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1. Introduction

In this work we are interested in study the asymptotic behaviour, as the parameter ε goes to 0, of the family of integral
functionals Fε defined by

Fε(B, H) =
T∫

0

∫
Ω

f

(
t, x,

t

ε
,

x

ε2
, ∂t B(t, x), curl H(t, x)

)
dx dt, (1.1)

where the density f : (0, T ) × Ω × R × R
3 × R

3×2 → R is a Carathéodory function satisfying the hypotheses:

(H1) f (t, x, ·, y, λ,ρ) is (0,1)-periodic in R;
(H2) f (t, x, τ , ·, λ,ρ) is Q -periodic in R

3, with Q = (0,1)3;
(H3) f (t, x, τ , y, ·, ·) is convex in R

3×2;
(H4) there exist constants C > c > 0 such that

c
(|λ|2 + |ρ|2 − 1

)
� f (t, x, τ , y, λ,ρ) � C

(|λ|2 + |ρ|2 + 1
)
,

for a.e. (t, x) ∈ (0, T ) × Ω and every (τ , y, λ,ρ) ∈ R × R
3 × R

3×2,

with T > 0 and Ω an open bounded set in R
3. The functional Fε is well defined for pairs (B, H) such that B is a vector

field in L2(Ω; H1(0, T )3) while H is a vector field in L2(0, T ; X(Ω)). We define the space of functions X(Ω) by

X(Ω) = {
w ∈ L2(Ω;R

3): curl w ∈ L2(Ω;R
3),div w = 0 in Ω, w · ν = 0 on ∂Ω

}
,

where ν stands for the outer normal vector to ∂Ω , so that X(Ω) is a Hilbert space respect to the norm

‖w‖2
X(Ω) = ‖w‖2

L2(Ω;R3)
+ ‖ curl w‖2

L2(Ω;R3)
.

E-mail address: heliac.pereira@uclm.es.
0022-247X/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2011.10.011

http://dx.doi.org/10.1016/j.jmaa.2011.10.011
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:heliac.pereira@uclm.es
http://dx.doi.org/10.1016/j.jmaa.2011.10.011


H. Serrano / J. Math. Anal. Appl. 387 (2012) 1024–1032 1025
It turns out that X(Ω) is continuously embedded into the Sobolev space H1(Ω;R
3) if Ω is either of class C1,1 (for defi-

nition, see [4, Notation 2.1]) or a convex polyhedron, see [4,11,13]. Thus, the space L2(0, T ; X(Ω)) is defined as the space
of all vector fields H : (0, T ) × Ω → R

3 such that, for a.e. t ∈ (0, T ), the solenoidal field H(t, ·) is in X(Ω) and its norm is
finite:

‖H‖2
L2(0,T ;X(Ω))

=
T∫

0

∥∥H(t, ·)∥∥2
X(Ω)

dt =
T∫

0

∫
Ω

(∣∣H(t, x)
∣∣2 + ∣∣curl H(t, x)

∣∣2)
dx dt < ∞.

The space L2(0, T ; X(Ω)) is a Hilbert space respect to the previous norm ‖.‖L2(0,T ;X(Ω)) .
Our aim is to study the asymptotic behaviour of the sequence {Fε} through the Γ -convergence, i.e. a variational con-

vergence for sequences of functionals defined in metric spaces, see [7,9]. In this way, we look for the characterization of
the limit functional, in the sense of Γ -convergence, of the sequence of functionals Fε , as the parameter ε goes to 0, as an
integral functional whose density may be defined through the density f . Since Young measures turn out to be a useful tool
to represent weak limits of sequences composed with nonlinear functions, we intend to apply this concept to study the
Γ -convergence of the sequence of functionals Fε , following the ideas introduced in [18] for multiscale periodic functionals
depending on gradient fields (see also [3,19]). Here we are interested in multiscale periodic functionals defined for pairs
(B, H) and depending on the time-derivative ∂t B as well as on the curl of H . Thus, we generalize the notion of multiscale
Young measure associated with sequences of time-independent functions to sequences of time-dependent functions, and
develop the concept of multiscale Young measure in time–space associated with sequences of pairs of type {(∂t Bε, curl Hε)}.

A motivation to study the Γ -convergence of sequences of functionals of type (1.1) is the homogenization of linear prob-
lems of type

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−∂t(b(t, t
ε )∂t Bε) + curl(A(t, x, t

ε , x
ε2 ) curl Hε) = curl g(t, x, t

ε , x
ε2 ) in (0, T ) × Ω,

div Bε = div Hε = 0 in (0, T ) × Ω,

Hε · ν = 0 on (0, T ) × ∂Ω,

(A curl Hε) × ν = g × ν on (0, T ) × ∂Ω,

Bε(0, x) = B0(x) in Ω,

∂t Bε(0, x) = B1(x) in Ω,

(1.2)

when the positive parameter ε goes to 0, see [6,21]. We assume that b(t, τ ) : (0, T ) × R → R
+ is a Carathéodory function

and, for a.e. t ∈ (0, T ), b(t, ·) is (0,1)-periodic in R; the 3 × 3-matrix-valued function A(t, x, τ , y) is symmetric, there exist
β > α > 0 such that α|ξ |2 � ξ T Aξ � β|ξ |2 for every ξ ∈ R

3, A(t, x, ·, y) is (0,1)-periodic in R, and A(t, x, τ , ·) is Q -periodic
in R

3, and the function g(t, x, τ , y) : (0, T ) × Ω × R × R
3 → R

3 is also (0,1)-periodic in the third variable and Q -periodic
in the last one. Notice that, in this initial boundary value problem the quadratic coefficients b and A, and particularly the
source term g , oscillate in separated time and space length scales. We would like to investigate whether the interactions
between the microscopic oscillatory behaviour in both time and space variables of each coefficient may determine the
macroscopic behaviour of the source term.

The initial boundary value problem (1.2) may be considered as the first-order optimality condition associated with the
minimization problem in L2(Ω; H1(0, T )3) × L2(0, T ; X(Ω)) of quadratic energies of type

Eε(B, H) =
T∫

0

∫
Ω

(
bε(t)

2
|∂t B|2 + Aε(t, x)

2
curl H · curl H − gε(t, x) · curl H

)
dx dt, (1.3)

where the quadratic coefficients bε(t) and Aε(t, x), and the linear coefficient gε(t, x), are defined by

bε(t) = b

(
t,

t

ε

)
, Aε(t, x) = A

(
t, x,

t

ε
,

x

ε2

)
, gε(t, x) = g

(
t, x,

t

ε
,

x

ε2

)
,

respectively. Thus, for each ε > 0, if the pair (Bε, Hε) minimizes the energy Eε in L2(Ω; H1(0, T )3) × L2(0, T ; X(Ω)), it
turns out that it is a solution of the system (1.2). In this way, we may study the homogenization of initial boundary value
problems of type (1.2) through the Γ -convergence of the sequence of its associated energies of type (1.3), because once the
sequence {Eε} Γ -converges to the quadratic functional E , we may deduce that the sequence of optimal pairs {(Bε, Hε)}
solution of (1.2) converges weakly to the optimal pair {(B, H)} which minimizes the limit energy E .

This work is divided into 5 sections as follows. In Section 2, we study the multiscale convergence in time-scale of
sequences of pairs of type {(∂t Bε, curl Hε)}, which turns out to be fundamental to prove the main result on Γ -convergence
of sequences of functionals of type (1.1). In Section 3, we introduce the definition of multiscale Young measure in time–
space associated with sequences of time-dependent functions, and present the main properties which will be applied lately
in Section 5 to prove the main result Theorem 4.1, which is presented in Section 4.
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2. Multiscale convergence in time–space

In this section, we extend the notion of two spacial scale convergence introduced by Nguetseng in [15] (see also [1,2]) to
two-scale convergence in time and space, as it is proposed by Holmbom, Svanstedt and Wellander in [14] (see also [16,22]).

Consider two separated length scales l1(ε) and l2(ε), that is two smooth functions l1, l2 : (0, ε0) → (0,+∞) such that
limε↘0 li(ε) = 0 (i = 1,2), and limε↘0

l2(ε)
l1(ε)

= 0. In order to study the oscillatory behaviour of a sequence of functions uε

with respect to a slower time variable and a faster space variable, we test it against sequences of oscillatory functions of
type ϕ(t, x, t

l1(ε)
, x

l2(ε)
), according to the following definition.

Definition 2.1. We say that a sequence {uε} ⊂ L2((0, T ) × Ω)3 multiscale converges in time–space, with respect to two

temporal and two spatial scales, to the function u0 in L2((0, T ) × Ω × (0,1) × Q )3, i.e. uε
s

⇀ u0, if

lim
ε↘0

T∫
0

∫
Ω

uε(t, x) · ϕ
(

t, x,
t

l1(ε)
,

x

l2(ε)

)
dx dt =

T∫
0

∫
Ω

1∫
0

∫
Q

u0(t, x, τ , y) · ϕ(t, x, τ , y)dy dτ dx dt

for every ϕ in L2((0, T ) × Ω; C per((0,1) × Q )3), where l1(ε) and l2(ε) are two separated length scales.

The following compactness result ensures the existence of a multiscale convergent subsequence in time–space for every
bounded sequence in L2((0, T ) × Ω)3, see for instance [14,16].

Theorem 2.1 (Compactness Theorem). If {uε} is a bounded sequence in L2((0, T ) × Ω)3 , then there exist a subsequence {uεk } and a
function u0 in L2((0, T ) × Ω × (0,1) × Q )3 such that {uεk } multiscale converges in time–space to u0 .

Nevertheless, in this work we are mainly interested in study the multiscale convergence in time–space of sequences of
pairs of type {(∂t Bε, curl Hε)}, as the parameter goes to 0, when the sequence {Bε} is bounded in L2(Ω; H1(0, T )3), and the
sequence of solenoidal fields Hε is bounded in the Hilbert space L2(0, T ; X(Ω)) defined previously. Let us analyze firstly
the multiscale convergence in time–space of a sequence of time-derivatives {∂t Bε}.

Theorem 2.2. Let {Bε} be a bounded sequence in L2(Ω; H1(0, T )3). Then, there exists a subsequence {Bεk } and a function B ∈
L2(Ω; H1(0, T )3) such that

Bεk → B strongly in L2((0, T ) × Ω
)3

.

There exists a function B1 ∈ L2((0, T ) × Ω; H1
per(0,1)3), and a function V 2 ∈ L2((0, T ) × Ω; L2

per(Q )3) satisfying∫
Q

V 2(t, x, y)dy = 0,

so that {∂t Bεk } multiscale converges in time–space:

∂t Bεk

s
⇀ ∂t B(t, x) + ∂τ B1(t, x, τ ) + V 2(t, x, y) in L2((0, T ) × Ω × (0,1) × Q

)3
.

Proof. There exists a subsequence {Bεk } converging strongly to a function B in L2((0, T ) × Ω)3, provided L2(Ω; H1(0, T )3)

is compactly embedded into L2((0, T ) × Ω)3.
Consider the sequence {∂t Bεk } bounded in L2((0, T ) × Ω)3. It comes from [12, Theorem 1.2] that, for a.e. x ∈ Ω , the

sequence {∂t Bεk } two-scale converges in time to ∂t B(t, x) + ∂τ B1(t, x, τ ) in L2((0, T ) × Ω × (0,1))3, for some function B1 in
L2((0, T ) × Ω; H1

per(0,1)).

Moreover, the sequence {∂t Bεk } two-scale converges in space to ∂t B(t, x) + V 2(t, x, y) in L2((0, T ) × Ω × Q )3, for some
function V 2 in L2((0, T ) × Ω; L2

per(Q )3) such that∫
Q

V 2(t, x, y)dy = 0.

In this way, it follows that the sequence {∂t Bεk } multiscale converges in time–space to ∂t B(t, x) + ∂τ B1(t, x, τ ) + V 2(t, x, y)

in L2((0, T ) × Ω × (0,1) × Q )3. �
Now, we focus on the sequence of solenoidal fields {curl Hε} under the constraint that each field Hε is itself divergence-

free. The next theorem gives a characterization of the multiscale limit in time–space of such sequence.
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Theorem 2.3. Let {Hε} be a bounded sequence in L2(0, T ; X(Ω)). Then, there exists a subsequence {Hεk } and a function H ∈
L2(0, T ; X(Ω)) such that

Hεk → H strongly in L2((0, T ) × Ω
)3

.

There exists a function H1 in L2((0, T ) × Ω; X(Q )) for which curly H1(t, x, ·) is Q -periodic, and a function W2 in L2((0, T ) ×
(0,1); X(Ω)) for which curl W2(t, x,1) = curl W2(t, x,0),

∫
Q

curly H1(t, x, y)dy = 0,

1∫
0

curl W2(t, x, τ )dτ = 0,

so that {curl Hεk } multiscale converges in time–space:

curl Hεk

s
⇀ curl H(t, x) + curly H1(t, x, y) + curl W2(t, x, τ ) in L2((0, T ) × Ω × (0,1) × Q

)3
.

Proof. Since the space L2(0, T ; X(Ω)) is compactly embedded into L2((0, T ) × Ω)3, there exists a function H in
L2(0, T ; X(Ω)) and a subsequence {Hεk } such that {Hεk } converges strongly to H in L2((0, T ) × Ω)3.

Let us consider the sequence {curl Hεk } bounded in L2((0, T ) × Ω)3. Applying [12, Theorem 1.2] it follows that, for a.e.
t ∈ (0, T ), {curl Hεk (t, ·)} two-scale converges in space to curl H(t, x) + curly H1(t, x, y), for some function H1 in L2((0, T ) ×
Ω; X(Q )) such that curly H1(t, x, ·) is Q -periodic, and∫

Q

curly H1(t, x, y)dy = 0.

On the other hand, for a.e. x ∈ Ω , the sequence {curl Hεk (·, x)} two-scale converges in time to curl H(t, x) + U2(t, x, τ ), for
some function U2 in L2((0, T ) × Ω; L2

per(0,1)3) so that

1∫
0

U2(t, x, τ )dτ = 0.

If we consider test functions φ ∈ L2((0, T ); C∞
0 (Ω) × C per(0,1)), then

lim
ε↘0

T∫
0

∫
Ω

curl Hεk (t, x) · ∇φ

(
t, x,

t

ε

)
dx dt =

T∫
0

∫
Ω

1∫
0

(
curl H(t, x) + U2(t, x, τ )

) · ∇φ(t, x, τ )dτ dx dt.

Integrating by parts over the variable x, we get

T∫
0

1∫
0

∫
∂Ω

(curl H + U2) · νφ dS dτ dt −
T∫

0

∫
Ω

1∫
0

div
(
curl H(t, x) + U2(t, x, τ )

)
φ(t, x, τ )dτ dx dt = 0.

So, since div U2 = 0 in Ω , there exists a field W2 such that U2(t, x, τ ) = curl W2(t, x, τ ).
Thus, the sequence {curl Hεk } multiscale converges in time–space (with respect to two temporal and two spatial scales)

to curl H(t, x) + curly H1(t, x, y) + curl W2(t, x, τ ), i.e. for every ϕ ∈ L2((0, T ) × Ω; C per((0,1) × Q )),

lim
ε↘0

T∫
0

∫
Ω

curl Hεk (t, x) · ϕ
(

t, x,
t

l1(ε)
,

x

l2(ε)

)
dx dt

=
T∫

0

∫
Ω

1∫
0

∫
Q

(
curl H(t, x) + curly H1(t, x, y) + curl W2(t, x, τ )

) · ϕ(t, x, τ , y)dy dτ dx dt. �

The previous characterization of the multiscale limit in time–space of the sequence of pairs {(∂t Bε, curl Hε)} is the key
point, together with the properties of the multiscale Young measures in time–space introduced below, to achieve a full
representation of the density of the Γ -limit of the sequence of functionals Fε of type (1.1).
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3. Multiscale Young measures in time–space

Here, we extend the definition of two-scale Young measure associated with sequences of time-independent functions
introduced by Pedregal in [18] to sequences of time-dependent functions. Firstly, let us recall that if the length scale l2(ε)

is faster than l1(ε), then the Young measure associated with the sequence of pairs{(〈
t

l1(ε)

〉
,

〈
x

l2(ε)

〉)}
,

where 〈y〉 ∈ [0,1)l stands for the fractional part of y ∈ R
l (l = 1 or l = 3), is the product of two Lebesgue measures dτ ⊗ dy

over (0,1) × Q , see [17,23].

Definition 3.1. A family of probability measures {μt,x,τ ,y}t∈(0,T ),x∈Ω,τ∈(0,1),y∈Q supported on R
d is said to be the multiscale

Young measure in time–space associated with the sequence of functions uε : (0, T )×Ω → R
d (at the separated length scales

l1(ε) and l2(ε)) if the joint Young measure θ = {θt,x}t∈(0,T ),x∈Ω associated with the sequence of pairs{(
uε(t, x),

〈
t

l1(ε)

〉
,

〈
x

l2(ε)

〉)}

may be decomposed, for a.e. (t, x) ∈ (0, T ) × Ω and (τ , y) ∈ (0,1) × Q , as

θt,x(λ, τ , y) = μt,x,τ ,y(λ) ⊗ dτ ⊗ dy.

Therefore, if {μt,x,τ ,y}t∈(0,T ),x∈Ω,τ∈(0,1),y∈Q is the multiscale Young measure in time–space associated with the se-
quence {uε}, we know that, for any Carathéodory function ψ : (0, T ) × Ω × R × R

d → R such that the sequence
{ψ(t, x, 〈 t

l1(ε)
〉, 〈 x

l2(ε)
〉, uε(t, x))} converges weakly in L1((0, T ) × Ω), it follows

lim
ε↘0

T∫
0

∫
Ω

ψ

(
t, x,

〈
t

l1(ε)

〉
,

〈
x

l2(ε)

〉
, uε(t, x)

)
dt dx =

T∫
0

∫
Ω

1∫
0

∫
Q

∫
Rd

ψ(t, x, τ , y, λ)dμt,x,τ ,y(λ)dy dτ dx dt.

Nevertheless, when the weak convergence in L1((0, T ) × Ω) is not ensured, we always have a lower estimate for the
lower limit given through such multiscale Young measure, as follows in the next proposition.

Proposition 3.2. If {μt,x,τ ,y}t∈(0,T ),x∈Ω,τ∈(0,1),y∈Q is the multiscale Young measure associated with the sequence {uε} (at the sepa-
rated length scales l1(ε) and l2(ε)), then

lim inf
ε↘0

T∫
0

∫
Ω

ψ

(
t, x,

〈
t

l1(ε)

〉
,

〈
x

l2(ε)

〉
, uε(t, x)

)
dx dt �

T∫
0

∫
Ω

1∫
0

∫
Q

∫
Rd

ψ(t, x, τ , y, λ)dμt,x,τ ,y(λ)dy dτ dx dt,

for every Carathéodory function ψ : (0, T ) × Ω × R × R
3 × R

d → R bounded from below.

Notice that, the definition of multiscale Young measures in time–space is intimately related to the multiscale convergence
in time–space of its associated sequence. Namely, the barycenter of a multiscale Young measure in time–space may be
characterized as the multiscale limit of the associated sequence of functions.

Proposition 3.3. Let {uε} be a multiscale convergent sequence in time–space, and u0 be its multiscale limit. If
{μt,x,τ ,y}t∈(0,T ),x∈Ω,τ∈(0,1),y∈Q is the multiscale Young measure associated with {uε}, then u0 : (0, T ) × Ω × (0,1) × Q → R

d

is the first moment of such multiscale Young measure given by

u0(t, x, τ , y) =
∫
Rd

λdμt,x,τ ,y(λ).

4. The Γ -convergence result

Γ -convergence is a variational convergence for sequences of functionals introduced by De Giorgi and Franzoni in [10] as a
useful tool to study the asymptotic behaviour of minimizing problems depending on a parameter (see the monographs [7,9]).
The notion of Γ -convergence is based on two conditions: the lower-bound estimate for the lower-limit of the sequence of
functionals, and the existence of a recovering sequence for which the lower estimate is attained.
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Let us consider the sequence of integral functionals Fε defined in the Hilbert space L2(Ω; H1(0, T )3) × L2(0, T ; X(Ω))

by

Fε(B, H) =
T∫

0

∫
Ω

f

(
t, x,

t

ε
,

x

ε2
, ∂t B(t, x), curl H(t, x)

)
dx dt,

where the density f : (0, T )×Ω ×R ×R
3 ×R

3×2 → R is a Carathéodory function satisfying the hypotheses (H1), (H2), (H3)
and (H4), with T > 0 and Ω an open bounded set in R

3.

Definition 4.1. We say that the sequence {Fε} defined in L2(Ω; H1(0, T )3) × L2(0, T ; X(Ω)) Γ -converges, with respect to
the weak topology, to the functional F if, for every B in L2(Ω; H1(0, T )3) and every H in L2(0, T ; X(Ω)):

(1) for any Bε ⇀ B weakly in L2(Ω; H1(0, T )3), and Hε ⇀ H weakly in L2(0, T ; X(Ω)), we have

lim inf
ε↘0

Fε(Bε, Hε) � F (B, H);

(2) there exist Bε ⇀ B weakly in L2(Ω; H1(0, T )3), and Hε ⇀ H weakly in L2(0, T ; X(Ω)), such that

lim
ε↘0

Fε(Bε, Hε) = F (B, H).

Our main result here is the following explicit representation of the Γ -limit of the sequence {Fε} as an integral functional
whose density is defined by means of an infinite dimensional minimization problem. This result is proved in the next
section.

Theorem 4.1. The sequence of integral functionals {Fε} defined in (1.1) Γ -converges, with respect to the weak topology in
L2(Ω; H1(0, T )3) × L2(0, T ; X(Ω)), to the functional I defined by

F (B, H) =
T∫

0

∫
Ω

fhom
(
t, x, ∂t B(t, x), curl H(t, x)

)
dx dt,

where the homogenized density fhom : (0, T ) × Ω × R
3×2 → R is given by

fhom(t, x, λ,ρ)

= inf

{ 1∫
0

∫
Q

f
(
t, x, τ , y, λ + ∂τ B1(t, x, τ ) + V 2(t, x, y),ρ + curly H1(t, x, y) + curl W2(t, x, τ )

)
dy dτ :

B1 ∈ L2((0, T ) × Ω; H1
per(0,1)3), V 2 ∈ L2((0, T ) × Ω; L2

per(Q )3),
H1 ∈ L2((0, T ) × Ω; X(Q )

)
, W2 ∈ L2((0, T ) × (0,1); X(Ω)

)
,

curly H1(t, x, ·) is Q -periodic, curl W2(t, x, ·) is (0,1)-periodic,

∫
Q

curly H1(t, x, y)dy = 0,

1∫
0

curl W2(t, x, τ )dτ = 0,

∫
Q

V 2(t, x, y)dy = 0

}
.

Notice that, the functionals Fε are defined in the product space L2(Ω; H1(0, T )3) × L2(0, T ; X(Ω)) so that the vector
field H is assumed to be divergence-free. The Γ -convergence of sequences of (time-independent) two-scale periodic in-
tegral functionals under a divergence-free constraint was studied previously in [5,8,12]. In the non-periodic context, the
Γ -convergence of a particular sequence of (time-independent) non-periodic functionals under a divergence-free constraint
was treated in [20] by means of div-Young measures.

As commented in the Introduction, an application to the above Γ -convergence result is the homogenization of initial
boundary value problems of type (1.2). Indeed, we may deduce the convergence of solutions of a family of boundary value
problems from the Γ -convergence of the families of their associated energies. If the sequence of energies Fε Γ -converges to
the functional F , and if each energy Fε has an optimal pair (Bε, Hε), then the sequence of minimizers {(Bε, Hε)} converges
weakly to a minimizer of the Γ -limit F , as follows.
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Proposition 4.2. (See [7].) If {Fε} is a sequence of equicoercive functionals in L2(Ω; H1(0, T )3) × L2(0, T ; X(Ω)) such that it Γ -
converges, with respect to the weak topology, to F , then

min
B,H

F (B, H) = lim
ε↘0

inf
B,H

Fε(B, H).

Moreover, if the sequence {Bε} converges weakly in L2(Ω; H1(0, T )3), {Hε} converges weakly in L2(0, T ; X(Ω)), and limε↘0 Fε(Bε,

Hε) = limε↘0 inf(B,H) Fε(B, H), then the weak limit of {(Bε, Hε)} is a minimum of F .

5. Proof of Theorem 4.1

This section is entirely dedicated to prove our main result Theorem 4.1. For such purpose, firstly we will prove the lower
limit inequality, and then prove the existence of a recovering sequence, according to Definition 4.1.

Let B ∈ L2(Ω; H1(0, T )3) and H ∈ L2(0, T ; X(Ω)). Consider any sequence {Bε} ⊂ L2(Ω; H1(0, T )3) converging weakly
to B in L2(Ω; H1(0, T )3), and any sequence {Hε} ⊂ L2(0, T ; X(Ω)) converging weakly to H in L2(0, T ; X(Ω)). Thus, the
sequence of pairs {(∂t Bε, curl Hε)} converges weakly to {(∂t B, curl H)} in L2((0, T ) × Ω)6.

Let {μt,x,τ ,y}t∈(0,T ),x∈Ω,τ∈(0,1),y∈Q be the multiscale Young measure in time–space associated with the sequence of pairs
{(∂t Bε, curl Hε)} with support on R

3 × R
3. Then, it comes from Proposition 3.2 that

lim inf
ε↘0

T∫
0

∫
Ω

f

(
t, x,

t

ε
,

x

ε2
, ∂t Bε(t, x), curl Hε(t, x)

)
dx dt

�
T∫

0

∫
Ω

1∫
0

∫
Q

∫
R3×R3

f (t, x, τ , y, λ,ρ)dμt,x,τ ,y(λ,ρ)dy dτ dx dt.

Since the density f (t, x, τ , y, ·, ·) is convex in R
3 × R

3, for a.e. (t, x) ∈ (0, T ) × Ω and every (τ , y) ∈ (0,1) × Q , we may
apply Jensen’s inequality so that∫

R3×R3

f (t, x, τ , y, λ,ρ)dμt,x,τ ,y(λ,ρ) � f

(
t, x, τ , y,

∫
R3×R3

λμt,x,τ ,y(λ,ρ),

∫
R3×R3

ρμt,x,τ ,y(λ,ρ)

)
.

Notice that, the sequence {∂t Bε} multiscale converges in time–space to ∂t B(t, x)+∂τ B1(t, x, τ )+ V 2(t, x, y) in L2((0, T )×
Ω × (0,1) × Q )3, for some functions B1 in L2((0, T ) × Ω; H1

per(0,1)) and V 2 in L2((0, T ) × Ω; L2
per(Q )3) satisfying∫

Q

V 2(t, x, y)dy = 0,

according to Theorem 2.2. Thus, the multiscale limit of {∂t Bε} may be written as

∂t B(t, x) + ∂τ B1(t, x, τ ) + V 2(t, x, y) =
∫

R3×R3

λμt,x,τ ,y(λ,ρ)

for a.e. (t, x) ∈ (0, T ) × Ω and (τ , y) ∈ (0,1) × Q , according to Proposition 3.3.
In a similar way, provided the sequence {curl Hε} converges weakly to curl H in L2((0, T ) × Ω)3, it follows from

Theorem 2.3 that {curl Hε} multiscale converges in time–space to curl H(t, x) + curly H1(t, x, y) + curl W2(t, x, τ ) in
L2((0, T ) × Ω × (0,1) × Q )3, for some functions H1 in L2((0, T ) × Ω; X(Q )) and W2 in L2((0, T ) × (0,1); X(Ω)) such
that curly H1(t, x, ·) is Q -periodic, curl W2(t, x, ·) is (0,1)-periodic, and

∫
Q

curly H1(t, x, y)dy = 0,

1∫
0

curl W2(t, x, τ )dτ = 0.

Moreover, this multiscale limit may also be characterized through the multiscale Young measure in time–space {μt,x,τ ,y} in
the following way

curl H(t, x) + curly H1(t, x, y) + curl W2(t, x, τ ) =
∫

R3×R3

ρμt,x,τ ,y(λ,ρ),

for a.e. (t, x) ∈ (0, T ) × Ω and every (τ , y) ∈ (0,1) × Q , according to Proposition 3.3.
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Therefore, we conclude that there exist functions H1, B1, V 2 and W2 such that

lim inf
ε↘0

T∫
0

∫
Ω

f

(
t, x,

t

ε
,

x

ε2
, ∂t Bε(t, x), curl Hε(t, x)

)
dx dt

�
T∫

0

∫
Ω

1∫
0

∫
Q

f
(
t, x, τ , y, ∂t B(t, x) + ∂τ B1(t, x, τ ) + V 2(t, x, y),

curl H(t, x) + curly H1(t, x, y) + curl W2(t, x, τ )
)

dy dτ dx dt.

If we take the infimum over such functions, we achieve the desired lower inequality:

lim inf
ε↘0

T∫
0

∫
Ω

f

(
t, x,

t

ε
,

x

ε2
, ∂t Bε(t, x), curl Hε(t, x)

)
dx dt �

T∫
0

∫
Ω

fhom
(
t, x, ∂t B(t, x), curl H(t, x)

)
dx dt,

where fhom is the homogenized density defined in Theorem 4.1.
Now, let us prove there exists a sequence of pairs {(Bε, Hε)} converging weakly to (B, H) in L2(Ω; H1(0, T )3) ×

L2(0, T ; X(Ω)) for which the lower limit inequality above is indeed an equality. For fixed B in L2(Ω; H1(0, T )3) and H
in L2(0, T ; X(Ω)), assume there exist minimizers H1, B1, V 2 and W2 such that, for a.e. (t, x) ∈ (0, T ) × Ω , we have

fhom
(
t, x, ∂t B(t, x), curl H(t, x)

)

=
1∫

0

∫
Q

f
(
t, x, τ , y, ∂t B(t, x) + ∂τ B1(t, x, τ ) + V 2(t, x, y),

curl H(t, x) + curly H1(t, x, y) + curl W2(t, x, τ )
)

dy dτ dx dt.

Let us start by defining the sequence of functions Bε : (0, T ) × Ω → R
3 by putting

Bε(t, x) = B(t, x) + εB1

(
t, x,

t

ε

)
+

t∫
0

V 2

(
s, x,

x

ε2

)
ds.

Then the sequence of time-derivatives ∂t Bε : (0, T ) × Ω → R
3 given by

∂t Bε(t, x) = ∂t B(t, x) + ε∂t B1

(
t, x,

t

ε

)
+ ∂τ B1

(
t, x,

t

ε

)
+ V 2

(
t, x,

x

ε2

)

converges weakly to ∂t B in L2((0, T )×Ω)3, and it multiscale converges in time–space to ∂t B(t, x)+∂τ B1(t, x, τ )+ V 2(t, x, y)

in L2((0, T ) × Ω × (0,1) × Q )3.
If we define the sequence of fields Hε : (0, T ) × Ω → R

3 by

Hε(t, x) = H(t, x) + ε2 H1

(
t, x,

x

ε2

)
+ W2

(
t, x,

t

ε

)
,

so that

curl Hε(t, x) = curl H(t, x) + ε2 curl H1

(
t, x,

x

ε2

)
+ curly H1

(
t, x,

x

ε2

)
+ curl W2

(
t, x,

t

ε

)

for a.e. (t, x) ∈ (0, T )×Ω , the sequence {curl Hε} converges weakly to curl H in L2((0, T )×Ω)3, and it multiscale converges
in time–space to curl H(t, x) + curly H1(t, x, y) + curl W2(t, x, τ ) in L2((0, T ) × Ω × (0,1) × Q )3.

Therefore, if we consider the sequence of the pairs {∂t Bε, curl Hε} just defined above, it follows that

lim
ε↘0

T∫
0

∫
Ω

f

(
t, x,

t

ε
,

x

ε2
, ∂t Bε(t, x), curl Hε(t, x)

)
dx dt

=
T∫ ∫ 1∫ ∫

f
(
t, x, τ , y, ∂t B(t, x) + ∂τ B1(t, x, τ ) + V 2(t, x, y),
0 Ω 0 Q
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curl H(t, x) + curly H1(t, x, y) + curl W2(t, x, τ )
)

dy dτ dx dt

=
T∫

0

∫
Ω

fhom
(
t, x, ∂t B(t, x), curl H(t, x)

)
dx dt,

which concludes the proof of Theorem 4.1.
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