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We characterize the Banach spaces Y for which certain subspaces of operators from
L1(μ) into Y have the Bishop–Phelps–Bollobás property in terms of a geometric
property of Y , namely AHSP. This characterization applies to the spaces of compact
and weakly compact operators. New examples of Banach spaces Y with AHSP are
provided. We also obtain that certain ideals of Asplund operators satisfy the Bishop–
Phelps–Bollobás property.
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1. Introduction

E. Bishop and R. Phelps in [6] proved that every continuous linear functional x∗ on a Banach space X

can be uniformly approximated on the closed unit ball of X by a continuous linear functional y∗ that attains
its norm. This result is called the Bishop–Phelps Theorem. Shortly thereafter, B. Bollobás [7] showed that
this approximation can be obtained with the additional property that the point at which x∗ almost attains
its norm is close in norm to a point at which y∗ attains its norm. This is a “quantitative version” of the
Bishop–Phelps Theorem, known as the Bishop–Phelps–Bollobás Theorem. Throughout the paper, X and
Y will be Banach spaces over the scalar field K (R or C). As usual, SX , BX and X∗ will denote the unit
sphere, the closed unit ball, and the (topological) dual of X, respectively.
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Theorem 1.1 (Bishop–Phelps–Bollobás Theorem). (See [8, Theorem 16.1].) Let X be a Banach space and
0 < ε < 1. Given x ∈ BX and x∗ ∈ SX∗ with |1 − x∗(x)| < ε2

4 , there are elements y ∈ SX and y∗ ∈ SX∗

such that y∗(y) = 1, ‖y − x‖ < ε and ‖y∗ − x∗‖ < ε.

In what follows K will be a compact Hausdorff space and μ will be a σ-finite measure. Different versions
of the Bishop–Phelps–Bollobás Theorem for operators were proved in [1]. Amongst them it is shown a
characterization of the Banach spaces Y satisfying an analogous result to the Bishop–Phelps–Bollobás
Theorem for operators from �1 into Y . There are also positive results for operators from L1(μ) into L∞[0, 1]
[4,10] and for operators from an Asplund space into C(K) [3]. For some more results on the subject see also
[9,19,20].

Our aim in this paper is to provide classes of spaces satisfying a version of the Bishop–Phelps–Bollobás
Theorem for operators. By L(X,Y ) we denote the Banach space of bounded linear operators from X into Y .
Before going on, we need the following definitions.

The next property was introduced in [1].

Definition 1.2. Let X and Y be both real or complex Banach spaces. The pair (X,Y ) satisfies the Bishop–
Phelps–Bollobás property for operators if given ε > 0, there are η(ε) > 0 and β(ε) > 0 with limt→0 β(t) = 0
such that for any T ∈ SL(X,Y ), if x0 ∈ SX is such that ‖Tx0‖ > 1 − η(ε), then there exist a point u0 ∈ SX

and an operator S ∈ SL(X,Y ) that satisfy the following conditions:

‖Su0‖ = 1, ‖u0 − x0‖ < β(ε) and ‖S − T‖ < ε.

In this case, we also say that the space L(X,Y ) has the Bishop–Phelps–Bollobás property.

When the operator T (in the definition above) belongs to a certain class, we expect that S also belongs
to the same class. Therefore we introduce the following notion.

Definition 1.3. Let X and Y be both real or complex Banach spaces and M a subspace of L(X,Y ). We say
that M satisfies the Bishop–Phelps–Bollobás property if given ε > 0, there is η(ε) > 0 such that for any
T ∈ SM , if x0 ∈ SX satisfies that ‖Tx0‖ > 1 − η(ε), then there exist a point u0 ∈ SX and an operator
S ∈ SM satisfying the following conditions:

‖Su0‖ = 1, ‖u0 − x0‖ < ε and ‖S − T‖ < ε.

Remark 1.4. The above definition can be reformulated as follows. Given ε > 0, there are η(ε) > 0 and
β(ε) > 0 with limt→0 β(t) = 0 such that for any T ∈ SM , if x0 ∈ SX satisfies that ‖Tx0‖ > 1 − η(ε), then
there exist a point u0 ∈ SX and an operator S ∈ SM satisfying the following conditions:

‖Su0‖ = 1, ‖u0 − x0‖ < β(ε) and ‖S − T‖ < β(ε).

Notice that if M = L(X,Y ), Definitions 1.2 and 1.3 are equivalent.
To study the Bishop–Phelps–Bollobás property for operators on �1, the following geometric property was

introduced in [1, Definition 3.1].

Definition 1.5. A Banach space X has the approximate hyperplane series property (AHSP) if for every ε > 0
there exist γ(ε) > 0 and η(ε) > 0 with limt→0+ γ(t) = 0 such that for every sequence (xk) ⊂ SX (or
(xk) ⊂ BX) and every convex series

∑
k�1 αk satisfying

∥∥∥∥∥
∞∑

αkxk

∥∥∥∥∥ > 1 − η(ε),

k=1
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there exist a subset D ⊂ N, {zk: k ∈ D} ⊂ SX and x∗ ∈ SX∗ such that

(i)
∑

k∈D αk > 1 − γ(ε),
(ii) ‖zk − xk‖ < ε for all k ∈ D,
(iii) x∗(zk) = 1 for all k ∈ D.

Note that X has AHSP if whenever we have a convex series of vectors in BX whose norm is very close
to 1, then a preponderance of these vectors are uniformly close to unit vectors that lie in the same affine
hyperplane. For instance, finite-dimensional spaces, uniformly convex spaces, C(K) and L1(μ) have AHSP
[1, §3].

The outline of the paper is as follows. In Section 2, we characterize the Banach spaces Y such that certain
subspaces of operators from L1(μ) into Y satisfy the Bishop–Phelps–Bollobás property. As a consequence,
we show that the following conditions are equivalent:

(1) Y satisfies AHSP.
(2) F(L1(μ), Y ) (finite-rank operators) has the Bishop–Phelps–Bollobás property.
(3) K(L1(μ), Y ) (compact operators) has the Bishop–Phelps–Bollobás property.
(4) W(L1(μ), Y ) (weakly compact operators) has the Bishop–Phelps–Bollobás property.
(5) RN (L1(μ), Y ) (Radon–Nikodým operators) has the Bishop–Phelps–Bollobás property.

We also deal with the Bishop–Phelps–Bollobás property for Asplund operators. In Section 3, we extend
Theorem 2.4 and Corollary 2.5 of [3] to some spaces of vector valued continuous functions. As a consequence,
we obtain new spaces of operators satisfying the Bishop–Phelps–Bollobás property. We prove that the pairs
(X,K(Y, C(K))), (X,W(Y, C(K))), and (X,L(Y, C(K))) satisfy the Bishop–Phelps–Bollobás property if X is
an Asplund space and Y has property α of Schachermayer [23] (for instance Y = �1). Finally, new examples
of spaces having AHSP are provided in Section 4, for instance K(X, C(K)) and L(X, C(K)) whenever X is
uniformly smooth.

2. Bishop–Phelps–Bollobás property for the space of Radon–Nikodým operators

It will be convenient to begin by recalling a few definitions and results related to Radon–Nikodým
operators. Let (Ω,Σ, μ) be a finite measure space. A bounded linear operator T : L1(μ) → Y is said to be
representable if there exists g ∈ SL∞(μ,Y ) such that

T (f) =
∫
Ω

gf dμ for all f ∈ L1(μ)

(see [14, p. 61] or [16, Definition 5.5.15]).
We recall that a Radon–Nikodým operator is an operator T : X → Y such that TS is representable

for every operator S : L1(μ) → X (see [16, Definition 5.5.12 and Theorem 5.5.19]). A bounded operator
T : L1(μ) → Y is representable if and only if T is a Radon–Nikodým operator (see [16, Proposition 5.5.18]).
Also, a Banach space Y has the Radon–Nikodým property if and only if every operator T : L1(μ) → Y is a
Radon–Nikodým operator (see [16, Proposition 5.5.16]).

Following [13, Definition 9.1], an operator ideal I is a subclass of the class L such that for any pair of
Banach spaces (X,Y ), I(X,Y ) is a subspace of L(X,Y ) which contains the finite rank operators and satisfies
the so-called “ideal property”. That is, given arbitrary Banach spaces X0, Y0, we have R ◦ S ◦ T ∈ I(X,Y )
for any S in I(X0, Y0), T in L(X,X0), and R in L(Y0, Y ), and for every Banach spaces X and Y . The
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operator ideal I is said to be closed if the subspace I(X,Y ) is closed in L(X,Y ) for all Banach spaces X

and Y .
As mentioned above, we denote by RN the closed operator ideal of all Radon–Nikodým operators. Also

we have F ⊆ K ⊆ W ⊆ RN (see [16, Proposition 5.5.20]).
The elementary result below will be useful in the sequel.

Lemma 2.1. (See [1, Lemma 3.3].) Let (cn) be a sequence of complex numbers with |cn| � 1 for every n, and
let η > 0 be such that for some convex series

∑
n αn, Re

∑∞
n=1 αncn > 1− η. Then for every 0 < r < 1, the

set D := {i ∈ N: Re ci > r}, satisfies the estimate

∑
i∈D

αi � 1 − η

1 − r
.

The following result is a refinement of [10, Theorem 2.1].

Proposition 2.2. Let (Ω,Σ, μ) be a measure space such that L1(μ) is infinite-dimensional, Y a Banach space,
and M a subspace of L(L1(μ), Y ) containing all finite-rank operators. If M has the Bishop–Phelps–Bollobás
property, then Y has AHSP.

Proof. For every ε > 0 there exists η(ε) > 0 satisfying Definition 1.3.
Now, given 0 < ε < 1

9 , we will prove that Y satisfies AHSP for the functions η(ε) = min{η(ε3), ε} and γ

given by

γ(ε) := 8ε(1 − ε) + ε + ε3(1 − ε). (2.1)

It is clear that γ(ε) > 0 and limε→0 γ(ε) = 0 as it is required in Definition 1.5.
Let (yn) be a sequence in SY and a convex series

∑
n αn satisfying

∥∥∥∥∥
∞∑

n=1
αnyn

∥∥∥∥∥ > 1 − η(ε).

Fix N such that

∥∥∥∥∥
N∑

n=1
αnyn

∥∥∥∥∥ > 1 − η(ε) � 1 − ε > 0. (2.2)

If we write α̃n = αn∑N
k=1 αk

then

∥∥∥∥∥
N∑

k=1

α̃kyk

∥∥∥∥∥ �
∥∥∥∥∥

N∑
k=1

αkyk

∥∥∥∥∥ > 1 − η
(
ε3) and

N∑
k=1

α̃k = 1. (2.3)

By assumption, there is a sequence (En) of pairwise disjoint subsets in Σ satisfying 0 < μ(En) < ∞ for
each n. For every positive integer n, let x∗

n be the functional on L1(μ) associated to χEn
, that is,

x∗
n(f) :=

∫
f dμ

(
f ∈ L1(μ)

)
.

En
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Now we define the finite-rank operator (therefore in M) T : L1(μ)→Y by

T (f) =
N∑

k=1

x∗
k(f)yk

(
f ∈ L1(μ)

)
.

Note that ‖T‖ � 1 and ‖T (χEk
)‖ = ‖χEk

‖1 for all k � N , then T ∈ SM .
Define f0 :=

∑N
k=1 α̃k

χEk

μ(Ek) . By (2.3), ‖f0‖1 = 1 and ‖T (f0)‖ = ‖
∑N

k=1 α̃kyk‖ > 1 − η(ε3).
Since M has the Bishop–Phelps–Bollobás property, there exist g0 ∈ SL1(μ) and S ∈ SM satisfying

‖Sg0‖ = 1, ‖g0 − f0‖1 < ε3 and ‖S − T‖ < ε3. (2.4)

Proceeding as in [10, Theorem 2.1] we obtain

N∑
k=1

Rex∗
k(g0) > 1 − ε3. (2.5)

Let s = 1− ε2

8 and D := {k ∈ N: k � N, Rex∗
k(g0) > sx∗

k(|g0|)}. By (2.5) and following the proof of [10,
Theorem 2.1] we obtain

∑
k∈D

Rex∗
k(g0) > 1 − ε3

1 − s
= 1 − 8ε > 0. (2.6)

Thus D 	= ∅.
Combining (2.6) and (2.4) and using ε < 1

9 we deduce that
∑
k∈D

α̃k �
∑
k∈D

Rex∗
k(g0) − ‖g0 − f0‖1 > 1 − 8ε− ‖g0 − f0‖1 > 1 − 8ε− ε3 > 0.

By (2.2) and the previous inequality

∑
k∈D

αk =
( ∑

k∈D

α̃k

)( N∑
k=1

αk

)
>

(
1 − 8ε− ε3)(1 − η(ε)

)
�

(
1 − 8ε− ε3)(1 − ε) = 1 − γ(ε).

Therefore, condition (i) of Definition 1.5 is satisfied. Now, note that for a complex number w with |w| � 1
and Rew > r > 0 it is satisfied |1 − w|2 = 1 + |w|2 − 2 Rew < 2(1 − r). So for every k ∈ D we have

∣∣∣∣1 − x∗
k(g0)

x∗
k(|g0|)

∣∣∣∣
2

< 2(1 − s) = ε2

4 . (2.7)

For k ∈ N we define zk = S( g0χEk

x∗
k(|g0|) ) if x∗

k(|g0|) 	= 0 and 0 otherwise. In particular, ‖zk‖ � 1 for every k. We
write Ω1 = Ω \

⋃∞
k=1 Ek. Let us notice that g0 =

∑∞
k=1 g0χEk

+ g0χΩ1 and the series is norm convergent.
Then

S(g0) =
∞∑
k=1

S(g0χEk
) + S(g0χΩ1) =

∞∑
k=1

x∗
k

(
|g0|

)
zk + S(g0χΩ1).

By the Hahn–Banach Theorem, there is a functional y∗ ∈ SY ∗ attaining its norm at S(g0). Then

1 = y∗
(
S(g0)

)
=

∞∑
k=1

x∗
k

(
|g0|

)
y∗(zk) + y∗

(
S(g0χΩ1)

)
�

∞∑
k=1

( ∫
|g0| dμ

)
+ ‖g0χΩ1‖ = ‖g0‖1 = 1.
Ek
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Therefore

y∗(zk) = 1 for all k ∈ N with x∗
k

(
|g0|

)
	= 0.

In particular, zk ∈ SY for k ∈ D and condition (iii) of Definition 1.5 is also satisfied.
Now for every k ∈ D we have that x∗

k(g0) 	= 0 and T ( g0χEk

x∗
k(g0) ) = yk. Hence by (2.4) for every k ∈ D we

deduce that ∥∥∥∥zk − x∗
k(g0)

x∗
k(|g0|)

yk

∥∥∥∥ =
∥∥∥∥S

(
g0χEk

x∗
k(|g0|)

)
− T

(
g0χEk

x∗
k(|g0|)

)∥∥∥∥ � ‖S − T‖ < ε3.

Finally, by (2.7), for every k ∈ D we obtain

‖zk − yk‖ �
∥∥∥∥zk − x∗

k(g0)
x∗
k(|g0|)

yk

∥∥∥∥ +
∥∥∥∥
(

x∗
k(g0)

x∗
k(|g0|)

− 1
)
yk

∥∥∥∥ � ε3 + ε

2 < ε,

and Y has AHSP. �
Improving [10, Theorem 2.2], we give a partial converse of Proposition 2.2.

Theorem 2.3. Let (Ω,Σ, μ) be a finite measure space, Y a Banach space with AHSP and M a subspace of
L(L1(μ), Y ) such that contains all finite-rank operators and it is contained in the subspace of all representable
operators. Also, assume that the operator SA(f) = S(fχA) belongs to M whenever S ∈ M and A is any
measurable subset of Ω. Then M has the Bishop–Phelps–Bollobás property for operators.

Proof. By assumption Y has AHSP; let γ and η be the functions satisfying Definition 1.5. Given 0 < ε < 1,
we choose 0 < δ < ε

6 such that 0 < γ(δ) < ε
6 and 0 < δ′ < min{ ε

6 ,
η(δ)
4 }. Define ρ(ε) := η(δ)

2 and assume that
T ∈ SM and f0 ∈ SL1(μ) satisfy that ‖Tf0‖ > 1 − ρ(ε). There is a function h ∈ L∞(μ) such that |h(t)| = 1
for every t ∈ Ω and satisfying also that h(t)f0(t) = |f0(t)| for every t ∈ Ω. Now we define a surjective linear
isometry ψ : L1(μ) → L1(μ) given by

ψ(f) = hf
(
f ∈ L1(μ)

)
,

that satisfies ψ(f0)(t) ∈ R
+
0 for every t ∈ Ω.

We write R = Tψ−1 and u0 = ψ(f0). Clearly, we have ‖R(u0)‖ = ‖T (f0)‖ > 1 − ρ(ε), with u0 ∈ SL1(μ)
nonnegative and R ∈ SL(L1(μ),Y ).

Since T is a representable operator, R is also representable. So there is g ∈ L∞(μ, Y ) such that

R(f) =
∫
Ω

gf dμ for all f ∈ L1(μ).

By [14, Lemma III.1.4], g also satisfies that ‖g‖∞ = ‖R‖ = 1. By [14, Corollary II.1.3], there exist
a measurable function h : Ω → Y , whose range is countable, and a μ-null subset E of Ω such that
‖(g−h)χΩ\E‖∞ < ε

4 . Write h =
∑∞

n=1 χBn
wn (pointwise convergence) with (wn) ⊂ Y and (Bn) a sequence

of pairwise disjoint measurable sets of Ω with
⋃

n Bn = Ω. Hence, fixed n ∈ N and s, t ∈ Bn\E we have

∥∥g(s) − g(t)
∥∥ �

∥∥g(s) − h(s)
∥∥ +

∥∥h(s) − h(t)
∥∥ +

∥∥h(t) − g(t)
∥∥ <

ε

2 .

Both functions g and gχΩ\E represent R, then we may assume that

∥∥g(s) − g(t)
∥∥ <

ε for all s, t ∈ Bn and n ∈ N. (2.8)
2
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By the Monotone Convergence Theorem the sequence (u0χ⋃n
k=1 Bk

) converges to u0 in L1(μ). Since
1 − ρ(ε) < ‖R(u0)‖, for some m large enough we have

1 − ρ(ε) <
∥∥R(u0χ⋃m

k=1 Bk
)
∥∥ and ‖u0 − u0χ⋃m

k=1 Bk
‖ < δ′. (2.9)

We write B =
⋃m

i=1 Bk. Since u0 is a non-negative function in SL1(μ), there is a non-negative simple
function v0 in BL1(μ) with support contained in B satisfying ‖v0 − u0χB‖ < δ′ and ‖v0‖ = ‖u0χB‖ and so
0 < 1 − δ′ � ‖v0‖ � 1. The element s0 = v0

‖v0‖ belongs to SL1(μ). Its support is contained in B and also
satisfies that

‖s0 − u0χB‖ � ‖s0 − v0‖ + ‖v0 − u0χB‖ = 1 − ‖v0‖ + ‖v0 − u0χB‖ < 2δ′

< min
{
ε

3 ,
η(δ)
2

}
. (2.10)

Hence, there is a finite number of pairwise disjoint measurable sets in B, {A1, . . . , AN}, such that s0 belongs
to the space generated by {χAi

: 1 � i � N}.
Let {Ci: 1 � i � p} be the family of pairwise disjoint measurable subsets obtained by indexing the

set {Ai ∩ Bj : 1 � i � N, 1 � j � m, μ(Ai ∩ Bj) > 0}. Write s0 =
∑p

k=1 βkχCk
with βk � 0 and∑p

k=1 βkμ(Ck) = ‖s0‖ = 1.
From (2.9) and (2.10) we obtain that

1 − η(δ) = 1 − ρ(ε) − η(δ)
2 <

∥∥R(u0χB)
∥∥− η(δ)

2 <
∥∥R(s0)

∥∥ =

∥∥∥∥∥
p∑

k=1

βkμ(Ck)R
(

χCk

μ(Ck)

)∥∥∥∥∥.
Since R ∈ SL(L1(μ),Y ), yk = R( χCk

μ(Ck) ) ∈ BY for 1 � k � p and

1 − η(δ) <

∥∥∥∥∥
p∑

k=1

βkμ(Ck)yk

∥∥∥∥∥. (2.11)

Observe that by (2.8), for every k � p and t ∈ Ck we have that

∥∥g(t) − ykχCk
(t)

∥∥ =
∥∥∥∥
∫
Ck

g(t)
μ(Ck)

dμ(u) −
∫
Ck

g(u)
μ(Ck)

dμ(u)
∥∥∥∥ �

∫
Ck

‖g(t) − g(u)‖
μ(Ck)

dμ(u) � ε

2 . (2.12)

Since Y has AHSP and
∑p

k=1 βkμ(Ck) = 1, by (2.11), there are sets D ⊂ {1, . . . , p}, {zk: k ∈ D} ⊂ SY

and y∗ ∈ SY ∗ satisfying

y∗(zk) = 1, ‖zk − yk‖ < δ for all k ∈ D and
∑
k∈D

βkμ(Ck) > 1 − γ(δ) > 0. (2.13)

Now define the function g1 : Ω→Y given by g1 = gχΩ\C +
∑

k∈D zkχCk
, where C =

⋃
k∈D Ck. It is clear

that g1 ∈ BL∞(μ,Y ). By (2.12) and (2.13), we have

‖g1 − g‖∞ =
∥∥(g1 − g)χC

∥∥
∞ < δ + ε

2 < ε.

Let R1 be the element in L(L1(μ), Y ) associated to g1. Then ‖R1‖ � 1 and

‖R1 −R‖ = ‖g1 − g‖∞ < ε. (2.14)
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Let s1 =
∑

k∈D βkχCk
, which by (2.13) is nonzero and satisfies

‖s1‖ =
∑
k∈D

βkμ(Ck) = y∗
( ∑

k∈D

βkμ(Ck)zk
)

= y∗
(
R1(s1)

)
�

∥∥y∗∥∥‖R1‖‖s1‖ = ‖s1‖.

Then, ‖R1‖ � 1 and R1 attains its norm at s2 = s1
‖s1‖ . By (2.9), (2.10) and (2.13) we have

‖s2 − u0‖ �
∥∥∥∥ s1

‖s1‖
− s1

∥∥∥∥ + ‖s1 − s0‖ + ‖s0 − u0‖ =
∣∣1 − ‖s1‖

∣∣ +
∑

k�p, k/∈D

βkμ(Ck) + ‖s0 − u0‖

� 2
∑

k�p, k/∈D

βkμ(Ck) + ‖s0 − u0χB‖ + ‖u0χB − u0‖ � 2γ(δ) + ε

3 + δ′ < ε.

Now, define T1 = R1ψ and f2 = ψ−1s2. Since ψ is an isometry, T1 ∈ SL(L1(μ),Y ), f2 ∈ SL1(μ) and T1
attains its norm at f2. By (2.14), ‖T1 − T‖ = ‖R1 −R‖ < ε, also ‖f2 − f0‖ < ε.

Let us notice that R1 − R is the operator associated to the function g1 − g. Hence, for every f ∈ L1(μ)
we have

(R1 −R)(f) = (R1 −R)(fχC) =
∑
k∈D

( ∫
Ck

f dμ

)
zk −R(fχC) = S(f) −RC(f),

where RC(f) = R(fχC) and S is the finite-rank operator given by S(f) =
∑

k∈D(
∫
Ck

f dμ)zk. Hence

T1 − T = (R1 −R)ψ = (S −RC)ψ. (2.15)

To show that T1 ∈ M note that

RC

(
ψ(f)

)
= RC(hf) = R(hfχC) = T

(
ψ−1(hfχC)

)
= T (hhfχC) = TC(f),

where h stands for the conjugate of h.
Now, the hypothesis on M implies that RC ◦ ψ also belongs to M . On the other hand, M contains

all finite-rank operators, thus (2.15) gives that T1 is in M . Therefore M has the Bishop–Phelps–Bollobás
property. �

As a consequence of Theorem 2.3, if I is an operator ideal such that I(L1(μ), Y ) ⊂ RN (L1(μ), Y ),
Y has AHSP and μ is any finite measure, then the space I(L1(μ), Y ) satisfies the Bishop–Phelps–Bollobás
property. By Proposition 2.2, we deduce the following:

Corollary 2.4. Let Y be a Banach space and (Ω,Σ, μ) a finite measure space such that L1(μ) is infinite-
dimensional. The following conditions are equivalent:

(1) Y satisfies AHSP.
(2) F(L1(μ), Y ) has the Bishop–Phelps–Bollobás property.
(3) K(L1(μ), Y ) has the Bishop–Phelps–Bollobás property.
(4) W(L1(μ), Y ) has the Bishop–Phelps–Bollobás property.
(5) RN (L1(μ), Y ) has the Bishop–Phelps–Bollobás property.

There are very different Banach spaces having AHSP. For instance, finite-dimensional spaces, uniformly
convex spaces, C(K), L1(μ) (μ σ-finite) and K(H)∗ (K(H) = compact operators on a Hilbert space) satisfy
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this property (see [1, §3] and [2, Proposition 4.7]). Also every lush space has AHSP [11] (see also [9]). We
will provide later some examples of spaces of operators satisfying AHSP.

Remark 2.5. Theorem 2.3 (and hence Corollary 2.4) actually holds whenever μ is a σ-finite measure. To
obtain this let us notice that every element g in L∞(μ, Y ) is the almost μ-everywhere pointwise limit of
a sequence of μ-measurable and countably valued functions. So the range of g is essentially separable and
almost μ-everywhere coincides with a Borel measurable function. Hence the classical Lebesgue’s horizontal
approximation method can be applied to show that every element in L∞(μ, Y ) is the μ-almost everywhere
uniform limit of countably valued measurable functions that are bounded. The proof of Theorem 2.3 goes
exactly along the same lines by using this fact and standard techniques in case that μ is σ-finite.

Theorem 2.3 applies not only to operator ideals, as the next remark shows.

Remark 2.6. There is a closed subspace M ⊂ L(L1(μ), Y ) satisfying the hypothesis of Theorem 2.3 which
is not an operator ideal. Let Y be any infinite dimensional Banach space and L1(μ) = L1[−1, 1]. Let
M ⊂ L(L1(μ), Y ) be the linear space given by

M =
{
K + R: K ∈ K

(
L1(μ), Y

)
, R ∈ RN

(
L1(μ), Y

)
and R = R[0,1]

}
,

where RC(f) = R(fχC) for any f ∈ L1(μ) and any measurable subset C ⊂ [−1, 1]. Note that T[−1,0] is a
compact operator for any T in M . Let φ(t) = −t and Cφ:L1(μ) → L1(μ) be the surjective linear isometry
defined by Cφ(f) = f ◦φ. Take T ∈ RN (L1(μ), Y )\K(L1(μ), Y ). Since (T ◦Cφ)[−1,0] = T[0,1] is noncompact
and, therefore, M satisfies all the requirements.

3. Bishop–Phelps–Bollobás property for the space of Asplund operators

We recall that an operator T ∈ L(X,Y ) is said to be an Asplund operator if T ∗ is a Radon–Nikodým
operator (see [16, Definition 5.5.22]). We denote by A the closed operator ideal of all Asplund operators.

A Banach space Y is said to have property β (of Lindenstrauss [21]) if there are two sets {yα: α ∈ Λ} ⊂ SY ,
{y∗α: α ∈ Λ} ⊂ SY ∗ and 0 � ρ < 1 such that the following conditions hold

(1) y∗α(yα) = 1,
(2) |y∗α(yγ)| � ρ < 1 if α 	= γ,
(3) ‖y‖ = sup{|y∗α(y)|: α ∈ Λ}, for all y ∈ Y .

Aron, Cascales and Kozhushkina in [3, Theorem 2.4 and Corollary 2.5] proved that A(X,C(K)) has
the Bishop–Phelps–Bollobás property. In this section we extend this result to some spaces of vector-valued
continuous functions C(K,Y ) (Theorem 3.1).

In general, it is known that not every operator into a C(K) space can be approximated by norm attaining
operators (see [22, Theorem A] or [18, Corollary 2]). Moreover, in view of [5, Example 4.2], we have to
introduce some restrictions on Y in order to get a positive result of Bishop–Phelps–Bollobás property for
operators into C(K,Y ).

We recall that a subspace Z of Y ∗ is said to be norming for Y , if for every y ∈ Y , we have
‖y‖ = sup{|φ(y)|: φ ∈ BZ} for any y ∈ Y . We also say that a subset C of Y ∗ is 1-norming, if
‖y‖ = sup{|φ(y)|: φ ∈ C} for every y ∈ Y . We denote by σ(Y,Z) the topology on Y of pointwise con-
vergence on Z. If Z is any norming subspace for Y and τ is any linear topology on Y with σ(Y,Z) ⊂ τ ⊂ n

where n is the norm topology then C(K, (Y, τ)) is a Banach space with the norm induced by �∞(K,Y ).
Also C(K, (Y, τ)) is stable under products by elements of C(K).
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Theorem 3.1. Let Y be a Banach space satisfying property β for the subset of functionals Δ = {y∗α: α ∈ Λ}
and Z the closed subspace of Y ∗ generated by Δ. Let τ be a linear topology on Y with σ(Y,Z) ⊆ τ ⊆ n.
Then for every closed operator ideal I such that I ⊆ A, we have that I(X, C(K, (Y, τ))) has the Bishop–
Phelps–Bollobás property for every Banach space X and every compact Hausdorff topological space K.

Proof. Let us fix T in the unit sphere of I(X, C(K, (Y, τ))), 0 < ε < 1 and x0 ∈ SX such that

∥∥T (x0)
∥∥ > 1 − ε2

4 .

We will prove that there exist u0 ∈ SX and R in the unit sphere of I(X, C(K, (Y, τ))) such that

∥∥R(u0)
∥∥ = 1, ‖u0 − x0‖ < ε and ‖R− T‖ � ε

(
3 + 8ρ

1 − ρ

)
,

where ρ is the constant appearing in the definition of property β.
Since Y has property β, the set

B :=
{
δt ⊗ y∗α: t ∈ K, α ∈ Λ

}
is a 1-norming subset of BC(K,(Y,τ))∗ . By [3, Lemma 2.3] one can find a w∗-open subset U of X∗ so that
U ∩ T ∗(B) 	= ∅ and two elements u0 ∈ SX , u∗

0 ∈ SX∗ such that

u∗
0(u0) = 1, ‖u0 − x0‖ < ε and

∥∥x∗ − u∗
0
∥∥ < 3ε for all x∗ ∈ U ∩ T ∗(B). (3.1)

Since U ∩T ∗(B) is nonempty, we can find some t0 ∈ K and α0 ∈ Λ such that T ∗(δt0 ⊗y∗α0
) ∈ U . Consider

the set

W :=
{
t ∈ K: T ∗(δt ⊗ y∗α0

)
∈ U

}
which is open and contains t0.

By Urysohn’s Lemma, there is a continuous function f : K → [0, 1] whose support is contained in W

such that f(t0) = 1. Define the operator S : X → C(K, (Y, τ)) by

S(x)(t) = T (x)(t) +
(
(1 + η)u∗

0(x) − T ∗(δt ⊗ y∗α0

)
(x)

)
f(t)yα0 (x ∈ X, t ∈ K),

where η = 4ερ
1−ρ . The operator S is clearly bounded and linear.

Our aim now is to show that S belongs to I(X, C(K, (X, τ))). In order to do that, we consider the
bounded linear operators R : X → C(K, (Y, τ)) and F,Mf : C(K, (Y, τ)) → C(K, (Y, τ)) given by

R(x)(t) = (1 + η)u∗
0(x)f(t)yα0 (x ∈ X, t ∈ K),

Mf (g)(t) = f(t)g(t) and F (g)(t) = y∗α0

(
g(t)

)
yα0

(
g ∈ C

(
K, (Y, τ)

)
, t ∈ K

)
.

It is clearly satisfied that S = T +R−F ◦Mf ◦T . Since I is an operator ideal we have that the rank-one
operators R, F ◦Mf ◦ T and so S belong to I(X, C(K, (Y, τ))).

We will check that ‖S‖ = ‖S(u0)‖ = 1 + η. Indeed, we have that

y∗α
(
S(u0)(t0)

)
= (1 + η)u∗

0(u0) = 1 + η. (3.2)

0
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On the one hand, for t ∈ K \W we know that f(t) = 0, so S(x)(t) = T (x)(t), hence
∥∥S(x)(t)

∥∥ � 1 for all x ∈ BX . (3.3)

On the other hand, if t ∈ W we distinguish two cases to estimate |y∗α(S(x)(t))|.
For α = α0 we obtain that

∣∣y∗α0

(
S(x)(t)

)∣∣ =
∣∣y∗α0

(
T (x)(t)

)
+

(
(1 + η)u∗

0(x) − T ∗(δt ⊗ y∗α0

)
(x)

)
f(t)

∣∣
=

∣∣(1 − f(t)
)
y∗α0

(
T (x)(t)

)
+ (1 + η)u∗

0(x)f(t)
∣∣

�
∣∣(1 − f(t)

)
y∗α0

(
T (x)(t)

)
+ f(t)u∗

0(x)
∣∣ + η

∣∣u∗
0(x)

∣∣ � 1 + η, (3.4)

since (1 − f(t))y∗α0
(T (x)(t)) + f(t)u∗

0(x) is a convex combination of y∗α0
(T (x)(t)) and u∗

0(x).
For α ∈ Λ \ {α0}, since t is in W , by (3.1) we know that ‖u∗

0 − T ∗(δt ⊗ y∗α0
)‖ < 3ε. Thus,

∣∣y∗α(S(x)(t)
)∣∣ �

∣∣y∗α(T (x)(t)
)∣∣ +

∣∣(u∗
0 − T ∗(δt ⊗ y∗α0

))
(x) + ηu∗

0(x)
∣∣∣∣y∗α(yα0)

∣∣f(t)

� 1 + (3ε + η)ρ < 1 + η. (3.5)

By (3.3), (3.4) and (3.5), we have that ‖S‖ � 1+η and by (3.2) we obtain ‖S‖ = 1+η and ‖S(u0)‖ = 1+η.
We will check that ‖S − T‖ � ε(3 + 4ρ

1−ρ ). If t ∈ K \W then S(x)(t) = T (x)(t). If t ∈ W then by (3.1)

∥∥S(x)(t) − T (x)(t)
∥∥ =

∥∥((1 + η)u∗
0(x) − T ∗(δt ⊗ y∗α0

(x)
))
f(t)yα0

∥∥ � 3ε + η = ε

(
3 + 4ρ

1 − ρ

)
.

Finally, taking R = S
‖S‖ we get

‖R− T‖ �
∥∥∥∥ S

‖S‖ − S

∥∥∥∥ + ‖S − T‖ =
(
1 − ‖S‖

)
+ ‖S − T‖ � η + ε

(
3 + 4ρ

1 − ρ

)
= ε

(
3 + 8ρ

1 − ρ

)
,

which completes the proof. �
Our aim now is to provide examples of pairs of Banach spaces with the Bishop–Phelps–Bollobás prop-

erty for operators. Recall that the spaces C(K,Y ∗), C(K, (Y ∗, w)) and C(K, (Y ∗, w∗)) can be isometrically
identified with K(Y, C(K)), W(Y, C(K)) and L(Y, C(K)), respectively (see [15, Theorem VI.7.1, p. 490]). It
is also known that L(X,Y ) = A(X,Y ) whenever X is an Asplund space. The following property will be
required.

A Banach space Y is said to have property α (of Schachermayer) if there are two sets {yα: α ∈ Λ} ⊂ SY ,
{y∗α: α ∈ Λ} ⊂ SY ∗ and 0 � ρ < 1 such that the following conditions hold

(1) y∗α(yα) = 1 for all α ∈ Λ,
(2) |y∗α(yγ)| � ρ < 1 for α, γ ∈ Λ, α 	= γ,
(3) the unit ball of Y is the closed, circled convex hull of {yα: α ∈ Λ}.

For every set Λ the space �1(Λ) has property α. Property α is quite general if we admit equivalent norms
(see [23, Theorem 4.4] and [17]). It is clear that Y ∗ has property β whenever Y has property α. Hence, we
obtain the following corollary:

Corollary 3.2. Let X be an Asplund space and Y a Banach space satisfying property α. Then (X,K(Y, C(K))),
(X,W(Y, C(K))), and (X,L(Y, C(K))) have the Bishop–Phelps–Bollobás property for operators for every
compact Hausdorff topological space K.
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4. New examples of spaces with the approximate hyperplane series property

It is known that uniformly convex spaces have AHSP (see [1, Proposition 3.8]). Hence X∗ has AHSP
whenever X is uniformly smooth. We will generalize this fact by providing some spaces of operators satisfying
the same property.

We recall that a Banach space X is uniformly convex if for every ε > 0 there is 0 < δ < 1 such that

u, v ∈ BX ,
‖u + v‖

2 > 1 − δ ⇒ ‖u− v‖ < ε.

In such a case, the modulus of convexity of X is given by

δ(ε) := inf
{

1 − ‖u + v‖
2 : u, v ∈ BX , ‖u− v‖ � ε

}
.

Given a (non-empty) bounded subset A of X, an element x∗ ∈ X∗ and α > 0, the slice S(A, x∗, α) is the
subset of A given by

S
(
A, x∗, α

)
:=

{
z ∈ A: Rex∗(z) > sup

x∈A
Rex∗(x) − α

}
.

The following elementary fact will be useful below.

Lemma 4.1. (See [2, Lemma 2.1].) If X is uniformly convex, then for every ε > 0,

diamS
(
BX , x∗, δ(ε)

)
� ε for all x∗ ∈ SX∗ .

Theorem 4.2. Let X be a uniformly convex Banach space and τ be a linear topology on X satisfying w ⊆
τ ⊆ n. Then the space C(K, (X, τ)) has AHSP for any compact Hausdorff topological space K.

Proof. We write Y = C(K, (X, τ)) and denote by δ the modulus of convexity of X. Take (fi)ni=1 ⊂ BY and
a finite convex series

∑n
i=1 αi satisfying

∥∥∥∥∥
n∑

i=1
αifi

∥∥∥∥∥ > 1 − εδ(ε).

Choose x∗
0 ∈ SX∗ and t0 ∈ K so that

x∗
0

(
n∑

i=1
αifi(t0)

)
> 1 − εδ(ε).

By Lemma 2.1, the set D := {1 � i � n: Rex∗
0(fi(t0)) > 1 − δ(ε)} satisfies that

∑
k∈D αk > 1 − ε.

Consider the subset U of K given by

U =
⋂
i∈D

f−1
i

(
S
(
BX , x∗

0, δ(ε)
))
.

Since w ⊆ τ , U is open and it clearly contains t0. By Urysohn’s Lemma, there exists a continuous function
φ : K → [0, 1] with supp(φ) ⊂ U and φ(t0) = 1.

By assumption X is reflexive, so there is x0 ∈ SX so that x∗
0(x0) = 1. For each i ∈ D, define gi ∈ BY by

gi = φx0 + (1 − φ)fi.
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For i ∈ D, we have that gi(t0) = x0 and by Lemma 4.1 we obtain

‖gi − fi‖ =
∥∥φ(x0 · 1 − fi)

∥∥ � sup
t∈U

∥∥x0 − fi(t)
∥∥

� diamS
(
BX , x∗

0, δ(ε)
)

� ε.

On the other hand, the element x∗
0 ◦ δt0 belongs to SY ∗ and (x∗

0 ◦ δt0)(gi) = x∗
0(gi(t0)) = 1 for every

i ∈ D. �
C(K,X) has AHSP whenever X also satisfies AHSP [12, Theorem 2.15]. As we already noticed in the

previous section, sometimes vector-valued spaces of continuous functions can be identified with spaces of
operators. Hence, we deduce the following result.

Corollary 4.3. Let X be a Banach space whose dual has AHSP. Then the space K(X, C(K)) has AHSP for
every compact Hausdorff topological space K.

The above corollary implies that L(X, C(K)) has AHSP for any finite-dimensional space X. It is a natural
question whether or not there are infinite-dimensional spaces with the previous property. The answer is
positive since it is not difficult to show that for every set I, the space (

⊕
i∈I Y )�∞ has AHSP whenever Y

satisfies AHSP. Hence the space L(�1, Y ) = (
⊕

n∈N
Y )�∞ has also AHSP. We will provide another example

that follows from the main result of this section.

Corollary 4.4. The spaces L(X, C(K)) and K(X, C(K)) have AHSP for every uniformly smooth Banach
space X and every compact Hausdorff topological space K.
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