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1. Introduction

Many papers (see for instance [1,2], the survey paper [9] and references therein) are devoted to the blow-up solutions u
of the Volterra integral equations of the convolution type

t

u(t):/k(t—s)g(u(s))ds, t>0, (1)

0

where g, k > 0 satisfy some additional conditions (such as g is increasing and k is locally integrable). Such equations appear
in various applications. For instance, in recent years [5-7,10] that type of equation appeared in mathematical models of
the classical diffusion as well as anomalous one (sub- and superdiffusion). It turns out that most of the kernels in these
models are nonincreasing and bounded functions. Because, in addition, in the aforementioned papers authors did examine
the blow-up of Eq. (1) only in the case g(0) > 0, motivated by this fact we fill the gap and give the necessary and the
sufficient condition of the existence of the blow-up solutions of (1) with nonincreasing and bounded kernels and g(0) = 0.
Furthermore, that condition is expressed in terms of the convergence of some integral which has exactly the same form as
the integral in the famous Osgood condition [8] in ODE theory. Our method used in the proof of that condition allows us
also to link that integral with the estimation of the blow-up time (see [3] for some series estimates).

2. Background information

We consider Volterra integral equation (1) with the following assumptions about nonlinearity g and kernel k:
g :[0,00) — [0, 00) - strictly increasing absolutely continuous function which satisfies the following conditions:
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g(0)=0, (2)
x/g(x) >0 asx— 0T, (3)
x/g(x) > 0 asx— oo, (4)

k - nonincreasing and bounded positive function defined at least on (0, 00) (what implies in particular that k is locally
integrable on [0, 00)).

We say that u is a nontrivial solution of (1) if it is a continuous solution of (1) with the maximal interval of its existence
[0, T) such that u(0) =0 and u > 0 in (0, T). It is known [4] that under our assumptions about g and k Eq. (1) has at most
one nontrivial solution u and, moreover, u is then a strictly increasing absolutely continuous function. If nontrivial solution
u additionally satisfies u(t) - oo ast— T, T < oo, then we call u a blow-up solution of (1) with a blow-up time T.

Throughout this paper we impose an extra condition on the kernel k, i.e. the condition of the form

t
lim K(t) > _— 5
Am K© =y max = (5)

for some y > 1, where K(t) := fotk(s) ds. Obviously in our case K is a strictly increasing continuous function, thus the
inverse function K~! to it exists. Finally, let us formulate the following sufficient condition for blow-up solutions, an easy
consequence of Theorems 5.1. and 5.3. from [2] (for aforementioned y just take w(t) := g(%) in these two theorems):

Theorem 2.1. Let strictly increasing absolutely continuous function g satisfy conditions (2)-(4), k be a locally integrable function
positive a.e. in [0, oo) which satisfies (5) and let the mapping t — W be strictly increasing in some right neighbourhood of 0 and
strictly decreasing in some neighbourhood of oo. If

[1(22)% o
J g(s)

then a blow-up solution to Eq. (1) exists.
3. Auxiliary result

Now we prove a result which shows, under our assumptions about g and k, that in fact condition (5) is the necessary
condition of the existence of the blow-up solutions of (1).

Theorem 3.1. If u is the blow-up solution of (1), then

t
11m K(t) > max — (6)
te(0.00) g(t)

Proof. From the monotonicity of functions u and g we obtain

t

u(t) < g(u(t))/k(t —s)ds=g(u(t))K(t), te(0,T),
0

hence
u(t)
gu()

Our assumptions about g imply that the mapping t — gT has the global maximum achieved, let us say, at t =t*. On the
other hand, obviously, there also exists t € (0, T) such that u(zr) =t*. Then, using (7), we finally have

<K(), te(0,T). (7)

t ot u(t)

max =
te(0,00) g(t)  gt*) g(u(f))

K(t) < 11m K(t). O

Remark 3.2. Our assumptions about g and k imply that inequalities (5) and (6) are equivalent.
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4. Main result

Theorem 4.1. Let the mapping t — ﬁ be strictly increasing in some right neighbourhood of 0 and strictly decreasing in some

neighbourhood of oo. Eq. (1) with the nonlinearity g satisfying (2)-(4) and with nonincreasing bounded kernel k > 0 satisfying (5)
has a blow-up solution if and only if when

oo

ds

0

Proof. The necessity part of theorem. From absolutely continuity of blow-up solution u we have
t u(t)

u'(t) :/k(t —9)g' (us))u'(s)ds = / k(t — u_1(s))g’(s) ds ae. (9)
0 0

Making the substitution u~1(t) for ¢ in (9) and using the formula for the derivative of the inverse function we obtain

t
@ '® / k(™' ®) —uls)g')ds=1 ae.
0

Hence
| -1
(”71)/(0 = (/k(uil(t) —u"1()g'(s) ds) ae. (10)
0

The values of mapping s — k(u~1(t) —u~1(s)) for s € [0, t] are bounded from above by kg, where

Ko — k(0), if k is defined at O, (11)
97 ) lim,_, o+ k(t), otherwise,
S0
t t
/ k(u™'© —u™'(s)g'(s)ds < ko / g'(s)ds <kog ().
0 0
Using (10) we get the inequality
-1 /
u—) =
(™) kog(t)
which implies that
t
_1 1 ds
o> — [ —
ko J g(s)
0
for all t € (0, 00). Then finally
X
. -1 1 ds
limu ' )=T>— | —.
t—00 ko J g(s)
0
The sufficient part of theorem. Let y > 1 be a real number from (5). Condition (8) implies then that
T yd
Ye (12)
, &(s)

Because k is nonincreasing, K~! is convex. Moreover, the mapping s — % has the global maximum in (0, c0) what means
that there exists M > 0 such that

K (ﬁ> <MYS e 0.00). (13)
g(s) g(s)
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Hence from (12) and (13) we obtain

oo
[ (@)son]
J g(s)/ s g(s)
and now the use of Theorem 2.1 ends the proof. O

5. Estimations of the blow-up time

A technique we use in the proof of Theorem 4.1 could be slightly modified in order to obtain the implicit estimations of
the blow-up time of blow-up solution of (1).

Theorem 5.1. Let the mapping t — W be strictly increasing in some right neighbourhood of 0 and strictly decreasing in some
neighbourhood of oo. If Eq. (1) with the nonlinearity g satisfying (2)-(4) and with nonincreasing bounded kernel k > 0 satisfying (5)
has a blow-up solution with a blow-up time T, then
oo
1 ds
<T< (14)
g k(T) g (S)

where kg is deﬁned by (11).

Proof. The first part of inequality (14) was shown in the proof of Theorem 4.1. To show that

k(T) / HON

we notice that the minimum of mapping s — k(u~1(t) — u~1(s)) for s € [0,t] is achieved for s =0 and it is equal to
k(u=1(t)). In such a case (10) can be modified in the following way:

1 1 1
—1\/ < _ _
@) ® fot k@u=1(t))g'(s)ds k(u—1(t))fé g'(s)ds k@=1(t)g(t)

From last inequality it follows that

t

u_](t)éfL’ t € (0, 00),
J k(u=1(s))g(s)
and hence
. -1 -
Am =T / k(u—1(s))g(s) k(T)/ o

6. Applications

Now we show how the results of previous sections can be applied to examine the existence of the blow-up solutions of
some multidimensional models of anomalous diffusion.

Example 6.1. As it was shown in [6], the superdiffusion in the unbounded spatial domain of dimension N, N=1,2,3, can
be modelled by the fractional diffusion equation

9 Nooge N

ET(X’t)zgmxnw , (T0,0), xeRN t>0, (15)
subject to the constraints

T(x,00=0, xeRN, (16)

lim T(x,t)=0, t>0. (17)

|x|]— 00
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The operator % where 1 < i < 2, is the so-called Riesz fractional derivative operator, the parameter of superdiffusion
A > 0 and the localization function D(x|0) is defined as follows:

D(x|0>:{(1,’ NS (18)

where 2 ={xeRN: —a<x,<a},n=1,2,...,N,0<a< 1.
Remark 6.2. The following equality is valid for all xe RN and t > 0:
2\N rf N Oosinazcoszx
Tx, ) =1 = T exp(—zH(t —s))dz | g(T (0, s)) ds.
(x.) (ﬂ) /(]‘U . p(=z"(t —s)) )g(( )
0 =lp

The conversion of (15)-(17) to an integral equation, accomplished through the use of Green’s function, leads to Eq. (1)
with

u(t)=T(,¢t)

and

o N
k() =:/<N(t)=x<% / == exp(—Z“f)dZ) : (19)
0

The kernels ky can be expressed in terms of Fox H functions

“ 1.nhH,a,l N
kn () =A<2 / — )] [z (4. w70, ?) ] dz) .
Sz 11, 1.1
Using this form, one can show that kernels ky are nonnegative and nonincreasing. We have also ky(0) = A, so ky is bounded.
Moreover, further analysis of ky leads to the following asymptotic relation:

20 (1\\N _»
kn@) ~al —I'| — t ® ast— oo,
T \p

what implies that ky are in fact positive,

2Aa 1 1-1
Kit)~——rI(— )t % ast— oo
T(p—1 \p

and
lim Kn(t) =: K(N,A,a, ) <oo, N=2,3.
t—00

Hence in one-dimensional case (N = 1) the condition (5) holds for an arbitrary A but when N = 2,3 the condition (5) does
not need to be satisfied. Let us note that in the latter case the magnitude of A is crucial for the occurrence of blow-up, i.e.
if only A is sufficiently large, then

(N, A,a, ) > max —.
’ te(0.00) g(t)

Now an application of Theorems 3.1 and 4.1 allows us to formulate that dimensional influence on blow-up behaviour of
Eq. (1) as the following result:

(20)

t

Theorem 6.3. Let in Eq. (1) with kernel ky given by (19) the nonlinearity g satisfies (2)-(4) and let the mapping t — 0]

increasing in some right neighbourhood of 0 and strictly decreasing in some neighbourhood of co.

be strictly

1. For N =1 Eq. (1) has a blow-up solution if and only if when

o0

/ ds
— <X
g(s)

0
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2. For N =2,3 Eq. (1) has a blow-up solution if and only if when
o0
/ ds
— <@
g(s)
0

provided that condition (20) is satisfied.
3. For N = 2, 3 if condition (20) does not hold, then a blow-up solution of Eq. (1) does not exist.

Moreover, in cases when blow-up solution exists, the blow-up time T could be estimated by (14) with kg = A.

Example 6.4. In our second example we consider the equation

N a2
9 9 % 1
S0 = VET(X, t) +n§=1 @Dt [T, )] +A1D(x]0)g(T(0,1)), (21)

where x e RN, N=1,2,3, t > 0, the parameter of subdiffusion A > 0 and v > 0 is the constant advection speed associated
with the xq-direction, with the initial condition

T(x,0)=0, xeRV, (22)
and the boundary conditions
lim T(x,t)=0, t>0. (23)
|x|— 00

The fractional derivative operator Dtl“" in (21) is given by

t

1 9
D [T 0] = o / (t=D)* T 7)dr, 0
0

0 <o < 1, and the localization function D(x|0) is defined in the same way as in the previous example. The prob-
lem (21)-(23) can serve [5] as a model of the subdiffusion with advection in the unbounded spatial domain of dimension N.
In this case the given PDE problem (21)-(23) can be connected, via Green’s function, with the integral equation of type (1)
with u(t) =T(0,t) and k(t) = kn(t), where

o Oofa(z) : (s — vt¥z)2 a N-1
RN Ve [oe(- ) ) () )

In (25) the function fy is defined as follows:

B s (-=1)iz
fa(z)—jzzom, z2>0. (26)

It can be shown that kernel ky above is the nonincreasing and positive function (nonnegativity of f, (see [11]) plays a
crucial role in showing these properties for that kernel) with ky(t) ~ A as t — 07, so this kernel belongs to the class of
kernels considered in this paper. Hence we only need to check if condition (5) is valid to know when the blow-up solution
to (1) exists and because any blow-up solution of (21)-(23) is associated with the blow-up solution of Eq. (1), we would
know then also when the subdiffusion with advection PDE problem possesses the blow-up solutions. In order to do that we
use the asymptotic behaviour of kernel ky:

AC(N,a,v) _,

kn(t) ~ ———=t t
N(b) rd—a) ast — oo,

where
2a
0<C(N,a,v) < >

what implies that

M (N,a,v) ;_
Kn(t) ~ MWNAV) 1o yop o (27)
re—-ow
From (27) it follows immediately that lim;_, ., Kn(t) = 00, so on the basis of Theorem 4.1 we just proved the following
result:
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Theorem 6.5. Let in Eq. (1) with kernel ky given by (25) the nonlinearity g satisfies (2)-(4) and let the mapping t — ﬁ be strictly

increasing in some right neighbourhood of 0 and strictly decreasing in some neighbourhood of co. Then Eq. (1) has a blow-up solution
if and only if when

oo

ds

0
Moreover, the blow-up time T could be estimated by (14) with kg = A.

Remark 6.6. It is very interesting that one can show that for the classical diffusion with advection problem [5] an analogue
of Theorem 6.5 is not valid, i.e. it can happen that blow-up solution does not exist even if condition (28) is satisfied. This is
due to fact that kernel

A ; (s — vt)? a N-1
w0 = 5 (f oo ) ) (e(55)) 29)

—a

of respective Volterra integral equation in this case does not necessarily satisfy condition (5).
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