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1. Introduction

Many papers (see for instance [1,2], the survey paper [9] and references therein) are devoted to the blow-up solutions u
of the Volterra integral equations of the convolution type

u(t) =
t∫

0

k(t − s)g
(
u(s)

)
ds, t � 0, (1)

where g,k � 0 satisfy some additional conditions (such as g is increasing and k is locally integrable). Such equations appear
in various applications. For instance, in recent years [5–7,10] that type of equation appeared in mathematical models of
the classical diffusion as well as anomalous one (sub- and superdiffusion). It turns out that most of the kernels in these
models are nonincreasing and bounded functions. Because, in addition, in the aforementioned papers authors did examine
the blow-up of Eq. (1) only in the case g(0) > 0, motivated by this fact we fill the gap and give the necessary and the
sufficient condition of the existence of the blow-up solutions of (1) with nonincreasing and bounded kernels and g(0) = 0.
Furthermore, that condition is expressed in terms of the convergence of some integral which has exactly the same form as
the integral in the famous Osgood condition [8] in ODE theory. Our method used in the proof of that condition allows us
also to link that integral with the estimation of the blow-up time (see [3] for some series estimates).

2. Background information

We consider Volterra integral equation (1) with the following assumptions about nonlinearity g and kernel k:
g : [0,∞) → [0,∞) – strictly increasing absolutely continuous function which satisfies the following conditions:
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g(0) = 0, (2)

x/g(x) → 0 as x → 0+, (3)

x/g(x) → 0 as x → ∞, (4)

k – nonincreasing and bounded positive function defined at least on (0,∞) (what implies in particular that k is locally
integrable on [0,∞)).

We say that u is a nontrivial solution of (1) if it is a continuous solution of (1) with the maximal interval of its existence
[0, T ) such that u(0) = 0 and u > 0 in (0, T ). It is known [4] that under our assumptions about g and k Eq. (1) has at most
one nontrivial solution u and, moreover, u is then a strictly increasing absolutely continuous function. If nontrivial solution
u additionally satisfies u(t) → ∞ as t → T − , T < ∞, then we call u a blow-up solution of (1) with a blow-up time T .

Throughout this paper we impose an extra condition on the kernel k, i.e. the condition of the form

lim
t→∞ K (t) � γ max

t∈(0,∞)

t

g(t)
, (5)

for some γ > 1, where K (t) := ∫ t
0 k(s)ds. Obviously in our case K is a strictly increasing continuous function, thus the

inverse function K −1 to it exists. Finally, let us formulate the following sufficient condition for blow-up solutions, an easy
consequence of Theorems 5.1. and 5.3. from [2] (for aforementioned γ just take w(t) := g( t

γ ) in these two theorems):

Theorem 2.1. Let strictly increasing absolutely continuous function g satisfy conditions (2)–(4), k be a locally integrable function
positive a.e. in [0,∞) which satisfies (5) and let the mapping t → t

g(t) be strictly increasing in some right neighbourhood of 0 and
strictly decreasing in some neighbourhood of ∞. If

∞∫
0

K −1
(

γ s

g(s)

)
ds

s
< ∞,

then a blow-up solution to Eq. (1) exists.

3. Auxiliary result

Now we prove a result which shows, under our assumptions about g and k, that in fact condition (5) is the necessary
condition of the existence of the blow-up solutions of (1).

Theorem 3.1. If u is the blow-up solution of (1), then

lim
t→∞ K (t) > max

t∈(0,∞)

t

g(t)
. (6)

Proof. From the monotonicity of functions u and g we obtain

u(t) � g
(
u(t)

) t∫
0

k(t − s)ds = g
(
u(t)

)
K (t), t ∈ (0, T ),

hence

u(t)

g(u(t))
� K (t), t ∈ (0, T ). (7)

Our assumptions about g imply that the mapping t → t
g(t) has the global maximum achieved, let us say, at t = t∗ . On the

other hand, obviously, there also exists τ ∈ (0, T ) such that u(τ ) = t∗ . Then, using (7), we finally have

max
t∈(0,∞)

t

g(t)
= t∗

g(t∗)
= u(τ )

g(u(τ ))
� K (τ ) < lim

t→∞ K (t). �

Remark 3.2. Our assumptions about g and k imply that inequalities (5) and (6) are equivalent.
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4. Main result

Theorem 4.1. Let the mapping t → t
g(t) be strictly increasing in some right neighbourhood of 0 and strictly decreasing in some

neighbourhood of ∞. Eq. (1) with the nonlinearity g satisfying (2)–(4) and with nonincreasing bounded kernel k > 0 satisfying (5)
has a blow-up solution if and only if when

∞∫
0

ds

g(s)
< ∞. (8)

Proof. The necessity part of theorem. From absolutely continuity of blow-up solution u we have

u′(t) =
t∫

0

k(t − s)g′(u(s)
)
u′(s)ds =

u(t)∫
0

k
(
t − u−1(s)

)
g′(s)ds a.e. (9)

Making the substitution u−1(t) for t in (9) and using the formula for the derivative of the inverse function we obtain

(
u−1)′

(t)

t∫
0

k
(
u−1(t) − u−1(s)

)
g′(s)ds = 1 a.e.

Hence

(
u−1)′

(t) =
( t∫

0

k
(
u−1(t) − u−1(s)

)
g′(s)ds

)−1

a.e. (10)

The values of mapping s → k(u−1(t) − u−1(s)) for s ∈ [0, t] are bounded from above by k0, where

k0 =
{

k(0), if k is defined at 0,

limt→0+ k(t), otherwise,
(11)

so

t∫
0

k
(
u−1(t) − u−1(s)

)
g′(s)ds � k0

t∫
0

g′(s)ds � k0 g(t).

Using (10) we get the inequality

(
u−1)′

(t) � 1

k0 g(t)
a.e.

which implies that

u−1(t) � 1

k0

t∫
0

ds

g(s)

for all t ∈ (0,∞). Then finally

lim
t→∞ u−1(t) = T � 1

k0

∞∫
0

ds

g(s)
.

The sufficient part of theorem. Let γ > 1 be a real number from (5). Condition (8) implies then that

∞∫
0

γ ds

g(s)
< ∞. (12)

Because k is nonincreasing, K −1 is convex. Moreover, the mapping s → γ s
g(s) has the global maximum in (0,∞) what means

that there exists M > 0 such that

K −1
(

γ s
)

� Mγ s
, s ∈ (0,∞). (13)
g(s) g(s)
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Hence from (12) and (13) we obtain

∞∫
0

K −1
(

γ s

g(s)

)
ds

s
� M

∞∫
0

γ ds

g(s)
< ∞,

and now the use of Theorem 2.1 ends the proof. �
5. Estimations of the blow-up time

A technique we use in the proof of Theorem 4.1 could be slightly modified in order to obtain the implicit estimations of
the blow-up time of blow-up solution of (1).

Theorem 5.1. Let the mapping t → t
g(t) be strictly increasing in some right neighbourhood of 0 and strictly decreasing in some

neighbourhood of ∞. If Eq. (1) with the nonlinearity g satisfying (2)–(4) and with nonincreasing bounded kernel k > 0 satisfying (5)
has a blow-up solution with a blow-up time T , then

1

k0

∞∫
0

ds

g(s)
� T � 1

k(T )

∞∫
0

ds

g(s)
, (14)

where k0 is defined by (11).

Proof. The first part of inequality (14) was shown in the proof of Theorem 4.1. To show that

T � 1

k(T )

∞∫
0

ds

g(s)
,

we notice that the minimum of mapping s → k(u−1(t) − u−1(s)) for s ∈ [0, t] is achieved for s = 0 and it is equal to
k(u−1(t)). In such a case (10) can be modified in the following way:

(
u−1)′

(t) � 1∫ t
0 k(u−1(t))g′(s)ds

= 1

k(u−1(t))
∫ t

0 g′(s)ds
= 1

k(u−1(t))g(t)
a.e.

From last inequality it follows that

u−1(t) �
t∫

0

ds

k(u−1(s))g(s)
, t ∈ (0,∞),

and hence

lim
t→∞ u−1(t) = T �

∞∫
0

ds

k(u−1(s))g(s)
� 1

k(T )

∞∫
0

ds

g(s)
. �

6. Applications

Now we show how the results of previous sections can be applied to examine the existence of the blow-up solutions of
some multidimensional models of anomalous diffusion.

Example 6.1. As it was shown in [6], the superdiffusion in the unbounded spatial domain of dimension N , N = 1,2,3, can
be modelled by the fractional diffusion equation

∂

∂t
T (x, t) =

N∑
n=1

∂μ

∂|xn|μ T (x, t) + λD(x|0)g
(
T (0, t)

)
, x ∈R

N , t > 0, (15)

subject to the constraints

T (x,0) = 0, x ∈R
N , (16)

lim T (x, t) = 0, t > 0. (17)
|x|→∞
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The operator ∂μ

∂|xn|μ , where 1 < μ < 2, is the so-called Riesz fractional derivative operator, the parameter of superdiffusion
λ > 0 and the localization function D(x|0) is defined as follows:

D(x|0) =
{

1, x ∈ Ω,

0, x /∈ Ω,
(18)

where Ω = {x ∈ R
N : −a < xn < a}, n = 1,2, . . . , N , 0 < a � 1.

Remark 6.2. The following equality is valid for all x ∈ R
N and t � 0:

T (x, t) = λ

(
2

π

)N t∫
0

(
N∏

n=1

∞∫
0

sin az cos zxn

z
exp

(−zμ(t − s)
)

dz

)
g
(
T (0, s)

)
ds.

The conversion of (15)–(17) to an integral equation, accomplished through the use of Green’s function, leads to Eq. (1)
with

u(t) ≡ T (0, t)

and

k(t) =: kN(t) = λ

(
2

π

∞∫
0

sin az

z
exp

(−zμt
)

dz

)N

. (19)

The kernels kN can be expressed in terms of Fox H functions

kN(t) = λ

(
2

at−1/μ∫
0

1

μz
H1,1

2,2

[
z
∣∣∣ (1,μ−1),(1, 1

2 )

(1,1), (1, 1
2 )

]
dz

)N

.

Using this form, one can show that kernels kN are nonnegative and nonincreasing. We have also kN (0) = λ, so kN is bounded.
Moreover, further analysis of kN leads to the following asymptotic relation:

kN(t) ∼ λ

(
2a

πμ
Γ

(
1

μ

))N

t− N
μ as t → ∞,

what implies that kN are in fact positive,

K1(t) ∼ 2λa

π(μ − 1)
Γ

(
1

μ

)
t1− 1

μ as t → ∞

and

lim
t→∞ K N(t) =: K(N, λ,a,μ) < ∞, N = 2,3.

Hence in one-dimensional case (N = 1) the condition (5) holds for an arbitrary λ but when N = 2,3 the condition (5) does
not need to be satisfied. Let us note that in the latter case the magnitude of λ is crucial for the occurrence of blow-up, i.e.
if only λ is sufficiently large, then

K(N, λ,a,μ) > max
t∈(0,∞)

t

g(t)
. (20)

Now an application of Theorems 3.1 and 4.1 allows us to formulate that dimensional influence on blow-up behaviour of
Eq. (1) as the following result:

Theorem 6.3. Let in Eq. (1) with kernel kN given by (19) the nonlinearity g satisfies (2)–(4) and let the mapping t → t
g(t) be strictly

increasing in some right neighbourhood of 0 and strictly decreasing in some neighbourhood of ∞.

1. For N = 1 Eq. (1) has a blow-up solution if and only if when

∞∫
0

ds

g(s)
< ∞.
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2. For N = 2,3 Eq. (1) has a blow-up solution if and only if when

∞∫
0

ds

g(s)
< ∞

provided that condition (20) is satisfied.
3. For N = 2,3 if condition (20) does not hold, then a blow-up solution of Eq. (1) does not exist.

Moreover, in cases when blow-up solution exists, the blow-up time T could be estimated by (14) with k0 = λ.

Example 6.4. In our second example we consider the equation

∂

∂t
T (x, t) = v

∂

∂x1
T (x, t) +

N∑
n=1

∂2

∂x2
n

D1−α
t

[
T (x, t)

] + λD(x|0)g
(
T (0, t)

)
, (21)

where x ∈ R
N , N = 1,2,3, t > 0, the parameter of subdiffusion λ > 0 and v > 0 is the constant advection speed associated

with the x1-direction, with the initial condition

T (x,0) = 0, x ∈R
N , (22)

and the boundary conditions

lim|x|→∞ T (x, t) = 0, t > 0. (23)

The fractional derivative operator D1−α
t in (21) is given by

D1−α
t

[
T (x, t)

] = 1

Γ (α)

∂

∂t

t∫
0

(t − τ )α−1T (x, τ )dτ , (24)

0 < α < 1, and the localization function D(x|0) is defined in the same way as in the previous example. The prob-
lem (21)–(23) can serve [5] as a model of the subdiffusion with advection in the unbounded spatial domain of dimension N .
In this case the given PDE problem (21)–(23) can be connected, via Green’s function, with the integral equation of type (1)
with u(t) ≡ T (0, t) and k(t) = kN (t), where

kN(t) = λ

2
√

π

∞∫
0

fα(z)√
tαz

( a∫
−a

exp

(
− (s − vtαz)2

4tαz

)
ds

)(
erf

(
a

2
√

tαz

))N−1

dz. (25)

In (25) the function fα is defined as follows:

fα(z) =
∞∑
j=0

(−1) j z j

j!Γ (1 − α − α j)
, z � 0. (26)

It can be shown that kernel kN above is the nonincreasing and positive function (nonnegativity of fα (see [11]) plays a
crucial role in showing these properties for that kernel) with kN (t) ∼ λ as t → 0+ , so this kernel belongs to the class of
kernels considered in this paper. Hence we only need to check if condition (5) is valid to know when the blow-up solution
to (1) exists and because any blow-up solution of (21)–(23) is associated with the blow-up solution of Eq. (1), we would
know then also when the subdiffusion with advection PDE problem possesses the blow-up solutions. In order to do that we
use the asymptotic behaviour of kernel kN :

kN(t) ∼ λC(N,a, v)

Γ (1 − α)
t−α as t → ∞,

where

0 < C(N,a, v) � 2a

v
,

what implies that

K N(t) ∼ λC(N,a, v)

Γ (2 − α)
t1−α as t → ∞. (27)

From (27) it follows immediately that limt→∞ K N(t) = ∞, so on the basis of Theorem 4.1 we just proved the following
result:
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Theorem 6.5. Let in Eq. (1) with kernel kN given by (25) the nonlinearity g satisfies (2)–(4) and let the mapping t → t
g(t) be strictly

increasing in some right neighbourhood of 0 and strictly decreasing in some neighbourhood of ∞. Then Eq. (1) has a blow-up solution
if and only if when

∞∫
0

ds

g(s)
< ∞. (28)

Moreover, the blow-up time T could be estimated by (14) with k0 = λ.

Remark 6.6. It is very interesting that one can show that for the classical diffusion with advection problem [5] an analogue
of Theorem 6.5 is not valid, i.e. it can happen that blow-up solution does not exist even if condition (28) is satisfied. This is
due to fact that kernel

kN(t) = λ

2
√

πt

( a∫
−a

exp

(
− (s − vt)2

4t

)
ds

)(
erf

(
a

2
√

t

))N−1

(29)

of respective Volterra integral equation in this case does not necessarily satisfy condition (5).
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