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1. Introduction

Let H be a Hilbert space and T ∈ B(H), the set of bounded linear operators on H . The numerical rangeW (T ) of T is the
subset of the complex plane defined by

W (T ) = {⟨Tv, v⟩ | v ∈ H, ∥v∥ = 1}.

The Toeplitz–Hausdorff Theorem [25,12] states thatW (T ) is always convex.
Other well-known properties of the numerical range [9,13] include the following.

(a) The closure ofW (T ) contains the spectrum of T .
(b) If T and S are unitarily equivalent, thenW (T ) = W (S).
(c) If H is finite-dimensional, thenW (T ) is closed.
(d) If dimH = 2, thenW (T ) is a possibly degenerate elliptic disk with foci equal to the eigenvalues of T .

In [26], Tso and Wu showed that result (d) generalizes to any Hilbert space H as follows. If T is a quadratic operator on
H , i.e., if there is a second-degree polynomial q such that q(T ) = 0, then W (T ) is a possibly degenerate elliptic disk whose
foci are the eigenvalues of T . These numerical ranges are always either open or closed; Tso andWu include norm conditions
that determine which case holds. Rodman and Spitkovsky extended these results to generalizations of the numerical range
in [21].

In this paper, we will consider the numerical range of T when T is a certain composition operator on H2
= H2(D). Recall

that H2 is defined to be all analytic functions f on D such that

∥f ∥2
H2 = sup

0<r<1

 2π

0
|f (reiθ )|2

dθ
2π

< ∞.

This space is a Hilbert space with inner product

⟨f , g⟩H2 = lim
r↑1

 2π

0
f

reiθ

g

reiθ
 dθ
2π

=
1

2π i


∂D

f (z)g(z)
dz
z

,

where in the latter integral f and g refer to the corresponding functions on the boundary of D.
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For each λ ∈ D, and for each f ∈ H2, f (λ) = ⟨f , kλ⟩, where kλ is the reproducing kernel in H2 given by kλ(z) =
1

1−λz
.

If ϕ is an analytic self-map of the open unit disk D, the associated composition operator is defined for f ∈ H2 by
Cϕ f = f ◦ ϕ. The mapping ϕ is called the symbol of the composition operator. On H2, the operator Cϕ is bounded for all
analytic mappings ϕ from D to itself. This and many other results about composition operators appear in [8,22].

Several authors [1,4,5,17,18] have studied the numerical ranges of composition operators. In particular, in [4], Bourdon
and Shapiro analyzed the numerical ranges of composition operators with automorphic symbols. This paper is concerned
with an open question in [4], so we recall some relevant results.

Any automorphism of the disk can be classified into one of three types: hyperbolic (with two fixed points on ∂D);
parabolic (with one fixed point on ∂D); or elliptic (with one fixed point inside D and one fixed point outside the closure
of D). Any elliptic automorphism is conformally conjugate to a mapping of the form Φ(z) = eiαz for some real number α;
the value eiα is called the rotation parameter of the automorphism.

Bourdon and Shapiro showed that if Cϕ is a composition operator on H2 with symbol ϕ equal to a hyperbolic or parabolic
automorphism of D, then W (Cϕ) is a circular disk centered at the origin. (Throughout the remainder of the paper, the term
‘‘disk’’ implies circular disk.)Matache [18] recently showed that,more generally, all inner functions of hyperbolic or parabolic
type have numerical ranges which are disks. If ϕ is an elliptic automorphism that fixes the origin, then W (Cϕ) is either a
polygon (if the rotation parameter is eiα with α equal to a rational multiple of π ) or a disk with some boundary points;
see [17,4].

Finally, if the elliptic automorphism ϕ does not fix the origin and has rotation parameter with argument α not equal to a
rational multiple of π , then Bourdon and Shapiro showed that the numerical range of Cϕ is a disk centered at the origin. In
several of the cases mentioned above, the question of which, if any, boundary points were included in the numerical range
is open.

The remaining case discussed by Bourdon and Shapiro involved an elliptic automorphism ϕ that does not fix the origin
where α is equal to a rational multiple of π . The mapping ϕ has a rotation parameter with argument α equal to a rational
multiple of π if and only if there is a positive integer n such that Cn

ϕ = I . More precisely, if ϕ has rotation parameter eiα with
α equal to a rational multiple of π , then there exists a positive integer n such that the rotation parameter is a primitive nth
root of unity. In this case, the mapping Φ(z) = eiαz induces a composition operator CΦ with minimal polynomial equal to
zn −1, and therefore the similar composition operator Cϕ also has minimal polynomial zn −1. Conversely, if Cϕ has minimal
polynomial zn − 1, then the rotation parameter of ϕ is a primitive nth root of unity.

Bourdon and Shapiro showed that when Cϕ has minimal polynomial z2 − 1, the numerical range of Cϕ is an elliptic disk
with foci at ±1; in fact they showed this result holds for any operator T with minimal polynomial z2 − 1, as is consistent
with the general results about quadratic operators in [26]. When n ≥ 3, they conjectured that if Cϕ has minimal polynomial
zn − 1, then the numerical range of Cϕ is not a disk.

A natural question is to what extent the phenomenon that T has minimal polynomial zn − 1 implies that W (T ) is not a
disk holds when T is not a composition operator. When T is an operator on a finite-dimensional Hilbert space, results in [16]
(see also [28]) show that if W (T ) is a disk, then the center of the disk is a multiple eigenvalue of T . Since an operator with
minimal polynomial zn − 1 has no multiple eigenvalues, such an operator on a finite-dimensional space cannot have a disk
as its numerical range.

However, unlike the quadratic case, this type of result does not extend to infinite-dimensional Hilbert spaces; in [11],
an operator T on an infinite-dimensional Hilbert space with minimal polynomial equal to z3 − 1 and with numerical range
equal to an open disk is constructed.

In this paper, we show that the conjecture of Bourdon and Shapiro does in fact hold for composition operators onH2 with
minimal polynomial equal to z3 − 1: the numerical range of such a composition operator is not a disk. In order to prove this
result, we first show that for integers n ≥ 2 a composition operator Cϕ with minimal polynomial zn − 1 is block Toeplitz
with respect to a certain orthonormal basis, and the Toeplitz symbol of the operator is an n × n matrix-valued polynomial
of degree 1. A recent result of Bebiano and Spitkovsky [2] about numerical ranges of Toeplitz operators with matrix-valued
symbols is then applied to characterize the closure of the numerical range of Cϕ as the convex hull of the numerical ranges
of the n × nmatrices in the range of the Toeplitz symbol. In the n = 3 case, enough specific information about the Toeplitz
symbol is known to conclude that the numerical range of Cϕ is not a disk.

2. Preliminary calculations

For an analytic self-map ϕ of the disk and a natural numberm, let ϕm denote the function obtained by composing ϕ with
itselfm times. Set ϕ0(z) = z for all z ∈ D, and note that ϕ1 = ϕ.

Throughout the paper, ϕ will denote an elliptic automorphism whose rotation parameter is an nth root of unity. That is,
ϕn(z) = z for all z ∈ D. Since ϕ is a disk automorphism, there exist η ∈ ∂D and p ∈ D such that

ϕ(z) = η
p − z
1 − pz

. (1)

As discussed in the introduction, numerical ranges of composition operators with symbols that are rotations fixing the
origin were analyzed in [17]. If p ≠ 0 but η = −1, then ϕ is a hyperbolic automorphism. Therefore wemay assume without
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loss of generality that n ≥ 2 (because the n = 1 case leads to the identity mapping and operator), p ≠ 0 and η ≠ −1. With
these assumptions, we will find conditions on p and η that guarantee ϕn(z) = z for all z and ϕk(z) ≢ z for any k satisfying
1 ≤ k < n. To find these iterates, represent the linear fractional transformation ϕ by the matrix

M =


−η ηp
−p 1


.

The matrixM has eigenvalues

ξ1 =
1 − η

2
+


(1 + η)2 − 4η|p|2

2
and ξ2 =

1 − η

2
−


(1 + η)2 − 4η|p|2

2
. (2)

If these eigenvalues were equal, ϕ would be a parabolic automorphism or the identitymapping, sowe know that ξ1 ≠ ξ2.
Hence M can be diagonalized as M = PDP−1, where D is the 2 × 2 diagonal matrix with ξ1 and ξ2 on the diagonal and P
contains the corresponding eigenvectors in its columns:

P =


ηp ηp
η + ξ1 η + ξ2


.

Consequently,

Mn
= PDnP−1

=


ηp

η(ξ n

1 − ξ n
2 ) + ξ1ξ2(ξ

n−1
1 − ξ n−1

2 )


ηp(ξ2 − ξ1)

(ηp)2(ξ n
2 − ξ n

1 )

ηp(ξ2 − ξ1)

(η + ξ2)(η + ξ2)(ξ
n
1 − ξ n

2 )

ηp(ξ2 − ξ1)

ηp

η(ξ n

2 − ξ n
1 ) + ξ n+1

2 − ξ n+1
1


ηp(ξ2 − ξ1)

 .

Since ϕn is the identity map if and only ifMn is a constant multiple of the identity matrix, the following result holds.

Proposition 1. Let n be an integer with n ≥ 2. The automorphism of the form (1) with p ≠ 0 and η ≠ −1 satisfies ϕk(z) = z
for all z when k = n but for no positive integer smaller than n if and only if

ξ n
1 = ξ n

2 , and

ξ k
1 ≠ ξ k

2 for all integers k with 1 ≤ k < n,

where ξ1 and ξ2 are given by (2).

When n = 2, the conditions in Proposition 1 are ξ1 ≠ ξ2 and η = 1.
When n = 3, the conditions simplify to ξ1 ≠ ξ2 and

1 − η + η2
− η|p|2 = 0 and η ≠ 1. (3)

Whenn = 4, the condition becomesη+η = 2|p|2 alongwith the restriction that the previous conditions forn = 1, n = 2,
and n = 3 do not hold.

Fix an integer nwith n ≥ 2. The conditions in Proposition 1 that guarantee ϕn(z) = z for all z ∈ D are also equivalent to
ϕn−1 = ϕ−1. Set

λj = ϕj−1(0) for j = 1, . . . , n, (4)

so that λ1 = 0, λ2 = ϕ(0) = ηp, . . . , λn = ϕn−1(0) = ϕ−1(0) = p. This cyclic condition motivates a choice of orthonormal
basiswhich exhibits the numerical range behavior of the associated composition operator. The basis depends on the Blaschke
product of degree n defined below:

B(z) = ϕ1(z)ϕ2(z) · · · ϕn(z). (5)

Note that B(λj) = 0 for j = 1, . . . , n because ϕn−j+1(λj) = ϕn(0) = 0.
Also,

B(ϕ(z)) = ϕ2(z)ϕ3(z)ϕ4(z) · · · ϕn(z)ϕ1(z) = ϕ1(z)ϕ2(z)ϕ3(z) · · · ϕn−1(z)ϕn(z) = B(z),

which implies that

CϕBN
= BN (6)

for all non-negative integers N .
Let g1, . . . , gn be any collection of orthonormal functions in H2 such that

span{gi | 1 ≤ i ≤ j} = span{kλi | 1 ≤ i ≤ j}
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for all j ∈ {1, . . . , n}. LetGdenote the subspace ofH2 spannedby g1, g2, . . . , gn. Clearly,H2 has the orthogonal decomposition
H2

= G ⊕ BH2. Furthermore,

H2
= G ⊕ BG ⊕ B2G ⊕ · · · = ⊕

∞

N=0 B
NG,

because the summands are pairwise orthogonal, and any function f in H2 that is orthogonal to all of the summands must
satisfy f (λi) = f ′(λi) = f ′′(λi) = · · · = f (N)(λi) = · · · = 0 for all i = 1, . . . , n and for all non-negative integers N . That is, f
is identically zero.

In other words, the set

E = {BNgj | j = 1, 2, . . . , n, and N = 0, 1, 2, . . .} (7)

is a complete orthonormal basis for H2.
A convenient formula for the gi functions will be motivated by the Malmquist basis. In [10], Guyker used an orthonormal

basis to represent certain composition operators in terms of a lower triangular matrix. Bourdon and Shapiro [5] and
Abdollahi [1] each used Guyker’s basis to study composition operator numerical ranges; Bourdon and Shapiro point out
(with credit to Harold Shapiro) that the Guyker basis is a special case of the Malmquist (or Malmquist–Takenaka) basis
which is used in interpolation problems.

In general, the Malmquist basis is defined in terms of a sequence of points {zi}∞i=1 in the disk D. If


∞

i=1(1 − |zi|) = ∞,
then the basis defined bym1(z) = kz1(z)/∥kz1∥ and

mj(z) =


1 − |zj|2

1 − zjz

j−1
i=1

z − zi
1 − ziz

, j = 2, 3, . . . (8)

is a complete orthonormal basis for H2(D). In addition, if z1, . . . , zn are distinct, then the basis vectors {m1, . . . ,mn} have
the same span as the reproducing kernels {kz1 , . . . , kzn}. See [15,20,24], or [27] for more information.

In most interpolation applications, all of the points {zi} are distinct. However, the Guyker basis is the special case of the
Malmquist basis with zi = α for all i = 1, 2, 3, . . . , where α is the fixed point (assumed to be in D) of the symbol ϕ of a
composition operator.

The basis E in (7) is (up to unimodular constant multiples) a different case of the Malmquist basis where the sequence
{zi}∞i=1 is the repeating sequence

λ1, λ2, . . . , λn, λ1, λ2, . . . , λn, λ1, λ2, . . . , λn, . . . .

That is,

zj = ϕj−1(0) = ϕ(j−1)[mod n](0) = λj[mod n]. (9)

Assume that η1, . . . , ηn are unimodular complex constants. For any choice of g1, . . . , gn such that gj = ηjmj for
j = 1, . . . , n with mj defined as in (8) for points given by (9), the basis E from (7) will result in a complete orthonormal
basis for H2, as claimed. Since our computations involve composition with ϕ, it will be convenient to define the gj functions
directly in terms of iterates of ϕ. Consequently, let g1(z) = m1(z) = kλ1(z) = 1, and for 2 ≤ j ≤ n define

gj =


1 − |λj|

2 kλj ϕn · · · ϕn−j+2. (10)

The proposition below can be used to prove that these gj functions are in fact unimodular constant multiples of the
corresponding Malmquist basis vectors. The proof of the proposition is a straightforward but lengthy induction argument,
so it is omitted.

Proposition 2. Let n be an integer with n ≥ 2. Let ϕ be an elliptic automorphism of the form (1), where η and p satisfy the
conditions in Proposition 1. Let ϕj be the jth iterate of ϕ, and let λ1, . . . , λn be defined as in (4). Then

ϕj(z) = −
λj+1

λn−j+1


z − λn−j+1

1 − λn−j+1z


for j = 1, . . . , n − 1

and ϕn(z) = z.

A consequence of Proposition 2 is that each ratio λj+1/λn−j+1 is unimodular; hence the choice of iterates of ϕ in (10)
implies that each gj is a unimodular multiple of the corresponding Malmquist basis vector.

Next we present some technical results that are used to compute the matrix for Cϕ with respect to the basis E in (7).
The proposition below is simply a special case of Cowen’s adjoint formula for composition operators with linear fractional
symbol; for details, see Theorem 2 in [7] or Theorem 9.2 in [8].

Proposition 3. Let ϕ be a disk automorphism of the form (1). Then, for any f in H2,
C∗

ϕ f

(z) =

p(f (ϕ(−1)(z)) − f (0))
ηz − p

+
f (ϕ(−1)(z))
1 − pη(z)

. (11)
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Proof. Assume that τ(z) =
az+b
cz+d , with a, b, c, d ∈ C. Cowen’s formula states that if this linear fractional transformation is

a self-map of the unit disk, then the corresponding composition operator has adjoint

C∗

τ = TgCσ T ∗

h ,

where σ(z) =
az−c

−bz+d
, h(z) = cz + d, and g(z) =

1
−bz+d

. For a bounded analytic function g , the operator Tg denotes the
Toeplitz operator onH2 with symbol g . That is, Tg ismultiplication by g followed by projection ontoH2. The Toeplitz symbols
that arise in the formula are bounded whenever τ is a self-map of the disk.

We will apply Cowen’s formula directly to ϕ(z) = η
p−z
1−pz . In this case, σ(z) =

−ηz+p
1−ηpz = ϕ−1(z), g(z) =

1
1−ηpz , and

h(z) = −pz + 1.
Note that Th = −pS + I , where S is the unilateral shift (multiplication by z followed by projection onto H2) and I is the

identity operator on H2. Therefore, T ∗

h = −pS∗
+ I , so

(T ∗

h f )(z) = −p

f (z) − f (0)

z


+ f (z),

where the removable singularity makes the right side of the expression above well defined for all z ∈ D.
Therefore,

(Cσ T ∗

h f )(z) = −p

f (ϕ(−1)(z)) − f (0)

ϕ(−1)(z)


+ f (ϕ(−1)(z)).

Finally, since ϕ(−1)(z) =
p−ηz
1−ηpz ,

(TgCσ T ∗

h f )(z) =
−p

1 − ηpz


f (ϕ(−1)(z)) − f (0)

ϕ(−1)(z)


+

1
1 − ηpz

f (ϕ(−1)(z))

= −p

f (ϕ(−1)(z)) − f (0)

p − ηz


+

f (ϕ(−1)(z))
1 − ηpz

,

which is equivalent to the statement in the proposition. �

The remaining results in this section will all use the following hypotheses.

(i) The value n is an integer with n ≥ 2;
(ii) the map ϕ is a disk automorphism of the form (1);
(iii) the composition operator Cϕ has minimal polynomial zn − 1;
(iv) the points λ1, . . . , λn are defined as in (4); and
(v) the functions B and g1, . . . , gn are defined in (5) and (10), respectively.

 (12)

Wewill repeatedly simplify terms by canceling inner functions (including B and all iterates of ϕ) that appear in both sides
of any inner product in H2.

The following result about C∗
ϕ f evaluated at the points λ1, . . . , λn is an immediate consequence of the previous

proposition. The special case when j = 2 occurs because λ2 = ηp corresponds to the removable singularity in (11). Recall
that λ0 = λ0[mod n] = λn.

Corollary 4. Assume that the conditions in (12) hold. If f ∈ H2, then

⟨C∗

ϕ f , kλj⟩ =


pf ′(0)

−1 + |p|2
+

f (0)
1 − |p|2

if j = 2,

p(f (λj−1) − f (0))
ηλj − p

+
f (λj−1)

1 − pηλj
if 1 ≤ j ≤ n, j ≠ 2.

The above corollary allows us to compute ⟨C∗
ϕ f , kλj⟩ even if we only know the values f (0), f ′(0), and f (λj−1).

Lemma 5. If the conditions in (12) hold, then

⟨C∗

ϕ f , kλjϕn⟩ =


η(pf (0) − f ′(0))

1 − |p|2
if j = 2.

η(1 − |p|2)f (λj−1)

(ηλj − p)(1 − pηλj)
−

ηf (0)
ηλj − p

if 3 ≤ j ≤ n.
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Proof. In general, if h ∈ H2 and z0 ≠ 0 is in D, then

⟨h, kz0ϕn⟩ =
1

2π i


∂D

h(z)z
(1 − z0z)

dz
z

=
1

2π i


∂D

h(z)
z(z − z0)

dz =
h(z0) − h(0)

z0
.

When j = 2 (that is, z0 = λ2 = ηp) and f ∈ H2, the equation above and Corollary 4 show that

⟨C∗

ϕ f , kλ2ϕn⟩ =
C∗

ϕ f (λ2) − C∗
ϕ f (0)

λ2
=

f (0)−pf ′(0)
1−|p|2

− f (0)

λ2
=

η(pf (0) − f ′(0))
1 − |p|2

.

Finally, when 3 ≤ j ≤ n and f ∈ H2,

⟨C∗

ϕ f , kλjϕn⟩ =
C∗

ϕ f (λj) − C∗
ϕ f (0)

λj
=


p


f (λj−1)−f (0)
ηλj−p


+

f (λj−1)

1−ηpλj


− f (0)

λj
.

The final term simplifies to the expression in the lemma. �

Lemma 6. If the assumptions in (12) hold and 1 ≤ i, j ≤ n, then

⟨Cϕgj, gi⟩ =



1 if j = i = 1,
0 if j = 1, i ≥ 2,

1 − |λi|
2

1 − |λj|
2
λj if j − i = 1,

0 if j − i ≥ 2,
−η if j = i = 2,

−ηλn · · · λn−i+3

1 − |λi|

2
1 − |p|2

if j = 2, i > j,

−
ηλn−j+3 · · · λn−i+3


1 − |λi|

2

1 − |λj|

2

ηλj − p
if j > 2, i ≥ j.

(13)

Proof. When j = 1, the formula for ⟨Cϕgj, gi⟩ follows from the identity Cϕg1 = g1 and the orthonormality of g1, . . . , gn.

When j − i = 1 (implying j ≥ 2 and i ≤ n − 1), gj =
kλj

∥kλj∥
ϕn · · · ϕn−j+2 has at least one factor that is an iterate of ϕ. In

addition, ϕ(λi) = λi+1 = λj for i = 1, . . . , n − 1. Therefore,

⟨Cϕgj, gi⟩ =


Cϕ


kλj

∥kλj∥
ϕn · · · ϕn−j+2


,

kλi

∥kλi∥
ϕn · · · ϕn−i+2



=


Cϕ


kλj

∥kλj∥


ϕ1ϕn · · · ϕn−j+3,

kλi

∥kλi∥
ϕn · · · ϕn−i+2



=


Cϕ


kλj

∥kλj∥


ϕ1ϕn · · · ϕn−i+2,

kλi

∥kλi∥
ϕn · · · ϕn−i+2



=


Cϕ


kλj

∥kλj∥


ϕ1,

kλi

∥kλi∥


=


1 − |λj|

2

1 − |λi|

2 ϕ(λi)

1 − λjϕ(λi)

=


1 − |λi|

2
1 − |λj|

2
λj.

When j − i ≥ 2 (and thus n − j + 3 ≤ n − i + 1), gj has at least two factors which are iterates of ϕ. Consequently,

⟨Cϕgj, gi⟩ =


Cϕ


kλj

∥kλj∥
ϕn · · · ϕn−j+2


,

kλi

∥kλi∥
ϕn · · · ϕn−i+2



=


Cϕ


kλj

∥kλj∥


ϕ1ϕn · · · ϕn−j+3,

kλi

∥kλi∥
ϕn · · · ϕn−i+2


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=


Cϕ


kλj

∥kλj∥


ϕ1ϕn−i+1 · · · ϕn−j+3,

kλi

∥kλi∥


= 0,

because ϕn−i+1(λi) = λn−i+1+i = 0 for i = 1, . . . , n − 2.
When j = 2 and i ≥ j, Lemma 5 yields

⟨Cϕg2, gi⟩ =


Cϕ


kλ2

∥kλ2∥
ϕn


, gi


=


kλ2

∥kλ2∥
ϕn, C∗

ϕgi


=


1 − |p|2 ⟨kλ2ϕn, C∗

ϕgi⟩

=


1 − |p|2 ⟨C∗

ϕgi, kλ2ϕn⟩ =


1 − |p|2

η(p gi(0) − g ′

i (0))
1 − |p|2

=
η(pgi(0) − g ′

i (0))
1 − |p|2

.

Since i ≥ j = 2,

gi(z) =
kλi(z)
∥kλi∥

zϕn−1(z) · · · ϕn−i+2(z)

always contains the factor z. Hence gi(0) = 0 and

g ′

i (0) =
kλi(0)
∥kλi∥

ϕn−1(0) · · · ϕn−i+2(0) =


1 − |p|2 if i = 2,
1 − |λi|

2λn · · · λn−i+3 if i ≥ 3.

We conclude that, when i ≥ 2,

⟨Cϕg2, gi⟩ =


−η if i = 2,

−ηλn · · · λn−i+3

1 − |λi|

2
1 − |p|2

if i ≥ 3.

Finally, when i ≥ j ≥ 3, we obtain

⟨Cϕgj, gi⟩ =


Cϕ


kλj

∥kλj∥


ϕ1ϕn · · · ϕn−j+3,

kλi

∥kλi∥
ϕn · · · ϕn−i+2



=


Cϕ


kλj

∥kλj∥


ϕ1,

kλi

∥kλi∥
ϕn−j+2 · · · ϕn−i+2



=


kλj

∥kλj∥
ϕn, C∗

ϕ


kλi

∥kλi∥
ϕn−j+2 · · · ϕn−i+2



=


1 − |λj|

2


η(1 − |p|2)hij(λj−1)

(ηλj − p)(1 − pηλj)
−

ηhij(0)

ηλj − p


,

where hij =
kλi

∥kλi∥
ϕn−j+2 · · · ϕn−i+2, and the last equality follows from the j ≥ 3 case of Lemma 5. Note that hij(λj−1) has

ϕn−j+2(λj−1) = λn+1 = 0 as a factor. In addition, hij(0) =

1 − |λi|

2λn−j+3 · · · λn−i+3. Therefore, when i ≥ j ≥ 3, we
conclude that

⟨Cϕgj, gi⟩ = −
ηλn−j+3 · · · λn−i+3


1 − |λj|

2

1 − |λi|

2

ηλj − p
.

Therefore, in all cases, ⟨Cϕgj, gi⟩ has the value given in the theorem. �

Lemma 7. If the assumptions in (12) hold and 1 ≤ i, j ≤ n, then, for n ≥ 3,

⟨Cϕgj, Bgi⟩ =



0 if i = j = 1,
0 if i > 1, 1 ≤ j ≤ n,

−pλ3 · · · λn
1 − |p|2

if i = 1, j = 2,

−p λ3 · · · λn−j+3

1 − |λj|

2

ηλj − p
if i = 1, 3 ≤ j ≤ n.

When n = 2, the relevant (i, j) values are the same except that ⟨Cϕg2, Bg1⟩ = −
p√

1−|p|2
.
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Proof. If j = 1, then ⟨Cϕgj, Bgi⟩ = ⟨1, Bgi⟩ = 0 for all i, since B(0) = 0. If i > 1 and j > 1, then

⟨Cϕgj, Bgi⟩ =


Cϕ


kλj

∥kλj∥
ϕn · · · ϕn−j+2


, B

kλi

∥kλi∥
ϕn · · · ϕn−i+2



=


Cϕ


kλj

∥kλj∥


ϕ1ϕn · · · ϕn−j+3, B

kλi

∥kλi∥
ϕn · · · ϕn−i+2



=


Cϕ


kλj

∥kλj∥


, ϕ2 · · · ϕn−j+2

kλi

∥kλi∥
ϕn · · · ϕn−i+2



=


kλj

∥kλj∥
, C∗

ϕ


ϕ2 · · · ϕn−j+2

kλi

∥kλi∥
ϕn · · · ϕn−i+2


.

When j ≠ 2, the function in the square brackets to which C∗
ϕ is applied has a zero at λ1 = 0 and at λj−1 due to the factors

ϕn and ϕn−j+2, respectively. When j = 2, the factor ϕn appears twice in this function, which consequently has a zero of order
two at λ1 = 0. Therefore Corollary 4 shows that ⟨Cϕgj, Bgi⟩ = 0 whenever i > 1.

If i = 1 and 2 ≤ j ≤ n, then

⟨Cϕgj, Bgi⟩ = ⟨Cϕgj, B⟩

=


Cϕ


kλj

∥kλj∥
ϕn · · · ϕn−j+2


, B



=


Cϕ


kλj

∥kλj∥


, ϕ2 · · · ϕn−j+2



=


1 − |λj|

2

kλj , C

∗

ϕ


ϕ2 · · · ϕn−j+2


.

Corollary 4 provides the values to the expression above as follows. Define fj = ϕ2 · · · ϕn−j+2. When n ≥ 3 and j = 2,
f2(z) = ϕ2(z) · · · ϕn−1(z)z, so f2(0) = 0 and

f ′

2(0) = ϕ2(0) · · · ϕn−1(0) = λ3 · · · λn.

Therefore

⟨Cϕg2, B⟩ =
−p

1 − |p|2
λ3 · · · λn.

When n = j = 2, f2(z) = z, so f ′

2(0) = 1, and therefore ⟨Cϕg2, B⟩ = −
p√

1−|p|2
.

When j ≥ 3, the value fj(λj−1) has ϕn−j+2(λj−1) = 0 as a factor, so Corollary 4 yields
1 − |λj|

2⟨kλj , C
∗

ϕ [ϕ2 · · · ϕn−j+2]⟩ =
−pfj(0)


1 − |λj|

2

ηλj − p
=

−pλ3 · · · λn−j+3

1 − |λj|

2

ηλj − p
.

This concludes the proof. �

3. Block Toeplitz form of Cϕ

We next review the material (available in [3] or [6]) about block Toeplitz operators that is used in what follows. Let H
be a Hilbert space. Define ℓ2(H) to be the Hilbert space of square-summable sequences with entries in H . That is, ℓ2(H)
consists of the set of sequences

C =

(C0, C1, C2, . . .) | Cj ∈ H for j = 0, 1, 2, . . .


that satisfy


∞

j=0 ∥Cj∥
2
H < ∞, where ∥ · ∥H denotes the norm in H and the expression


∞

j=0 ∥Cj∥
2
H defines ∥C∥

2
ℓ2(H)

. There
is a natural Hilbert space isomorphism between ℓ2(H) and the spaceH2(H) ofH-valued analytic functions in the unit disk.
That is, a function f ∈ H2(H) has a power series expansion valid in D of the form f (z) =


∞

n=0 Cnzn with square-summable
coefficients.
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The space L∞(B(H)) is the set of essentially bounded, weakly measurable functions defined on the unit circle ∂D with
values in B(H). For F ∈ L∞(B(H)), the norm is defined by

∥F∥∞ = ess sup

∥F(z)∥B(H) | z ∈ ∂D


.

The functions in L∞(B(H)) have Fourier expansions of the form F(z) =


∞

n=−∞
Anzn, where An ∈ B(H) for all

integers n.
If T is a bounded linear operator on H2(H) (or equivalently ℓ2(H)), then T has a block matrix representation of the

form

Bij
∞
i,j=0, where each Bij is in B(H). If there exists a sequence {An}

∞
n=−∞

in B(H) such that the (i, j) block Bij satisfies
Bij = Ai−j, then T is called a block Toeplitz operator. The symbol of T is defined to be the following B(H)-valued function
defined on the unit circle ∂D:

F(z) =

∞
n=−∞

Anzn.

As in the scalar-valued case, if T is a block Toeplitz operator on H2(H) with symbol F , then T will be denoted TF . The
operator TF is the projection onto H2(H) of multiplication by F . Consequently,

∥TF∥ = ∥F∥∞ = ess sup

∥F(z)∥B(H) | z ∈ ∂D


. (14)

If F(z) =
M

n=−M Anzn with AM or A−M nonzero, then F is called a trigonometric polynomial of degree M , and F is
continuous on ∂D. In this case, the supremum in (14) is attained at some z0 ∈ ∂D.

The main result of this section is that a composition operator on H2(D) with minimal polynomial equal to zn − 1 has a
block Toeplitz matrix with respect to the orthogonal decomposition H2

= ⊕
∞

N=0 B
NG. In particular, the matrix with respect

to this decomposition is

M(Cϕ) =



A0 0 0 0 0 · · ·

A1 A0 0 0 0 · · ·

0 A1 A0 0 0 · · ·

0 0 A1 A0 0
. . .

0 0 0 A1 A0
...

...
...

. . .
. . .

. . .


, (15)

where A0 and A1 will be defined in the theorem below.

Theorem 8. Assume the hypotheses in (12). The matrix M(Cϕ) for Cϕ with respect to the basis E in (7) is block Toeplitz of the
form (15), where A0 and A1 are n× n matrices whose entries depend on η and p. For 1 ≤ i, j ≤ n, the (i, j) entries of A0 are given
by ⟨Cϕgj, gi⟩ in Lemma 6, and the (i, j) entries of A1 are given by ⟨Cϕgj, Bgi⟩ in Lemma 7.

Remark. The form of A1 is particularly simple, since Lemma 7 implies that

A1 =


0 ⟨Cϕg2, B⟩ ⟨Cϕg3, B⟩ · · · ⟨Cϕgn, B⟩
0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 0

 .

Proof of Theorem 8. Let n ≥ 2 be an integer. Let ϕ be a disk automorphism of the form (1). The corresponding composition
operator hasminimal polynomial zn−1 if and only ifϕ satisfies both conditions in Proposition 1. Let ℓ andm be non-negative
integers, and let 1 ≤ i, j ≤ n. We will compute the (i, j) entry of the (ℓ,m) block of the matrix M(Cϕ) with respect to the
basis E ; this entry is given by ⟨CϕBmgj, Bℓgi⟩, so the remainder of this proof will consist of computing this expression for
different values of ℓ − m.

If ℓ − m > 1, then (6) shows that for 1 ≤ i, j ≤ n,

⟨CϕBmgj, Bℓgi⟩ = ⟨Bm(Cϕgj), Bℓgi⟩ = ⟨Cϕgj, Bℓ−mgi⟩ = ⟨gj, C∗

ϕ (Bℓ−mgi)⟩ = 0.

The final equality follows from Corollary 4, because each gj is a linear combination of the kernels kλ1 , . . . , kλj , and the
function Bℓ−mgi has zeros of order at least ℓ − m > 1 at λ1, . . . , λn.

If ℓ − m < 0, then again (6) shows that for 1 ≤ i, j ≤ n,

⟨CϕBmgj, Bℓgi⟩ = ⟨Bm(Cϕgj), Bℓgi⟩ = ⟨Bm−ℓCϕgj, gi⟩.
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If either i = 1 or j = 1, then orthonormality of the basis E and the fact that B(0) = 0 show that the above expression is
zero. If 2 ≤ i, j ≤ n, then there is at least one factor in each of gi and gj that is an iterate of ϕ, and we obtain

⟨CϕBmgj, Bℓgi⟩ =


Bm−ℓCϕ


kλj

∥kλj∥
ϕn · · · ϕn−j+2


,

kλi

∥kλi∥
ϕn · · · ϕn−i+2



=


Bm−ℓ−1ϕn−i+1 · · · ϕ1Cϕ


kλj

∥kλj∥
ϕn · · · ϕn−j+2


,

kλi

∥kλi∥


=


1 − |λi|

2f (λi) = 0,

where

f = Bm−ℓ−1ϕn−i+1 · · · ϕ1Cϕ


kλj

∥kλj∥
ϕn · · · ϕn−j+2


has a zero at λi because ϕn−i+1(λi) = λn+1 = 0.

Hence the only possible nonzero blocks in the matrix for Cϕ occur when ℓ = m and when ℓ = m + 1. Furthermore, the
identity (6) shows that for each (i, j), the entry ⟨CϕBmgj, Bℓgi⟩ depends only on ℓ−m and not on the separate values of ℓ and
m. Therefore Cϕ is block Toeplitz, with the form given by (15). To complete the proof, we will compute the entries of A0 and
A1.

To compute the entries of A0, set ℓ = m, and let 1 ≤ i, j ≤ n. The (i, j) entry is

⟨CϕBmgj, Bℓgi⟩ = ⟨BmCϕgj, Bmgi⟩ = ⟨Cϕgj, gi⟩,

and these values are given in Lemma 6.
Next, we will compute the entries of the matrix A1, so set ℓ = m + 1 and 1 ≤ i, j ≤ n. The same reasoning as before

yields

⟨CϕBmgj, Bℓgi⟩ = ⟨Cϕgj, Bgi⟩.

Therefore the entries of A1 are given by Lemma 7, which results in the form for A1 stated in the theorem. �

When n = 1, Theorem 8 trivially holds, because both the composition operator with minimal polynomial z − 1 and the
associated Toeplitz operator are the identity operator. In fact, the only composition operator that is also scalar Toeplitz is the
identity operator. See [19,23] for more general connections between composition operators and scalar Toeplitz operators.

The corollary below follows directly from the theorem and basic properties of block Toeplitz matrices.

Corollary 9. Assume the hypotheses in (12). The symbol of the block Toeplitz form of the matrix for Cϕ with respect to the
basis (7) is the n × n matrix-valued function defined for z ∈ ∂D by

A(z) = A0 + A1z, (16)

where A0 and A1 are defined as in Theorem 8. That is, Cϕ is unitarily equivalent to TA.

It is well known (e.g., see [8]) that the norm of the composition operator Cϕ on H2(D) with automorphic symbol ϕ is

given by ∥Cϕ∥ =


1+|ϕ(0)|
1−|ϕ(0)|

 1
2

=


1+|p|
1−|p|

 1
2
. Therefore, the norm identity (14) shows that, for all n ≥ 2, the L∞ norm of the

symbol A given in (16) is equal to the composition operator norm:

sup
z∈∂D

∥A(z)∥B(Cn) =


1 + |p|
1 − |p|

 1
2

.

Our original goal was to study the numerical ranges of composition operators with minimal polynomial zn −1. Recently,
Bebiano and Spitkovsky [2] described the numerical range of Toeplitz operators with matrix-valued symbol in terms of the
numerical ranges of the values of the symbol. LetR(a) denote the essential range of thematrix-valued function a defined on
∂D; for a continuous function a, the essential range is simply the range. The convex hull of a set S in the complex plane will
be denoted conv S, and the closure of S is denoted clos S. One of the results from [2] that is relevant to this paper is stated
below.

Theorem 10 (Bebiano–Spitkovsky). If a ∈ L∞(B(Cn)) and Ta is the Toeplitz operator with symbol a on H2(B(Cn)), then

closW (Ta) = conv {W (A) : A ∈ R(a)} .

Bebiano and Spitovsky also showed that the closure of the numerical range of the multiplication operator with symbol a
is the same as the set given above. The n = 1 version of their result was proved by Klein [14].
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Since the numerical range of an operator is invariant under unitary equivalence, an immediate consequence of the
combination of Theorems 8 and 10 is the following.

Theorem 11. Assume the hypotheses in (12). The closure of the numerical range of Cϕ is given by

closW (Cϕ) = conv {W (A(z)) : z ∈ ∂D} ,

where A(z) is defined in Corollary 9.

As an application of Theorem 11, we will use the n = 2 case to find the closure of the numerical range of the conformal
automorphism ϕ =

p−z
1−pz . The original proof of this result appeared in [1].

Recall that the numerical range of a 2 × 2 matrix of the form
1 v
0 −1


(17)

is an elliptic disk with foci at 1 and −1, and it is also straightforward to show that the major axis of the ellipse has length
4 + |v|2 while the minor axis has length |v|. Thus, any collection of matrices of the form (17) has numerical ranges that

are increasing with |v| with respect to set containment. If the Toeplitz symbol A is computed in the n = 2 case, then we get
that A(z) has form (17) with

v =
p

1 − |p|2
− z

p
1 − |p|2

.

The value of |v| is clearlymaximized on ∂D when z = z0 = −
p2

|p|2
, in which case |v| =

2|p|
√

1−|p|2
. Therefore, for any z ∈ ∂D,

the set containment

W (A(z)) ⊆ W (A(z0))

holds, and consequently

conv {W (A(z)) : z ∈ ∂D} = W (A(z0)).

Thus the closure of the numerical range of W (Cϕ) equals the elliptic disk with foci at ±1 and with major axis of length
2√

1−|p|2
, which is exactly the result that appears in [1].

Using a similar argument with increasing nested numerical ranges of certain 3× 3 matrices, Theorem 11 will be used in
the next section to answer the question of Bourdon and Shapiro affirmatively in the n = 3 case. That is, we will show that
the numerical range of a composition operator on H2(D) with minimal polynomial z3 − 1 is not a disk.

4. The case where n = 3

We next review some properties of the support function of a convex set. Wewill use some of these concepts to prove the
conjecture of Bourdon and Shapiro in the n = 3 case. Let T be a bounded linear operator on a Hilbert space H . Since W (T )
is a convex set in C, every boundary point ofW (T ) intersects a line (called a support line) such that the interior ofW (T ) lies
entirely on one side of the line. The support function ofW (T ), which will be denoted pT , can be defined as follows. For each
θ ∈ [0, 2π),

pT (θ) = sup{Re (e−iθ
⟨Tv v⟩) | v ∈ H, ∥v∥ = 1}.

The value pT (θ) is the maximum scalar projection of W (T ) in the direction of θ . For every operator T discussed in this
paper, the numerical range W (T ) contains the origin. Therefore, for each value θ ∈ [0, 2π), the ray in the direction of the
vector (cos θ, sin θ) hits a support line Lθ of W (T ) that is orthogonal to (cos θ, sin θ). The value pT (θ) is the distance from
the origin to the line Lθ . Properties of convex sets show that the closure of W (T ) is completely determined by its support
lines. Consequently, if T and R are bounded linear operators such that pT (θ) = pR(θ) for all θ ∈ [0, 2π), then the closure of
W (T ) equals the closure ofW (R).

Furthermore, the following proposition immediately follows from the definition of pT .

Proposition 12. If T and R are bounded linear operators on a Hilbert space H such that pT (θ) ≤ pR(θ) for all θ ∈ [0, 2π), then

closW (T ) ⊆ closW (R).

A simple calculation shows that Re

e−iθ

⟨Tv v⟩


= ⟨Re( e−iθT )v, v⟩. Therefore, it is convenient to define the operator

Hθ = Re

e−iθT


=

e−iθ

2 T +
eiθ
2 T ∗. Clearly Hθ is self-adjoint. When T is an operator on a finite-dimensional Hilbert space,

properties of self-adjoint operators imply that pT (θ) is the maximum eigenvalue of Hθ .
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Define a subset S of the complex plane to have three-fold symmetry about the origin if z ∈ S implies that ei
2π
3 z ∈ S. If ϕ is

an elliptic automorphism with rotation parameter equal to a cube root of unity, that is, if ϕ satisfies (3), then the numerical
range of Cϕ has three-fold symmetry about the origin, as noted in [4]. The values of the Toeplitz symbol in the n = 3 case of
Theorem 8 have numerical range with three-fold symmetry about the origin. Such matrices were classified in [11], where
the following result appeared.

Theorem 13. Let M be any 3 × 3matrix. Assume that W (M) is not a disk. Then the following are equivalent.
(i) W (M) has three-fold symmetry about the origin.
(ii) Tr(M2M∗) = 0 and the spectrum σ(M) has three-fold symmetry about the origin.
(iii) There exist p, q, r ∈ C such that M is unitarily equivalent to the matrix V of the form0 0 p

q 0 0
0 r 0


.

As mentioned in the introduction, the numerical range of an n × n matrix with no repeated eigenvalues cannot be a
circular disk, so if the minimal polynomial of a 3 × 3 matrix M is z3 − 1, then W (M) is not a disk. The support function for
a 3 × 3 matrixM with minimal polynomial equal to z3 − 1, derived in [11], is given by

pM(θ) =
2

√
3

√
s cos


1
3
arccos


t(θ)

2


27
s3


,

where s = Tr(MM∗)/4 and t(θ) =
1
4


cos(3θ) + Re Tr(M2M∗) cos(θ) + Im Tr(M2M∗) sin(θ)


.

Hence, if the minimal polynomial of the 3 × 3 matrix M is z3 − 1 and W (M) has three-fold symmetry about the origin,
then

t(θ)

2


27
s3

=

√
27 cos(3θ)

(Tr(MM∗))
3
2

.

In this case, the support function simplifies to

pM(θ) =
1

√
3


Tr(MM∗) cos


1
3
arccos

√
27 cos(3θ)

(Tr(MM∗))
3
2


,

a function which achieves its absolute maximum only at θ = 0, 2π
3 , and 4π

3 .
When n = 3, the calculations in the previous sections can be done explicitly. Definition (4) results in λ1 = 0, λ2 = ηp,

and λ3 = p. By Theorem 11, we know that if ϕ is an automorphism of form (1) that satisfies (3), then
closW (Cϕ) = conv {W (A(z)) : z ∈ ∂D} ,

where A(z) = A0 + A1z with A0 and A1 equal to the 3 × 3 matrices defined in Theorem 8. Substituting into the values given
by Lemmas 6, 7, and (3) yields

A0 =


1

ηp
1 − |p|2

0

0 −η p
0 −ηp −1 + η

 (18)

and

A1 =

0 −
p2

1 − |p|2
−

p(η − 1)
1 − |p|2

0 0 0
0 0 0

 . (19)

We are now prepared to show that the conjecture of Bourdon and Shapiro is correct in the n = 3 case.

Theorem 14. If ϕ is a disk automorphism of form (1) such that the associated composition operator Cϕ has minimal polynomial
equal to z3 − 1, then the closure of the numerical range of the composition operator Cϕ is equal to the numerical range of

the 3 × 3 matrix A0 + A1z0, where A0 and A1 are given by (18) and (19), respectively, and z0 = −
ηp3

|p|3
. The support function

of Cϕ is

pCϕ (θ) =
1

√
3


3 − |p|4 + 2|p|3

1 − |p|2
cos


1
3
arccos


1 − |p|2

3√
27 cos(3θ)

(3 − |p|4 + 2|p|3)
3
2


. (20)

In particular, W (Cϕ) is not a disk.
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Proof. Let Cϕ be a composition operator with symbol ϕ satisfying (1). The operator Cϕ has minimal polynomial z3 − 1 if
and only if the parameters of ϕ satisfy (3). We will show that the support function for Cϕ is given by (20), from which it will
follow thatW (Cϕ) is not a disk.

By Theorem 11, the closure ofW (Cϕ) is given by

closW (Cϕ) = conv {A(z) : z ∈ D} ,

where A(z) = A0 + A1z and the 3 × 3 matrices A0 and A1 were computed above so that

A(z) =

1
ηp

1 − |p|2
− z

p2
1 − |p|2

−z
p(η − 1)
1 − |p|2

0 −η p
0 −ηp −1 + η

 .

For each z on the unit circle, A(z) has distinct eigenvalues 1, ei
2π
3 , and ei

4π
3 , and therefore the numerical range of A(z) is

not a disk. Furthermore, the eigenvalues of A(z) have three-fold symmetry about the origin. A straightforward but lengthy
computation using identity (3) shows that

A(z)A(z)∗ =



1 + |p|2 − ηp3z − η p3z
1 − |p|2

−p + p2z
1 − |p|2

−p2 + ηpz
1 − |p|2

−p + p2z
1 − |p|2

1 + |p|2 ηp

−p2 + ηpz
1 − |p|2

ηp 1


.

From this calculation, we obtain

Tr A(z)A(z)∗ =
3 − |p|4 − η p3z − ηp3z

1 − |p|2
,

and another matrix multiplication and trace computation show that Tr A(z)2A(z)∗ = 0. Therefore, Theorem 13 shows that
W (A(z)) has three-fold symmetry about the origin. The remarks following the statement of Theorem 13 show that the
support function for A(z) is

pA(z)(θ) =
1

√
3


3 − |p|4 − η p3z − ηp3z

1 − |p|2
cos


1
3
arccos

 
1 − |p|2

3√
27 cos(3θ)

(3 − |p|4 − η p3z − ηp3z)
3
2


. (21)

For any real value of k, the function x cos( 1
3 arccos( k

x3
)) is an increasing function of x at any positive x in its domain.

Therefore, for each value of θ ∈ [0, 2π), pA(z)(θ) attains its maximum at the value of z on the unit circle that maximizes
Tr A(z)A(z)∗. This occurs when z0 = −

ηp3

|p|3
. Hence

pA(z)(θ) ≤ pA(z0)(θ)

for all θ ∈ [0, 2π). Proposition 12 thus shows that

W (A(z)) ⊆ W (A(z0))

for all z ∈ ∂D. Consequently,

closW (Cϕ) = conv {A(z) : z ∈ D} = W (A(z0)).

SinceW (A(z0)) is not a disk, it follows thatW (Cϕ) is not a disk.
In addition, the support function for Cϕ is equal to the support function for A(z0), namely, the function given in (21) with

z = z0. Hence,

pCϕ (θ) =
1

√
3


3 − |p|4 + 2|p|3

1 − |p|2
cos


1
3
arccos


1 − |p|2

3√
27 cos(3θ)

(3 − |p|4 + 2|p|3)
3
2


. �

The question of whether the numerical range of a composition operator on H2(D) with minimal polynomial equal to
zn − 1 can be a disk is still open for n ≥ 4. It seems possible that in these cases, the closure of the numerical range of Cϕ will
also be equal to the numerical range of a fixed n × n matrix with distinct eigenvalues, and thus will not be a disk.
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