω(t, B0) ⊂ U
(
t, s,ω(s, B0)

)
, ∀t � s,

we obtain

U
(

p, t,ω(t, B0)
) ⊂ U

(
p, t, U

(
t, s,ω(s, B0)

)) ⊂ U (p, s, B0).

Since U (p, s, B0) → ω(p, B0), as s → −∞, we obtain

U
(

p, t,ω(t, B0)
) ⊂ ω(p, B0), ∀p � t,

and then

Θ(p) = U
(

p, t,Θ(t)
)
, ∀p � t. �

3. Setting of the problem and main results

Let Ω ⊂ R
3 be a bounded open subset with smooth boundary. We shall define the usual function spaces

V = {
u ∈ (

C∞
0 (Ω)

)3
: div u = 0

}
,

H = cl(L2(Ω))3 V, V = cl(H1
0(Ω))3 V,

where clX denotes the closure in the space X . It is well known that H, V are separable Hilbert spaces and identifying H
and its dual H∗ we have V ⊂ H ⊂ V ∗ with dense and continuous injections. We denote by (·,·), | · | and ((·,·)), ‖ · ‖ the
inner product and norm in H and V , respectively. 〈·,·〉 will denote pairing between V and V ∗. We set L

4(Ω) = (L4(Ω))3

with the norm denoted by ‖ · ‖L4 . We will denote by B R a closed ball with radius R and centered at 0 in the space H .

For u, v, w ∈ V we put

b(u, v, w) =
∫
Ω

3∑
i, j=1

ui
∂v j

∂xi
w j dx.

It is known [30] that b is a trilinear continuous form on V and b(u, v, v) = 0, if u ∈ V , v ∈ (H1
0(Ω))3. As usual, for u, v ∈ V

we denote by B(u, v) the element of V ∗ defined by 〈B(u, v), w〉 = b(u, v, w), for all w ∈ V .
We consider also the Stokes operator A : D(A) → H , D(A) = (H2(Ω))3 ∩ V , where Au = −P�u, P is the Helmholtz–

Leray projector and � is the Laplacian operator (see e.g. [19] for more details).
We consider the 3D controlled Navier–Stokes system⎧⎨

⎩
dy

dt
+ Ay + B(u, y) = f , (3)
y(τ ) = yτ ∈ H,
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where f ∈ H and

u(·) ∈ Uτ =

⎧⎪⎨
⎪⎩

u ∈ L∞(τ ,+∞; H) ∩ L2
loc(τ ,+∞; V ) ∩ L∞

loc(τ ,+∞;L
4(Ω)),∫ +∞

τ ‖u(p)‖2e−δp dp < ∞, |u(p)| � R0, for a.a. p � τ ,

‖u(t)‖L4 � α, for a.a. t > τ,

(4)

Jτ (u, y) =
+∞∫
τ

∥∥y(p) − u(p)
∥∥2

e−δp dp → inf, (5)

with δ = λ1ν , R0 = | f |
νλ1

, and where α > 0 is some constant.
We have two aims. The first one is to prove that the solutions of the optimal control problem (3)–(5) generate a mul-

tivalued process U , which has a pullback attractor. The second aim is to prove that under the unproved assumption about
strong global solvability of the 3D Navier–Stokes system the pullback attractor coincides with the global attractor of the
multivalued semiflow for the 3D Navier–Stokes system given in [20].

By using standard Galerkin approximations (see [30]) it is easy to show that for any yτ ∈ H and u(·) ∈ Uτ there exists a
unique weak solution y(·) ∈ L∞(τ ,+∞; H) ∩ L2

loc(τ ,+∞; V ) of (3), that is,

d

dt
(y, v) + ν((y, v)) + b(u, y, v) = 〈 f , v〉, for all v ∈ V . (6)

Moreover, by the inequality∣∣b(u, y, v)
∣∣ = ∣∣b(u, v, y)

∣∣ � c1‖u‖L4‖v‖‖y‖L4 � c2c1‖u‖L4‖v‖‖y‖, ∀u, y, v ∈ V ,

and (4) we have B(u(·), y(·)) ∈ L2
loc(τ ,+∞; V ∗), so dy

dt ∈ L2
loc(τ ,+∞; V ∗) as well. Hence, it follows that y(·) ∈ C([τ ,+∞); H)

(so the initial condition y(τ ) = yτ makes sense for any yτ ∈ H) and standard arguments imply that for all t � s � τ ,

F
(

y(t)
) := (∣∣y(t)

∣∣2 − R2
0

)
eδt � F

(
y(s)

)
, (7)

Vτ

(
y(t)

) := 1

2

∣∣y(t)
∣∣2 + ν

t∫
τ

∥∥y(p)
∥∥2

dp −
t∫

τ

(
f , y(p)

)
dp � Vτ

(
y(s)

)
, (8)

∣∣y(t)
∣∣2 + ν

t∫
τ

∥∥y(p)
∥∥2

dp � |yτ |2 + | f |2
νλ1

(t − τ ). (9)

So, for all n � 0,

τ+(n+1)∫
τ+n

∥∥y(p) − u(p)
∥∥2

e−δp dp � 2e−δ(n+τ )

τ+(n+1)∫
τ+n

∥∥y(p)
∥∥2

dp + 2

τ+(n+1)∫
τ+n

∥∥u(p)
∥∥2

e−δp dp

� 2

ν
e−δ(n+τ )

(
|yτ |2 + | f |2

νλ1

)
+ 2

τ+(n+1)∫
τ+n

∥∥u(p)
∥∥2

e−δp dp.

From this

Jτ (u, y) =
∞∑

n=0

τ+(n+1)∫
τ+n

∥∥y(p) − u(p)
∥∥2

e−δp dp

� 2e−δτ

ν

(
|yτ |2 + | f |2

νλ1

) ∞∑
n=0

e−δn + 2
∞∑

n=0

τ+(n+1)∫
τ+n

∥∥u(p)
∥∥2

e−δp dp < ∞.

Therefore, the functional Jτ and the optimal control problem (3)–(5) is correctly defined.

Lemma 1. For any τ ∈ R and yτ ∈ H the optimal control problem (3)–(5) has at least one solution {y(·), u(·)}, and, moreover,
dy ∈ L2 (τ ,+∞; V ∗), y(·) ∈ C([τ ,+∞); H) and (7)–(9) hold.
dt loc
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Proof. Let {yn, un} be a minimizing sequence such that

+∞∫
τ

∥∥yn(p) − un(p)
∥∥2

e−δp dp � d + 1

n
, ∀n � 1,

where d = inf Jτ (u, y). Thus, for all T > τ,

T∫
τ

∥∥yn(p) − un(p)
∥∥2

e−δp dp � d + 1

n
,

T∫
τ

∥∥yn(p) − un(p)
∥∥2

dp �
(

d + 1

n

)
eδT . (10)

From (7)–(9) we obtain that {yn} is bounded in L∞(τ , T ; H) ∩ L2(τ , T ; V ). Hence, (10) implies that {un} is bounded in
L2(τ , T ; V ) and from the definition of Uτ it follows that∣∣un(p)

∣∣ � R0, ∀p � τ ,∥∥un(p)
∥∥

L4 � α, for a.a. p > τ.

Therefore, there exist u ∈ L∞(τ , T ; H) ∩ L2(τ , T ; V ) ∩ L∞(τ , T ;L
4(Ω)) and y ∈ L∞(τ , T ; H) ∩ L2(τ , T ; V ) such that

un → u weakly in L2(τ , T ; V ),

un → u ∗ -weakly in L∞(τ , T ; H),

un → u ∗ -weakly in L∞(
τ , T ;L

4(Ω)
)
,

yn → y weakly in L2(τ , T ; V ),

yn → y ∗ -weakly in L∞(τ , T ; H). (11)

Moreover, ‖B(un, yn)‖V ∗ � c1‖yn‖‖un‖L4 . Hence, dyn
dt is bounded in L2(τ , T ; V ∗). From this using standard arguments, we

obtain that y(·) ∈ C([τ , T ]; H) is the solution of (3) with control u(·), y(·) satisfies (7)–(9), and for this control the following
relations hold:∣∣u(p)

∣∣ � R0, for a.a. p � τ ,∥∥u(p)
∥∥

L4 � α, for a.a. p > τ,

u ∈ L2(τ , T ; V ),

T∫
τ

∥∥y(p) − u(p)
∥∥2

e−δp dp � d.

By using a standard diagonal procedure we can claim that y(·) and u(·) are defined on [τ ,+∞), yn → y, un → u in the
previous sense on every [τ , T ], and

+∞∫
τ

∥∥y(p) − u(p)
∥∥2

e−δp dp � d. (12)

By (9), arguing as before,

+∞∫
τ

∥∥y(p)
∥∥2

e−δp dp < ∞,

and from (12) we have

+∞∫
τ

∥∥u(p)
∥∥2

e−δp dp < ∞.

It follows that u(·) ∈ Uτ and from (12) we obtain that {y(·), u(·)} is an optimal pair of problem (3)–(5). �
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Now we are ready to construct a multivalued process associated to the solutions of problem (3)–(5).
For every yτ ∈ H , τ ∈ R, and t � τ we put

U (t, τ , yτ ) = {
ỹ(t): ỹ(·) is a solution of the optimal problem (3)–(5), ỹ(τ ) = yτ

}
. (13)

Lemma 2. The multivalued map U defined by (13) is a strict multivalued process.

Proof. It is obvious that U (τ , τ , yτ ) = yτ .
Let ξ ∈ U (t, τ , yτ ). Thus, ξ = ỹ(t), where { ỹ(·), ũ(·)} is an optimal pair of problem (3)–(5) with ỹ(τ ) = yτ , ũ(·) ∈ Uτ .

Then, of course, ỹ(s) ∈ U (s, τ , yτ ), for all s ∈ (τ , t). We should prove that ỹ(t) ∈ U (t, s, ỹ(s)), that is, Bellman’s principle of
optimality. Let

J̃τ = Jτ ( ỹ, ũ) =
+∞∫
τ

‖ ỹ − ũ‖2e−δp dp =
s∫

τ

‖ ỹ − ũ‖2e−δp dp +
+∞∫
s

‖ ỹ − ũ‖2e−δp dp.

We consider the problem (3)–(5) on the interval [s,+∞) (formally s is instead of τ ) with the set of controls Us and the
initial data (s, ỹ(s)). It is easy to verify that { ỹ(·), ũ(·)} on [s,+∞) is a solution of the optimal control problem. Indeed, we
note that ũ(·) ∈ Us and that ỹ(·) is the unique solution of (3) corresponding to ũ(·). Let { ŷ(·), û(·)} be an optimal pair of
this problem. Suppose that

+∞∫
s

‖ ŷ − û‖2e−δp dp <

+∞∫
s

‖ ỹ − ũ‖2e−δp dp.

Let us consider the control

u(t) =
{

ũ(t), t ∈ [τ , s),

û(t), t ∈ [s,+∞).

We claim that u(·) ∈ Uτ . Indeed, it is clear that |u(p)| � R0 for a.a. p � τ , ‖u(t)‖L4 � α for a.a. t > τ ,

u(·) ∈ L∞(τ ,+∞; H) ∩ L2
loc(τ ,+∞; V ),

+∞∫
τ

∥∥u(p)
∥∥2

e−δp dp < ∞.

Then u(·) ∈ Uτ and

y(t) =
{

ỹ(t), t ∈ [τ , s),

ŷ(t), t ∈ [s,+∞)

is the solution of problem (3) which corresponds to the control u(·) (because of uniqueness of the solution of problem (3)
for a fixed u(·)).

Finally,

Jτ (u, y) =
s∫

τ

‖ ỹ − ũ‖2e−δp dp +
+∞∫
s

‖ ŷ − û‖2e−δp dp � J̃τ

=
s∫

τ

‖ ỹ − ũ‖2e−δp dp +
+∞∫
s

‖ ỹ − ũ‖2e−δp dp,

which is a contradiction. Hence, { ỹ(·), ũ(·)} is an optimal pair on [s,+∞) and then ỹ(t) ∈ U (t, s, ỹ(s)), so that U is a
multivalued process.

Let us prove that it is strict. Let ξ ∈ U (t, s, U (s, τ , yτ )). Then ξ = ỹ2(t) and { ỹ2(·), ũ2(·)} is an optimal pair of problem
(3)–(5) with ỹ2(s) = ys , ũ2(·) ∈ Us, and ys = ỹ1(s), where { ỹ1(·), ũ1(·)} is an optimal pair of problem (3)–(5) with ỹ1(τ ) =
yτ , ũ1(·) ∈ Uτ . Let us consider the control

u(t) =
{

ũ1(t), t ∈ [τ , s),

ũ2(t), t ∈ [s,+∞).

As before u ∈ Uτ and
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y(t) =
{

ỹ1(t), t ∈ [τ , s),

ỹ2(t), t ∈ [s,+∞)

is the solution of problem (3) which corresponds to the control u(·). Also, it is clear, as ỹ1(·) is a solution of problem (3)
on [s,+∞) corresponding to ũ1(·), that

Jτ (u, y) =
s∫

τ

‖ ỹ1 − ũ1‖2e−δp dp +
+∞∫
s

‖ ỹ2 − ũ2‖2e−δp dp

�
s∫

τ

‖ ỹ1 − ũ1‖2e−δp dp +
+∞∫
s

‖ ỹ1 − ũ1‖2e−δp dp.

Hence, ξ = y(t) ∈ U (t, τ , yτ ). �
Theorem 2. For the multivalued process U , given by (13), there exists a strictly invariant pullback attractor {Θ(t)}t∈R such that
Θ(t) ⊂ B R0 , for all t ∈ R.

Proof. First of all, from (7) for every R > R0, yτ ∈ H such that |yτ | � R it holds∣∣y(s + τ )
∣∣2 − R2

0 � e−δ(s+τ )
(|yτ |2 − R2

0

)
eδτ ,∣∣y(s + τ )

∣∣2 � e−δs(R2 − R2
0

) + R2
0.

So,

sup
τ∈R

dist
(
U (s + τ , τ , B R), B R0

) → 0, as s → +∞. (14)

In virtue of Theorem 1 and

U (t, s, B R) ⊂ U
(
t, t − 1, U (t − 1, s, B R)

) ⊂ U (t, t − 1, B R0+1),

where the last inclusion follows from (14) by taking a sufficiently small s, we only need to prove that the set K (t) :=
U (t, t − 1, B R0+1) is compact and that the map x �→ U (t, τ , x) has closed graph. These two properties are true, if the follow-
ing statements hold for all t � τ :

(U 1) If ηn → η weakly in H and ξn ∈ U (t, τ ,ηn), then the sequence {ξn} is pre-compact in H;
(U 2) If ηn → η strongly in H and ξn ∈ U (t, τ ,ηn), then up to a subsequence ξn → ξ ∈ U (t, τ ,η).

Let ξn ∈ U (t, τ ,ηn), where ηn → η weakly in H . Then ξn = ỹn(t), ỹn(τ ) = ηn , where { ỹn(·), ũn(·)} is an optimal pair
of problem (3)–(5), ũn(·) ∈ Uτ . We have that { ỹn(·)} satisfy (7)–(9). If we consider the control u(·) ≡ 0 ∈ Uτ and the
corresponding solution of (3), yn(·), with yn(τ ) = ηn , then

Jτ (ũn, ỹn) � Jτ (0, yn) =
+∞∫
τ

∥∥yn(p)
∥∥2

e−δp dp =
∞∑

k=0

τ+k+1∫
τ+k

∥∥yn(p)
∥∥2

e−δp dp.

But yn(·) satisfies (7)–(9), so

τ+k+1∫
τ+k

∥∥yn(p)
∥∥2

e−δp dp � e−δ(k+τ )

ν

(
|ηn|2 + | f |2

νλ1

)
.

Thus Jτ (ũn, ỹn) � C̃ , where C̃ does not depend on n. Then in the same way as in Lemma 1 we obtain (up to a subse-
quence) that ũn → ũ ∈ Uτ , ỹn → ỹ in the sense of (11) on any interval (τ , T ), where ỹ ∈ C([τ ,+∞); H) is the solution of
problem (3) with control ũ(·). Moreover, in a standard way (see e.g. the proof of Lemma 11 in [20]) one can prove that
ỹn(s) → ỹ(s) strongly in H for all s > τ . Therefore, (U 1) holds.

Assume now additionally that ηn → η strongly in H . Let us prove that { ỹ(·), ũ(·)} is an optimal pair.
Fix an arbitrary u(·) ∈ Uτ . Let yn(·) be the solution of problem (3) with control u(·) and initial data yn(τ ) = ηn . Then, of

course, yn(·) → y(·) in the sense of (11), where y(·) is the solution of problem (3) with control u(·) ∈ Uτ and initial data
y(τ ) = η. Also, one can prove that yn → y strongly in L2(τ , T ; V ) for all τ < T . Indeed, in a standard way we obtain

1 d |yn − y|2 + ν‖yn − y‖2 + B(u, yn − y, yn − y) = 0.

2 dt
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As B(u, yn − y, yn − y) = 0, we have

∣∣yn(T ) − y(T )
∣∣2 + 2ν

T∫
τ

‖yn − y‖2 ds = |ηn − η|2 → 0, as n → ∞. (15)

Further, since { ỹn(·), ũn(·)} is an optimal process, we have

Jτ (ũn, ỹn) � Jτ (yn, u),

so that, for all T > τ ,

T∫
τ

‖ ỹn − ũn‖2e−δp dp �
T∫

τ

‖yn − u‖2e−δp dp +
+∞∫
T

‖yn − u‖2e−δp dp −
+∞∫
T

‖ ỹn − ũn‖2e−δp dp. (16)

As we showed before

Jτ (ũn, ỹn) � C̃,

where C̃ does not depend on n. Moreover, since { ỹn(·), ũn(·)} is an optimal pair on [T ,+∞) (see Lemma 2), if for any T > τ
we consider the problem (3)–(5) with initial data (T , ỹn(T )), the control u(·) ≡ 0 ∈ UT and the corresponding solution of (3)
zn(·) with zn(T ) = ỹn(T ), then

+∞∫
T

‖ ỹn − ũn‖2e−δp dp �
+∞∫
T

‖zn‖2e−δp dp.

But zn(·) satisfies (7)–(9), so that for any ε > 0 there exists T1(ε) such that for any T � T1(ε), n � 1, we have

+∞∫
T

‖ ỹn − ũn‖2e−δp dp <
ε

2
.

The functions {yn(·)} from (16) also satisfy (7)–(9), and u(·) ∈ Uτ . Hence

+∞∫
T

‖yn − u‖2e−δp dp � 2

+∞∫
T

‖yn‖2e−δp dp + 2

+∞∫
T

‖u‖2e−δp dp

and for any ε > 0 there exists T2(ε, u) such that for all T � T2(ε, u), n � 1,

+∞∫
T

‖yn − u‖2e−δp dp <
ε

2
.

Hence, for any ε > 0 there exists T (ε, u) such that for all T � T (ε, u), n � 1,

T∫
τ

‖ ỹn − ũn‖2e−δp dp �
T∫

τ

‖yn − u‖2e−δp dp + ε. (17)

Then by (15), passing to the limit in (17), we obtain

T∫
τ

‖ ỹ − ũ‖2e−δp dp � lim inf
n→∞

T∫
τ

‖ ỹn − ũn‖2e−δp dp

�
T∫

τ

‖y − u‖2e−δp dp + ε, ∀T � T (ε, u).

Thus, letting T → +∞ we obtain

Jτ (ũ, ỹ) � Jτ (u, y) + ε, ∀u ∈ Uτ , ∀ε > 0,

and { ỹ, ũ} is an optimal pair.
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The property Θ(t) ⊂ B R0 follows from Theorem 1. Also, by Lemma 2 and Theorem 1 we obtain that Θ(t) = U (t, s,Θ(s)),
for all t � s. �

Further we shall obtain that a uniform global attractor exists and that it contains the pullback attractor Θ(t).

Definition 3. The compact set A is called a uniform global attractor for the multivalued process U if

lim
t→+∞ sup

τ∈R

dist
(
U (t + τ , τ , B), A

) = 0, ∀B ∈ β(H), (18)

and it is the minimal closed set satisfying this property.

Let us define now the multivalued map G : R
+ × H → P (H) given by

G(t, y0) =
⋃
τ∈R

U (t + τ , τ , y0).

Lemma 3. G is a multivalued semiflow in the sense of [26].

Proof. It is clear that G(0, ·) = Id. Let ξ ∈ G(t + s, y0). Then for some τ ∈ R,

ξ ∈ U (t + s + τ , τ , y0) ⊂ U
(
t + s + τ , s + τ , U (s + τ , τ , y0)

)
⊂ G

(
t, G(s, y0)

)
.

Hence, G(t + s, y0) ⊂ G(t, G(s, y0)). �
Theorem 3. For the multivalued process U there exists a uniform global attractor A. Moreover, Θ(t) ⊂ A, for all t ∈ R.

Proof. In view of (14) we have that for all B ∈ β(H) there exists T (B) such that G(s, B) ⊂ B R0+1 if s � T . Hence,

G(t, B) ⊂ G
(
1, G(t − 1, B)

) ⊂ G(1, B R0+1), ∀t � T (B). (19)

We will show that the set G(1, B R0+1) is pre-compact. If ξn ∈ G(1, B R0+1), then there exist τn ∈ R, ηn ∈ B R0+1 and optimal
pair { ỹn(·), ũn(·)} of problem (3)–(5) with ũn(·) ∈ Uτn such that ξn = ỹn(τn + 1), ỹn(τn) = ηn . We have that { ỹn(·)} satisfy
(7)–(9), so

sup
s∈[τn,τn+1]

∣∣ ỹn(s)
∣∣ � C1,

τn+1∫
τn

∥∥ ỹn(s)
∥∥2

ds � C2, for all n.

Also, by ‖B(ũn, ỹn)‖V ∗ � c1‖ ỹn‖‖ũn‖L4 � c1α‖ ỹn‖, we have

τn+1∫
τn

∥∥∥∥ dỹn

dt

∥∥∥∥
2

V ∗
ds � C3.

Arguing as in Theorem 2 we obtain also that

τn+1∫
τn

∥∥ũn(s)
∥∥2

ds � C4.

Indeed,

Jτn (ũn, ỹn) � Jτn (0, zn) �
∞∑

k=0

τn+k+1∫
τn+k

∥∥zn(p)
∥∥2

e−δp dp � e−δτn C̃,

where the constant C̃ does not depend on n and zn(·) is the solution of (3) corresponding to u ≡ 0 ∈ Uτn and zn(τn) = ηn .
So
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e−δ(τn+1)

τn+1∫
τn

∥∥ũn(p)
∥∥2

dp �
τn+1∫
τn

∥∥ũn(p)
∥∥2

e−δp dp

� 2

τn+1∫
τn

∥∥ ỹn(p)
∥∥2

e−δp dp + 2

τn+1∫
τn

‖ ỹn − ũn‖2e−δp dp � 2e−δτn (C2 + C̃),

and we obtain the required estimate.
Let us define the functions yn(t) = ỹn(t + τn), un(t) = ũn(t + τn), t � 0. The functions yn(·) are the unique solutions of

problem (3) with initial data yn(0) = ηn and control un(·). By the previous estimates there exist functions y(·) and u(·) for
which the convergences (11) hold in the interval (0,1). Also, u ∈ U0 and

dyn

dt
→ dy

dt
weakly in L2(0,1; V ∗).

Hence, by standard arguments we obtain that y ∈ C([0,1], H) and that it is the solution of (3) with control u(·) and initial
data y(0) = η. Then in a standard way (see e.g. the proof of Lemma 11 in [20]) one can prove that yn(s) → y(s) strongly
in H for all s ∈ (0,1]. Hence, ξn = ỹn(τn + 1) = yn(1) is convergent and G(1, B R0+1) is pre-compact.

By Theorem 1 in [26] the omega-limit set of any B ∈ β(H) given by ω(B) = ⋂
s�0

⋃
t�s G(t, B) is non-empty, compact

and attracts B , i.e.

dist
(
G(t, B),ω(B)

) → 0, as t → ∞.

Since G(p + s, B) ⊂ G(p, B R0+1), for all p � 0, s � T (R0), we deduce that ω(B) ⊂ ω(B R0+1) for all B ∈ β(H). Then the set

A =
⋃

B∈β(H)

ω(B) = ω(B R0+1)

is compact and attracts every B ∈ β(H). Hence

lim
t→+∞ sup

τ∈R

dist
(
U (t + τ , τ , B), A

) = 0. (20)

The set A is the minimal closed set satisfying (20). Indeed, let C be a closed set satisfying (20) with B = B R0+1 and
such that A �⊂ C . Then there exists y ∈ A such that y /∈ C . We take sequences yn, tn such that yn ∈ G(tn, B R0+1), so that
yn ∈ U (tn + τn, τn, B R0+1) for some τn ∈ R, and converging to y as n → ∞. Since

dist(yn, C) → 0, as n → ∞,

we have y ∈ C , which is a contradiction.
Thus, A is a uniform global attractor.
Finally, since Θ(τ) ⊂ B R0 , for all τ ∈ R, we obtain that

Θ(t) ⊂ U
(
t, t − s,Θ(t − s)

) ⊂ U (t, t − s, B R0 ) = U (τs + s, τs, B R0)

⊂ G(s, B R0 ) → A, as s → +∞.

Hence, Θ(t) ⊂ A, for all t ∈ R. �
4. Relationship with the attractor of the 3D Navier–Stokes system

Consider now the three-dimensional (3D) Navier–Stokes system⎧⎨
⎩

dy

dt
+ Ay + B(y, y) = f ,

y(τ ) = yτ ∈ H .

(21)

Our aim now is to study the relation between the pullback attractor of the optimal control problem (3)–(5) and the global
attractor for the multivalued semiflow generated by (21). We recall first some conditional results proved in [20].

Assumption 1. Assume that for any τ ∈ R, yτ ∈ V there exists a unique globally defined strong solution y(·) of the 3D
Navier–Stokes system, that is,

y(·) ∈ C
([τ ,+∞); V

) ∩ L2
loc

(
τ ,+∞; D(A)

)
.
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Then following [20] one can correctly define the map G : R
+ × H �→ P (H) by

G(t, y0) = {
y(t): y(·) is a weak solution of (21) with y(0) = y0 such that y(·) satisfies (8)

}
. (22)

We state a result about existence of regular solutions.

Theorem 4. (See [20, Theorem 5].) Let Assumption 1 hold. Then for any R > 0 and y0 ∈ H such that |y0| < R there exists at least one
weak solution of (21) such that

y(·) ∈ C
([0,+∞), H

)
, (23)

y(·) ∈ L∞([s, T ];L
4(Ω)

)
, for all 0 < s < T , (24)∥∥y(t)

∥∥
L4(Ω)

� G(R, T , δ), (25)

for all T > 0, 0 < δ < T , and for a.a. t ∈ (δ, T ), where R �→ G(R, T , δ), T �→ G(R, T , δ) are non-decreasing functions. Moreover,
(8) holds.

Recall that a bounded complete trajectory of (21) is a weak solution defined on (−∞,∞), which satisfies (8), and such
that |y(t)| � C , for all t ∈ (−∞,∞).

Theorem 5. (See [20, pp. 261–262].) Under Assumption 1 the multivalued map (22) is a multivalued semiflow which has a strictly
invariant global attractor A, consisting of all bounded complete trajectories, that is,

A = {
ϕ(t): ϕ(·) is a bounded weak solution of (21) satisfying (8) and defined on (−∞,+∞)

}
, (26)

where t ∈ R can be chosen arbitrarily.

Now we are ready to prove that the global attractor A of (21) and the pullback attractor Θ(t) of (3)–(5) coincide.

Theorem 6. Under Assumption 1 there exists C(R0) such that if α � C(R0) in (4), then A = Θ(t), ∀t ∈ R.

Proof. First, we shall check that A ⊂ Θ(t), for any t ∈ R. We know from [20, p. 259] that the ball Bδ = {y ∈ H: |y| � R0 +δ}
is absorbing for G for any δ > 0, and then it is clear that A ⊂ B R0 . Also, it follows from Theorem 4 the existence of
C > 0 such that ‖ξ‖L4 � C , for any ξ ∈ A. Indeed, since A = G(1, A), we can choose a weak solution y(·) of the Navier–
Stokes system (21) satisfying (8) and such that y(0) ∈ A, y(1) = ξ . This solution is unique in the class of weak solutions
satisfying (8) [20, p. 262]. Then (25) implies that

∥∥y(t)
∥∥

L4(Ω)
� G

(
R0,1,

1

2

)
, for all

1

2
� t � 1.

Choosing C = G(R0,1, 1
2 ) we obtain the desired property.

Let us take α � C in (4). Then for any ξ ∈ A, t � τ , there exist η ∈ A and a weak solution y(·) of the 3D Navier–Stokes
system (21) satisfying (8) such that ξ = y(t), η = y(τ ), y(p) ∈ A, for all p � τ . So, ‖y(p)‖L4 � C and y(·) can be taken as a
control, that is, y(·) ∈ Uτ . Thus, y(·) is in fact the optimal control, because for ũ(·) ≡ y(·), ỹ(·) ≡ y(·) we have Jτ (ũ, ỹ) = 0.
So, ξ = y(t) ∈ U (t, τ ,η) ⊂ U (t, τ , A) and taking τ → −∞ we deduce that ξ ∈ Θ(t).

Further, we shall prove that Θ(t) ⊂ A, for any t ∈ R. Let ξ ∈ Θ(t). Since Θ(t) = U (t, s,Θ(s)), for all t > s, there exists
an optimal pair { ỹ(·), ũ(·)} of problem (3)–(5) with ỹ(s) = ys ∈ Θ(s), ũ(·) ∈ Us , such that ỹ(t) = ξ .

We take s < t − 2. In view of (9) and |ys| � R0, there exists s < s0 < t − 1 such that

∥∥ ỹ(s0)
∥∥2 �

R2
0

ν
+ | f |2

ν2λ1
= R2

1. (27)

It is clear that ỹ(s0) ∈ V ∩ Θ(s0). From the arguments in Lemma 2 ũ(·) ∈ Us0 and the pair { ỹ(·), ũ(·)} is also an optimal
pair of (3)–(5) in [s0,+∞). But by Assumption 1 for the initial data ỹ(s0) there exists a unique globally defined strong
solution y0(·) of the Navier–Stokes system (21). We shall check that {y0(·), y0(·)} is an optimal process of the problem
(3)–(5) with y0(s0) = ỹ(s0), y0(·) ∈ Us0 .

First, we note that any strong solution of (3) satisfies (7). Using this inequality and | ỹ(s0)| � R0 it is obvious that
|y0(r)| � R0 for all r � s0.

It is known [31, p. 382] that

sup
‖ys ‖�R1,t∈[s0,T ]

∥∥y(t)
∥∥ = K (R1, T − s0) < +∞, (28)
0
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where y(·) is the unique strong solution of system (3) corresponding to ys0 . We note that the function K is non-decreasing
with respect to both variables. Then (27) and (28) imply∥∥y0(r)

∥∥ � K (R1,2), for all s0 � r � s0 + 2.

Since y0(·) also satisfies (9), one can choose s̃0 ∈ (s0 + 1, s0 + 2) such that y0(̃s0) satisfies (27). Hence, using again
(28) we obtain that ‖y0(r)‖ � K (R1,2) for all s0 � r � s0 + 3. Repeating the same arguments inductively we obtain that
‖y0(r)‖ � K (R1,2) for all r � s0. Therefore,∥∥y0(r)

∥∥
L4 � cK (R1,2), for all r � s0.

Finally,
∫ ∞

s0
‖y0(r)‖2e−δr dr < ∞ follows from (9).

We choose α � max{G(R0,1, 1
2 ), cK (R1,2)}. Then y0(·) ∈ Us0 . Since J s0 (y0, y0) = 0, the pair {y0(·), y0(·)} is an optimal

process.
It follows that J s0 ( ỹ, ũ) = J s0 (y0, y0) = 0, so that ỹ(·) = ũ(·) and ỹ(·) is a weak solution of the Navier–Stokes sys-

tem (21). As ỹ(·) is unique in the class of weak solutions satisfying ỹ(·) ∈ L8
loc(s0,+∞;L

4(Ω)) [30, pp. 297–298], we have
y0 = ỹ on [s0,+∞) and then y0(t) = ξ . We note that Θ(s) = U (s, s0,Θ(s0)), for all s � s0, implies that y0(s) ∈ Θ(s),
for all t � s � s0. In the same way for some s1 < s0 − 2 we can define a weak solution (in fact strong) y1(·) such that
y1(s0) = y0(s0), y1(s) ∈ Θ(s), for all s1 � s � s0. The same can be done for some sequence s0 > s1 > s2 > · · · > sn → −∞.
Concatenating the functions yk(·) we obtain a weak solution y(·) of (21) defined on (−∞, t] and such that y(t) = ξ ,
y(s) ∈ Θ(s), for all s � t. It is easy to see that y satisfies (8). On the other hand, in the interval [t,+∞) we take an op-
timal process { ỹ(·), ũ(·)} of (3)–(5) such that ỹ(t) = ξ and in the same way one can check that ỹ(·) is the unique strong
solution of (21) with ỹ(t) = ξ . Hence, we put y(s) = ỹ(s) for s � t . The invariance property Θ(s) = U (s, t,Θ(t)) implies that
y(s) ∈ Θ(s), for all s � t . By Theorem 2 we have Θ(s) ⊂ B R0 , so that the function y(·) is bounded on R. It follows from (26)
that ξ = y(t) ∈ A.

Therefore, A = Θ(t), for all t ∈ R. �
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