J. Math. Anal. Appl. 387 (2012) 1044-1049

Contents lists available at SciVerse ScienceDirect

Journal of Mathematical Analysis and
Applications

www.elsevier.com/locate/jmaa

A note on Liouvillian integrability

Jaume Giné®*, Jaume Llibre?

2 Departament de Matematica, Universitat de Lleida, Avda. Jaume II 69, 25001 Lleida, Catalonia, Spain
b Departament de Matematiques, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain

ARTICLE INFO ABSTRACT
Article history: There was the belief that if a planar polynomial differential system has a Liouvillian
Received 30 June 2011 first integral, then it has some finite invariant algebraic curves. In this note we provide

Available online 6 October 2011

! a counterexample to this belief.
Submitted by R. Popovych

© 2011 Elsevier Inc. All rights reserved.

Keywords:
Liouville integrability
Invariant algebraic curve

1. Introduction

Let C[x, y] be the ring of all polynomials in the variables x and y with coefficients in C.

By definition a complex planar polynomial differential system or simply a polynomial system is a differential system of the
form
Ko impay, Zojoqoy (1)
dt - - 7.y ’ dt - y - ’ y ’
where the dependent variables x and y are complex, and the independent one (the time) t can be real or complex, and
P, Q € C[x, y]. We denote by m = max{deg P, deg Q } the degree of the polynomial system.

Alternatively, we can view the polynomial system (1) as defining a complex polynomial foliation with singularities on
CP? of degree n. Such a foliation has an invariant line at infinity and, conversely, any such foliation can be brought to
a polynomial system of the form (1).

Let f = f(x, y) =0 be an algebraic curve in C2. We say that it is invariant or that it is a finite invariant algebraic curve by
the polynomial system (1) if

P+ Qo =k, )
X y

for some polynomial k = k(x, y) € C[x, y], called the cofactor of the algebraic curve f = 0. Note that the degree of the
polynomial k is at most m — 1. From (2) it is immediate to check that the algebraic curve f =0 is formed by trajectories of
the polynomial system (1).

Let h, g € C[x, y] and assume that h and g are relatively prime in the ring C[x, y]. Then the function exp(g/h) is called
an exponential factor of the polynomial system (1) if for some polynomial k € C[x, y] of degree at most m — 1 it satisfies
equation
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9 exg(g/h) 40 dexp(g/h) =kexp(g/h). .
pe dy

P

If exp(g/h) is an exponential factor it is easy to show that h = 0 is an invariant algebraic curve. An exponential factor
appears when an invariant algebraic curve has in some sense multiplicity larger than 1. An exponential factor plays the
same role than an invariant algebraic curve in order to obtain a first integral for a polynomial system. For more details on
exponential factors see [4].

Let U be an open subset of C2. We say that a non-constant function H : U — C is a first integral of the polynomial
system (1) in U if H is constant on the trajectories of the polynomial system (1) contained in U} i.e. if

P oH +Q oH _ 0
ax ay

in the points (x, y) € U.

We say that a non-constant function R : U — C is an integrating factor of the polynomial system (1) in U if R satisfies
that

9(RP) | 3(RQ) _
ax ay

)

in the points (x, y) € U.

Due to the algebraic structure of a polynomial system there is a close relationship between its integrability (a topological
phenomena) and its exact algebraic solutions. Darboux [5] in 1878 proved that if a polynomial system of degree m has
at least m(m 4+ 1)/2 4+ 1 invariant algebraic curves, then it has a first integral which can be expressed by means of these
invariant algebraic curves in the following way:

q
Hey) =[] .

i=1

where A; € C and fj(x, y) = 0 are invariant algebraic curves of system (1). This kind of first integral is called a Darboux first
integral.

Jouanolou [10] in 1979 showed that if the number of invariant algebraic curves is at least [m(m + 1)/2] + 2, then the
first integral is rational, and consequently all the trajectories of the vector field are contained in invariant algebraic curves.

Prelle and Singer [11] demonstrated in 1983 that if a polynomial system has an elementary first integral, then this
integral can be computed using the invariant algebraic curves of the system; in particular they showed that this polynomial
system admits an integrating factor R such that RN, with N € Z, is a rational function with coefficients in C, see [11]. Later
on, in 1992 Singer [12] showed that if a polynomial system has a Liouvillian first integral then the system has an integrating
factor of the form

*.y)

R(x,y) = exp( Ui, y)dx+ V(x, y)dy), (4)

(X0,Y0)

where U and V are rational functions which verify aU/dy = aV /9x. In 1999 Christopher [2] showed that the integrating
factor (4) can be written into the form

R=exp(g/m [] " (5)

where g, h and f; are polynomials and A; € C. For another proof of the explicit expression for the inverse integrating
factor, see page 26 of [3]. This condition guarantees the existence of a first integral that can be expressed by quadratures of
elementary functions (Liouville function). This type of integrability is known since then as Liouville integrability theory. The
cited works [11,12] give a criterion for knowing when a polynomial system has an elementary first integral or a Liouvillian
first integral. An important fact following from those results is that invariant algebraic curves and exponential factors play
a key role in these criteria.

Non-algebraic invariant curves with polynomial cofactor can also be used in order to find a first integral for a system.
This observation permits the generalization of the Darboux integrability theory given in [7-9] where a new kind of first
integrals, not only the Liouvillian ones, is described.

There was the belief that a Liouvillian integrable system has always an invariant algebraic curve in C2. Moreover, this
claim was proved under certain hypotheses, see [13]. The aim of this paper is to prove that there exist Liouvillian integrable
polynomial systems without any finite invariant algebraic curve. To obtain this result we provide a Liouvillian integrable
planar polynomial system of degree 2 in C2 without finite invariant algebraic curves.
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2. The construction of the example

We note that f; =0 and h =0 in (5) are invariant algebraic curves and exp(g/h) is an exponential factor for system (1),
for more details see [1]. Therefore if there exist an example of a Liouvillian integrable planar polynomial system without
finite invariant algebraic curves, then it must have an integrating factor of the form R = exp(g(x, y)), where g is a polyno-
mial. Note that g =0 does not need to be an invariant algebraic curve of system (1). From [4] exp(g(x, y)) is an exponential
of the invariant line at infinity.

The first idea for finding our example is looking for it inside the class of linear differential systems. But inside this class
of polynomial systems such an example cannot exist as it follows from the next result.

Proposition 1. Every polynomial system of degree 1 has some finite invariant algebraic curve.

Proof. If the planar linear differential system has more than one singular point, it has an invariant straight line of singular
points, and the proposition is proved. So we can assume that the linear differential system has a unique singular point.
Without loss of generality we can assume that this singular point is the origin of coordinates. Then the linear system
becomes

(5)=+()

with determinant of the 2 x 2 matrix A different from zero. Again without loss of generality we can assume that A is of
one of the following two Jordan normal forms

A0 A1
0 x /)’ 0 xr)’
with Aq, A2 and A in C. Clearly in both cases the straight line y = 0 is invariant. This completes the proof. O
Consequently, if we want a Liouvillian integrable system without finite invariant algebraic curves, we must consider
polynomial systems of degree 2 (quadratic systems) or higher. Starting with quadratic systems, one could hope to find a
Liouvillian integrable system without finite invariant algebraic curves with g(x, y) linear, i.e. the case when g(x, y) = ax+by.

Note that we can consider the case g(0,0) =0, because the case g(0,0) ## 0 provides an irrelevant multiplicative constant
in the integrating factor R. Proposition 2 shows that this is not possible.

Proposition 2. There is no quadratic systems with an integrating factor of the form exp(ax + by), without finite invariant algebraic
curves.

Proof. We write the quadratic system as
k=Y apyl,  y= )" byxy, (6)
i+j=0 i+j=0

with i and j non-negative integers. Then, without loss of generality we can assume that the integrating factor is of the form
exp(x + by). Therefore system (7) becomes

x=b11 —bboo — bo1 + bb1o — 2bbg + (2bbag — bb1g — b11)x
+ (bb11 — bbo1 — 2bg2)y — bbgx? — bby1xy — bboay?,
9 = boo 4 b10X + bo1y + b2ox* + b11xy + boz y?. (7)

This system has the invariant algebraic curve

boo — b1o + 2b2g + (b1o — 2b20)x + (bo1 — b11)y + b2oX* + b11xy + boay? = 0.
Hence the proposition is proved. O

If we look for quadratic systems having an integrating factor of the form exp(ax® -+ bxy + cx?) and without finite invariant
algebraic curves, we can find them, as the following result shows.

Theorem 3. Consider the quadratic system

Xx=—-1-—x2x+Yy), V=2x2x+y). (8)
This system is a Liouvillian integrable and has no finite invariant algebraic curves.

Theorem 3 is proved in the next section.
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3. Proof of Theorem 3
3.1. Existence of a Darboux integrating factor

The following result shows that system (8) is Liouvillian integrable.
Proposition 4. System (8) is Liouvillian integrable because it has the integrating factor R = e~(*+Y )/ 4 and the first integral

1
H=2e—%(2"+y)2x—ﬁerf<§(2x+y)>, (9)

where erf(z) is the error function, i.e. the integral of the Gaussian distribution, given by

V4
erf(z) = % / e~ dt.
0

Proof. Easy computations show that the function R = e~**%?/4 verifies the equation

O(R(=1—x(2x+y)))  9(R(2x(2x+y)))
+ =
ax ay

0,

and therefore R is an integrating factor of system (8), and consequently system (8) is Liouvillian integrable with a first
integral H satisfying that

H
y=R(2x2x+y)) = _a_.

x=R(-1—x2x+Y)) X

=@7

An easy computation shows that this H is the one given in (9). O
3.2. Non-existence of algebraic invariant curves

In this subsection we establish that system (8) has no finite invariant algebraic curves.
Proposition 5. System (8) has no finite invariant algebraic curves.

Proof. We force that f(x, y) =0, where f is a polynomial of degree n > 1, be an invariant algebraic curve of system (8). So
f must satisfy

a a
(-1 —2x2—xy)—f +2x(2x+y)—f:kf, (10)
ax ay
where k, the cofactor of the curve f =0, is a polynomial of degree 1, and we write k =ax+ by + c.
Now we develop the invariant curve f in homogeneous terms into the form

f=h&y) + i y)+-+ folx, y), (11)
where f; = fi(x, y) is a homogeneous polynomial of degree i, for i =0, 1, ...,n. We substitute the expression of f given by
(11) into Eq. (10), and we consider the homogeneous term of largest degree which is of degree n + 1 and that is given by

3 fn 3 fn

—X(2x+y)—— +2x(2x+ y)—— = (ax + by) fa.
ax ay

The general solution of this partial differential equation is

2b —a)x

_ —b
fn(X’J’)—EXP< Xty )X g2x+y),

where g is an arbitrary C! function. Since f,(x, y) must be a homogeneous polynomial of degree n, first we have that
a =2b, and after that we obtain that

falx, y) = cax P 2x + y)" P,

with b an integer in {—n, —(n — 1), ..., 0}, and c; a non-zero constant.
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Now we consider the terms of degree n of (10), i.e.

3 fo 3 fo
Jn L ox@2x+y) Jo
X ay

The general solution of this partial differential equation is

—x2x+y)

= (ax+ by) fn—1 + cfn.

fac1(, ¥) =x72(g@x + y) — ccn@x + )P logx),

where g is an arbitrary C! function. Since ¢, # 0 and f,_1(x, y) must be a homogeneous polynomial of degree n — 1, we
get that ¢ =0, and

fac1(X, ¥) = ca1x P @x + y)"th-1,

with b an integer in {—(n — 1), —(n —2),...,0} if c,_1 is a non-zero constant.
The terms of degree n — 1 of (10) are
0 fn_ 0 fn_ ad
x4+ 02 L oraxt 22 _paxt gy g+ 20
0x ay 0x

The general solution of this partial differential equation is

fam2(6, y) =x "7 (xg2x + ¥) — cnx + )P (b2x + y) + 2(b +n)xlog(x))),

where g is an arbitrary C'. Since fu,_»(x, y) must be a homogeneous polynomial of degree n — 2, we get that b = —n.
Substituting b = —n in f,_1(x, y) we obtain c;_1 = 0. Therefore

fa2(x, y) =X"g2x +y) +ncaxX" T 2x+ )71

In contradiction with the fact that f;_»(x, y) must be a homogeneous polynomial of degree n—2 and ¢, # 0. This completes
the proof of the proposition. O

Proof of Theorem 3. It follows directly from Propositions 4 and 5. O

4. Phase portrait of system (8)

In this section we study the phase portrait of the quadratic system (8). Clearly this system has no finite singularities.

Let X € P(R?) be a planar vector field of degree n. The Poincaré compactified vector field p(X) corresponding to X is an
analytic vector field induced on S? as follows (see for instance Chapter 5 of [6]). Let S? = {y = (y1,y2,y3) € R®: y? +
y% + y% = 1} (the Poincaré sphere) and T},S2 be the tangent space to S? at point y. Consider the central projection
f: T((),o,])Sz — S2. This map defines two copies of X, one in the northern hemisphere and the other in the southern
hemisphere. Denote by X’ the vector field Df o X defined on S? except on its equator S! = {y € S?: y3 =0}. Clearly S! is
identified to the infinity of R2. In order to extend X’ to a vector field on S? (including S!) it is necessary that X satisfies
suitable conditions. In the case that X € P,(R?), p(X) is the only analytic extension of y5~'X’ to S?. On S?\S' there are
two symmetric copies of X, and knowing the behaviour of p(X) around S', we know the behaviour of X at infinity. The
projection of the closed northern hemisphere of S on y3 =0 under (y1, y2, ¥3) — (y1, ¥2) is called the Poincaré disc, and
it is denoted by D?. The Poincaré compactification has the property that S! is invariant under the flow of p(X).

As S? is a differentiable manifold, for computing the expression for p(X), we can consider the six local charts U; =
{yeS% y;>0},and V;={y €S%: y; <0} where i =1, 2,3; and the diffeomorphisms F;: U; — R? and G; : V; - R? for
i=1,2,3 are the inverses of the central projections from the planes tangent at the points (1,0,0), (—1,0,0), (0,1,0),
(0,-1,0), (0,0,1) and (0,0, —1) respectively. If we denote by z = (z1, z2) the value of F;(y) or G;(y) foranyi=1,2,3 (so
z represents different things according to the local charts under consideration), then some easy computations give for p(X)
the following expressions:

1 1 1
ZgA(z)<Q<_7z_l)_ZIP(—,Z—1>,—22P<—,Z—1>> in Uy,
2 22 2 2 22 2o

" z1 1 z1 1 z1 1 .
HAD\P\ — — ) —z1Q| —, — |, —22Q| —, — inUs,
22 23 Vo 5) Z2 2

A@2)(P(z1,22), Q(z1,22)) inUs,

where A(z) = (Z% +Z§ + 1)*%("*”. The expression for V; is the same as that for U; except for a multiplicative factor
(=1)™ 1. In these coordinates for i = 1,2, z, = 0 always denotes the points of S!. Rescaling the independent variable we
can omit the factor A(z) by rescaling the vector field p(X). Thus we obtain a polynomial vector field in each local chart.
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Fig. 1. Phase portrait of the quadratic system (8) in the Poincaré disc.

This phase portrait has two pairs of points at infinity. Two are saddles and the other two are highly degenerate singular
points formed by two elliptic and parabolic sectors.

Using the Poincaré compactification we obtain the phase portrait of Fig. 1 in the Poincaré disc for the quadratic sys-
tem (8).
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