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Let X be a complex Banach space of dimension greater than one, and denote by 
B(X) the algebra of all the bounded linear operators on X. It is shown that if 
φ : B(X) → B(X) is a multiplicative map (not assumed linear) and if φ is sufficiently 
close to a linear automorphism of B(X) in some uniform sense, then it is actually 
an automorphism.
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1. Introduction

It is a classical result [3] that every algebra automorphism φ of B(X), the algebra of all bounded linear 
operators on a Banach space X, is spatial, i.e., there exists an invertible operator T in B(X) such that 
φ(A) = TAT−1 for all A ∈ B(X). There are two main directions in characterizing automorphisms of B(X). 
One is to study when a linear map is an automorphism [2,4,8,11,12,16–18]. Among other results, Jafarian 
and Sourour [8] showed that a surjective linear map of B(X) preserves spectrum if and only if it is either an 
automorphism or an anti-automorphism. Using this, Larson and Sourour [12] proved that each surjective 
local automorphism of B(X) is actually an automorphism when X is infinite-dimensional, which implies 
that the automorphism space of B(X) is reflexive.

Another direction of characterizing automorphisms of B(X) is to investigate when a multiplicative map 
(not assumed linear) is an automorphism [1,7,13–15]. Semrl [15] considered a bijection ϕ of B(X) satisfy-
ing ‖ϕ(AB) − ϕ(A)ϕ(B)‖ < ε for all A, B ∈ B(X), and showed that ϕ is either an automorphism or an 
anti-automorphism in the case X is infinite-dimensional. Let H be a Hilbert space. Molnar [14] showed 
that a continuous multiplicative map of B(H) which preserves co-rank is a linear automorphism or a 
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conjugate-linear automorphism. Recently, Marcoux, Radjavi and Sourour [13] proved that a multiplicative 
map ϕ : B(H) → B(H) (not assumed linear and bijective) which is sufficiently close to a linear automor-
phism ψ, i.e. there exists a 0 < δ < 1

4 such that ‖ϕ(A) − ψ(A)‖ < δ‖ψ(A)‖ for all A ∈ B(H), then ϕ is an 
automorphism.

The aim of the present paper is to establish the result of [13] mentioned above in the Banach space 
setting. Moreover, the upper bound of δ is expanded, namely, the map can be farther away from the (fixed) 
automorphism. Because of the obvious difference between the Hilbert space and the Banach space, our 
approach is very different from that in [13]. In fact, our result is closely linked with projection constants.

For a closed subspace E of X, we let

λ(X,E) = inf{‖P‖ : P ∈ B(X) is a projection with range E},

and λ(X, E) = ∞ if there are no projections with range E. Further, for n ∈ N, let

λn(X) = sup{λ(X,E) : E is an n-dimensional subspace of X},

and call it the n-dimensional projection constant of X. Obviously, λn(H) = 1 for any Hilbert space H. Due 
to Kadec and Snobar [9], λn(X) ≤ √

n for any Banach space X. For more information, see, for example, 
[5,6,10].

Let’s now introduce some terminologies. Throughout, X is a complex Banach space with topological 
dual X∗. Denote by B(X) the algebra of all bounded linear operators on X. For A ∈ B(X), by A∗ denote 
the adjoint of A, by imA the range of A, by rankA the dimension of imA. For x ∈ X, f ∈ X∗, the rank at 
most one operator x ⊗ f is defined by x ⊗ f(z) = f(z)x. A projection P is an operator in B(X) satisfying 
P 2 = P .

The following lemma can be found in any textbook of functional analysis and we omit the proof here.

Lemma 1.1 (Riesz lemma). For a non-dense subspace E of X, given 0 < r < 1, there is x ∈ X with ‖x‖ = 1
but dist(x, E) = infy∈E‖x − y‖ > r.

We close this section with a result about the rank of projections. This is surely known, but we include a 
proof for completeness.

Lemma 1.2. Suppose P and Q are projections in B(X). If ‖P −Q‖ < 1 then rankP = rankQ.

Proof. Let M = imP = {Px : x ∈ X}. For y ∈ M , we have Py = y and hence ‖Qy‖ ≥ ‖Py‖ −‖(P−Q)y‖ ≥
(1 − ‖P − Q‖)‖y‖. This shows that the restriction Q|M of Q to M is injective, which further implies that 
rankQ ≥ dimM = rankP . Similarly, rankP ≥ rankQ. The desired equality follows. �
2. Auxiliary lemmas

Throughout this section, X is a complex Banach space of dimension greater than one. By P0(X) and 
P1(X), we denote, respectively, the set of all projections of rank one in B(X) and the set of all projections 
of rank one with norm 1 in B(X). We always suppose that φ is a multiplicative map from B(X) into itself 
and satisfies ‖φ(A) −A‖ ≤ δ‖A‖ for all 0 
= A ∈ B(X), where δ ∈ (0, 1) is fixed.

Lemma 2.1. φ preserves rank-1 operators.

Proof. For non-zero vectors x ∈ X and f ∈ X∗, choose g ∈ X∗ such that g(x) = 1 and ‖g‖ = 1
‖x‖ . Let 

P = x ⊗ g. Then P ∈ P1(X). Therefore, φ(P ) is a projection and ‖φ(P ) − P‖ < ‖P‖ = 1. It follows from 
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Lemma 1.2 that φ(P ) is of rank one. Now since φ(x ⊗ f) = φ(Px ⊗ f) = φ(P )φ(x ⊗ f), we know that the 
rank of φ(x ⊗ f) is at most one. If φ(x ⊗ f) = 0, then ‖x ⊗ f‖ = ‖φ(x ⊗ f) − x ⊗ f‖ ≤ δ‖x ⊗ f‖ < ‖x ⊗ f‖, 
a contradiction. So φ(x ⊗ f) is of rank one. �
Lemma 2.2. For A ∈ B(X), φ(A) = 0 if and only if A = 0.

Proof. The necessity is clear, and we only need to verify the sufficiency. For P ∈ P0(X), since φ(P ) is of 
rank one by Lemma 2.1, we have some scalar αP such that

φ(0) = φ(P0P ) = φ(P )φ(0)φ(P ) = αPφ(P ).

Since φ(0) and φ(P ) are projections, we can get that αP = 0 or αP = 1. If αP = 0 for some P ∈ P0(X), it 
is trivial to see that φ(0) = 0.

Now suppose that αP = 1 for all P ∈ P0(X). Then we have φ(P ) = φ(0) for all P ∈ P0(X). Take 
vectors x1 ∈ X and f1 ∈ X∗ satisfying ‖x1‖ = ‖f1‖ = f1(x1) = 1. Since the dimension of X is greater 
than one, we can take x from ker f1 with ‖x‖ = 3. Let x2 = 1

‖x1−x‖ (x1 − x). Then ‖x2‖ = 1 and |f1(x2)| =
1

‖x1−x‖ ≤ 1
‖x‖−‖x1‖ = 1

2 . Choose f ∈ X∗ such that ‖f‖ = f(x2) = 1. If f(x1) 
= 0, we let f2 = f ; if 
f(x1) = 0, we let f2 = ‖x1−x‖

1+‖x1−x‖ (f1 + f). Then f2(x2) = 1 and 0 < |f2(x1)| ≤ 1. Let Pi = xi ⊗ fi, 
i = 1, 2. Then P1, P2 ∈ P0(X). Thus, we have φ(P1P2P1) = φ(P1)φ(P2)φ(P1) = φ(0)3 = φ(0) and hence 
φ((P1P2P1)n) = φ(P1P2P1)n = φ(0) for all n ∈ N. Since (P1P2P1)n = (f1(x2)f2(x1))nP1 
= 0, we have

‖φ(0) − (P1P2P1)n‖ = ‖φ((P1P2P1)n) − (P1P2P1)n‖

≤ ‖(P1P2P1)n‖ ≤ ‖(P1P2P1)‖n.

Letting n → ∞ in the above equation and noting ‖P1P2P1‖ = |f1(x2)||f2(x1)| ≤ 1
2 , we get that φ(0) = 0. �

Lemma 2.3. Let A and B be in B(X) and suppose that φ(A) = φ(B). Then A and B are linearly dependent.

Proof. If one of A and B is zero, then another is also zero by Lemma 2.2. Now suppose that A and B are 
of rank one, namely, A = x1 ⊗ f1 and B = x2 ⊗ f2 for some non-zero vectors x1, x2 ∈ X, f1, f2 ∈ X∗. Then 
for any y ∈ X, we have φ(f1(y)x1 ⊗ f1) = φ((x1 ⊗ f1)(y⊗ f1)) = φ((x2 ⊗ f2)(y⊗ f1)) = φ(f2(y)x2 ⊗ f1). By 
Lemma 2.2, f1(y) = 0 if and only if f2(y) = 0. By the arbitrariness of y ∈ X, we conclude that f1 and f2

are linearly dependent. Similarly, for h ∈ X∗ we have that φ(h(x1)x1 ⊗ f1) = φ(h(x2)x1 ⊗ f2). This implies 
that h(x1) = 0 if and only if h(x2) = 0. So x1 and x2 are linearly dependent. Consequently, A and B are 
linearly dependent.

Finally, assume that one of A and B is not of rank one. For any x ∈ X, f ∈ X∗, we have φ(Ax ⊗ f) =
φ(Bx ⊗ f). By the preceding result, Ax and Bx are linearly dependent for all x ∈ X. This together with 
the assumption shows that A and B are linearly dependent. �
Lemma 2.4. span{imφ(P ) : P ∈ P1(X)} is norm dense in X. Furthermore, for each non-zero f ∈ X∗, 
span{imφ(x ⊗ f) : x ∈ X} is norm dense in X.

Proof. Let X1 be the (norm) closure of span{imφ(P ), P ∈ P1(X)}. Suppose on the contrary that X1 
= X. 
Then by the Riesz lemma, there exists a unit vector x ∈ X such that α := dist(x, X1) > 1

2 (1 + δ). By the 
Hahn–Banach theorem, there exists f ∈ X∗ such that ‖f‖ = 1, f(X1) = 0 and f(x) = α. Let P = x ⊗ f . 
Then ‖P‖ = 1 and ‖x −Px‖ = 1 −α. Choose g ∈ X∗ such that ‖g‖ = g(x) = 1. Then x ⊗ g ∈ P1(X). Since 
φ(P ) = φ((x ⊗ g)(x ⊗ f)) = φ(x ⊗ g)φ(P ), we have that imφ(P ) ⊆ imφ(x ⊗ g) ⊆ X1. Thus
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α = f(x) = f(x− φ(P )x) ≤ ‖x− φ(P )x‖
≤ ‖x− Px‖ + ‖φ(P )x− Px‖ ≤ 1 − α + δ.

From this we get α ≤ 1+δ
2 , a contradiction. So X1 = X.

Now let 0 
= f ∈ X∗ and choose y ∈ X such that f(y) = 1. For P = x ⊗ g ∈ P1(X), we have 
φ(P ) = φ((x ⊗ f)(y ⊗ g)) = φ(x ⊗ f)φ(y ⊗ g). So the range of φ(P ) is contained in the range of φ(x ⊗ f). 
By the preceding result, span{imφ(x ⊗ f) : x ∈ X} is norm dense in X. �
Lemma 2.5. φ is homogeneous.

Proof. We first show a claim.

Claim. There holds φ(zP ) = zφ(P ) for all P ∈ P1(X) and z ∈ C.

Let P ∈ P1(X). By Lemma 2.1, φ(P ) is a projection of rank one. Therefore, for z ∈ C there corresponds 
a scalar θ(z) such that φ(P )φ(zP )φ(P ) = θ(z)φ(P ). Thus, φ(zP ) = θ(z)φ(P ). Since P is of rank one, there 
exists a scalar α such that Pφ(P )P = αP . Hence

|αθ(z) − z| = ‖θ(z)Pφ(P )P − zP‖ ≤ ‖P‖‖θ(z)φ(P ) − zP‖‖P‖
= ‖θ(z)φ(P ) − zP‖ = ‖φ(zP ) − zP‖
≤ δ|z|.

By [13, Lemma 3.4], we obtain θ(z) = z for all z ∈ C. This establish the claim.
Now let z ∈ C. Then for any Q ∈ P1(X), we have φ(zI)φ(Q) = φ(zQ) = zφ(Q), i.e. (φ(zI) −zI)φ(Q) = 0. 

By Lemma 2.4, we can get φ(zI) = zI. Hence, φ(zA) = φ(zI)φ(A) = zφ(A) for all A ∈ B(X). �
Lemma 2.6. φ is injective.

Proof. Suppose that φ(A) = φ(B), A, B ∈ B(X). By Lemma 2.3, A and B are linearly dependent, say 
B = αA for some scalar α. By Lemma 2.5, we have φ(A) = φ(B) = φ(αA) = αφ(A). Unless φ(A) = 0, this 
implies α = 1 and then A = B. If φ(A) = φ(B) = 0, by Lemma 2.2, A = B = 0. So φ is injective. �
Lemma 2.7. If φ is additive, then there exists an invertible operator S ∈ B(X) such that φ(A) = SAS−1, 
for all A ∈ B(X).

Proof. First we notice that φ is linear by Lemma 2.5. Fix unit vectors x0 ∈ X and f0 ∈ X∗ with f0(x0) = 1. 
By Lemma 2.1, we can suppose that φ(x0 ⊗ f0) = y0 ⊗ g0 for y0 ∈ X and g0 ∈ X∗ with g0(y0) = 1 and 
‖g0‖ = 1. Define a map S : X → X by

Sx = φ(x⊗ f0)y0, x ∈ X.

Then S is linear. For 0 
= x ∈ X, we have

‖Sx‖ = ‖φ(x⊗ f0)y0‖ ≤ ‖φ(x⊗ f0)‖‖y0‖
≤ (‖x⊗ f0‖ + ‖φ(x⊗ f0) − x⊗ f0‖)‖y0‖
≤ (1 + δ)‖x‖‖f0‖‖y0‖ = (1 + δ)‖y0‖‖x‖,

which obviously holds for x = 0 by Lemma 2.2. So S is bounded. Moreover, for A ∈ B(X), there holds
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SAx = φ(Ax⊗ f0)y0 = φ(A)φ(x⊗ f0)y0 = φ(A)Sx

for all x ∈ X. So φ(A)S = SA. It now remains to show that S is invertible, which can be deduced from the 
following two claims.

Claim 1. S is bounded below.

For x ∈ X, since

φ(x⊗ f0) = φ(x⊗ f0)φ(x0 ⊗ f0) = φ(x⊗ f0)y0 ⊗ g0 = Sx⊗ g0,

we have

‖Sx‖ = ‖φ(x⊗ f0)‖ ≥ ‖x⊗ f0‖ − ‖φ(x⊗ f0) − x⊗ f0‖

≥ (1 − δ)‖x⊗ f0‖ = (1 − δ)‖x‖.

So S is bounded below.

Claim 2. S has dense range.

For P = x ⊗ f ∈ P1(X), from

φ(P ) = φ((x⊗ f0)(x0 ⊗ f0)(x0 ⊗ f)) = φ(x⊗ f0)φ(x0 ⊗ f0)φ(x0 ⊗ f)

= φ(x⊗ f0)y0 ⊗ g0φ(x0 ⊗ f) = Sx⊗ φ(x0 ⊗ f)∗g0,

we see that the range of φ(P ) is contained in the range of S. Hence the range of S is dense by Lemma 2.4. �
3. Main results

Recall that the n-dimensional projection constant λn(X) of a Banach space X has the following property: 
whenever E is an n-dimensional subspace of X and λ > λn(X), there is a projection P : X → E with 
‖P‖ < λ.

Theorem 3.1. Let X be a Banach space of dimension greater than one and 0 < δ < 1
λ2(X) . Let φ : B(X) →

B(X) be a multiplicative map and suppose that ‖φ(A) −A‖ ≤ δ‖A‖ for all 0 
= A ∈ B(X). Then there exists 
an invertible operator S ∈ B(X) such that φ(A) = S−1AS, for all A ∈ B(X).

Proof. By Lemma 2.7, it suffices to show that φ is additive. For this, we take some steps.

Step 1. Let P1 and P2 be in P0(X) satisfying P1P2 = P2P1 = 0. Then φ(P1 + P2) = φ(P1) + φ(P2).

Since φ(P1)φ(P2) = φ(P2)φ(P1) = 0, by Lemma 2.1, φ(P1) + φ(P2) is a projection of rank 2. Let 
P = P1 + P2. Then P is a projection of rank 2. Let Q be the projection of rank 2 onto the range of P with 
‖Q‖ < 1

δ . Then ‖φ(Q) −Q‖ ≤ δ‖Q‖ < 1. It follows from Lemma 1.2 that φ(Q) is of rank 2. Since QP = P

and PQ = Q, we have that φ(Q)φ(P ) = φ(P ) and φ(P )φ(Q) = φ(Q), which implies that imφ(P ) = imφ(Q). 
So φ(P ) is of rank 2. An easy computation gives

φ(P )(φ(P1) + φ(P2)) = (φ(P1) + φ(P2))φ(P ) = φ(P1) + φ(P2).
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Together with the result shown just that both φ(P ) and φ(P1) +φ(P2) are projections of rank 2, this yields 
φ(P ) = φ(P1) + φ(P2).

Step 2. For x1, x2 ∈ X and f ∈ X∗, there holds φ(x1 ⊗ f + x2 ⊗ f) = φ(x1 ⊗ f) + φ(x2 ⊗ f).

If x1 and x2 are linearly dependent, say x2 = μx1 for some scalar μ, then by the homogeneity of φ,

φ(x1 ⊗ f + x2 ⊗ f) = φ((1 + μ)x1 ⊗ f) = (1 + μ)φ(x1 ⊗ f) = φ(x1 ⊗ f) + φ(x2 ⊗ f).

Now suppose that x1 and x2 are linearly independent. Then we have functionals f1, f2 ∈ X∗ satisfying 
fi(xj) = δij . By Step 1,

φ(x1 ⊗ f + x2 ⊗ f)

= φ((x1 ⊗ f1 + x2 ⊗ f2)(x1 ⊗ f + x2 ⊗ f))

= φ(x1 ⊗ f1 + x2 ⊗ f2)φ(x1 ⊗ f + x2 ⊗ f)

= (φ(x1 ⊗ f1) + φ(x2 ⊗ f2))φ(x1 ⊗ f + x2 ⊗ f)

= φ((x1 ⊗ f1)(x1 ⊗ f + x2 ⊗ f)) + φ((x2 ⊗ f2)(x1 ⊗ f + x2 ⊗ f))

= φ(x1 ⊗ f) + φ(x2 ⊗ f).

Step 3. φ is additive.

Let A and B be in B(X). Then for each P ∈ P1(X), by Step 2, we have

φ(A + B)φ(P ) = φ((A + B)P ) = φ(AP + BP )

= φ(AP ) + φ(BP ) = (φ(A) + φ(B))φ(P ).

It follows from Lemma 2.4 that φ(A + B) = φ(A) + φ(B). �
By a result of Kadec and Snobar [9], λ2(X) ≤

√
2, so 

√
2

2 is the common bound of δ in Theorem 3.1. The 
following theorem shows that when the space is reflexive, the bound of δ can be expanded to 1.

Theorem 3.2. Let X be a reflexive Banach space of dimension greater than one and 0 < δ < 1. Let φ :
B(X) → B(X) be a multiplicative map and suppose that ‖φ(A) −A‖ ≤ δ‖A‖ for all 0 
= A ∈ B(X). Then 
there exists an invertible operator S ∈ B(X) such that φ(A) = S−1AS, for all A ∈ B(X).

Proof. We only need to verify the additivity of φ by Lemma 2.7. Firstly, we note that using the reflexivity 
of X the following claim can be proven in a similar way to that in Lemma 2.4. For the convenience of the 
reader, we include the proof.

Claim. span{imφ(P )∗ : P ∈ P1(X)} is norm dense in X∗. Furthermore, for each non-zero x ∈ X, 
span{imφ(x ⊗ f)∗ : f ∈ X∗} is norm dense in X∗.

Let Y be the norm closure of span{imφ(P )∗, P ∈ P1(X)}. Suppose on the contrary that Y 
= X∗. Then 
by the Riesz lemma, there exists a vector g ∈ X∗ with ‖g‖ = 1 such that α := dist(g, Y ) > 1

2(1 + δ). By 
the Hahn–Banach theorem, there exists F ∈ X∗∗ such that ‖F‖ = 1, F (Y ) = 0 and F (g) = α. Since X is 
reflexive, there exists a vector x ∈ X such that F = x∗∗. Let P = x ⊗g. Then ‖P‖ = 1 and ‖g−P ∗g‖ = 1 −α. 
By the reflexivity of X again, we can choose y ∈ X such that ‖y‖ = g(y) = 1. Then y ⊗ g ∈ P1(X). Since 
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φ(P ) = φ((x ⊗ g)(y ⊗ g)) = φ(x ⊗ g)φ(y ⊗ g), we have that φ(P )∗ = φ(y ⊗ g)∗φ(x ⊗ g)∗, which shows 
imφ(P )∗ ⊆ imφ(y ⊗ g)∗ ⊆ Y . Thus

α = F (g) = F (g − φ(P )∗g) ≤ ‖g − φ(P )∗g‖

≤ ‖g − P ∗g‖ + ‖φ(P )∗g − P ∗g‖

≤ 1 − α + ‖φ(P )∗ − P ∗‖

= 1 − α + ‖φ(P ) − P‖ ≤ 1 − α + δ.

From this we get α ≤ 1+δ
2 , a contradiction. So Y = X∗.

Now let 0 
= x ∈ X and choose g ∈ X∗ such that g(x) = 1. For P = y ⊗ f ∈ P1(X), since φ(P ) =
φ((y ⊗ g)(x ⊗ f)) = φ(y ⊗ g)φ(x ⊗ f), we have φ(P )∗ = φ(x ⊗ f)∗φ(y ⊗ g)∗. So the range of φ(P )∗ is 
contained in the range of φ(x ⊗ f)∗. By the preceding result, span{imφ(x ⊗ f)∗ : f ∈ X∗} is norm dense 
in X∗. The claim is established.

For x ⊗f ∈ B(X), by Lemma 2.1, we can suppose φ(x ⊗f) = y⊗g. Squaring it and using the homogeneity 
of φ, we get

φ(f(x)x⊗ f) = φ(x⊗ f)φ(x⊗ f) = (y ⊗ g)(y ⊗ g) = g(y)y ⊗ g = φ(g(y)x⊗ f).

By Lemma 2.5, we have f(x) = g(y). In other words, the trace of φ(x ⊗ f) is equal to the trace of x ⊗ f . 
Consequently, φ preserves the trace of rank one operators.

Now let A and B be in B(X). Then for each operator F of rank one, we have

tr(φ(A + B)φ(F )) = tr(φ((A + B)F ))

= tr((A + B)F ) = tr(AF ) + tr(BF )

= tr(φ(AF )) + tr(φ(BF )) = tr(φ(A)φ(F )) + tr(φ(B)φ(F ))

= tr((φ(A) + φ(B))φ(F )).

Fix x0 ⊗ f0 ∈ P1(X) and suppose φ(x0 ⊗ f0) = y0 ⊗ g0 with g0(y0) = 1. Then for x ∈ X and f ∈ X∗, we 
can get φ(x ⊗ f0) = y ⊗ g0 and φ(x0 ⊗ f) = y0 ⊗ g for some y ∈ X and g ∈ X∗. Putting F = x ⊗ f in the 
above displayed equation and noting φ(x ⊗ f) = y ⊗ g, we have g(φ(A + B)y) = g((φ(A) + φ(B))y). This 
implies that φ(x0 ⊗ f)φ(A + B)φ(x ⊗ f0) = φ(x0 ⊗ f)(φ(A) + φ(B))φ(x ⊗ f0) for all x ∈ X and f ∈ X∗. 
From Lemma 2.4 and Claim, we can conclude that φ(A + B) = φ(A) + φ(B), completing the proof. �
Corollary 3.3. Let X be a Banach space of dimension greater than one and 0 < δ < 1

λ2(X) (if X is reflexive, 
0 < δ < 1). Let ϕ : B(X) → B(X) be a linear automorphism and φ : B(X) → B(X) be a multiplicative 
map satisfying

‖φ(A) − ϕ(A)‖ ≤ δ‖ϕ(A)‖

for all 0 
= A ∈ B(X). Then there exists an invertible operator T ∈ B(X) such that φ(A) = T−1AT , for all 
A ∈ B(X).

Proof. Set τ = φ ◦ ϕ−1, so that τ is a multiplicative map on B(X). Then

‖τ(ϕ(A)) − ϕ(A)‖ ≤ δ‖ϕ(A)‖
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for all 0 
= A ∈ B(X). By the above two theorems, there exists an invertible R ∈ B(X) such that τ(B) =
R−1BR for all B ∈ B(X). Hence φ = τ ◦ ϕ is again an automorphism of B(X). But every automorphism 
of B(X) is spatial, and so we can find invertible T ∈ B(X) so that φ(A) = T−1AT for all A ∈ B(X). �

Finally we investigate some properties of operators S obtained in the above theorems in the Hilbert space 
setting.

Proposition 3.4. Let H be a complex Hilbert space of dimension greater than one and S be an invertible 
operator in B(H) with ‖S‖ = 1. If ‖S−1AS − A‖ ≤ δ‖A‖ for all A ∈ B(H), then dist(S, CI) ≤ δ

2 . 
Moreover, if S is unitary, then the condition is also sufficient.

Proof. Replacing A by SA in ‖S−1AS−A‖ ≤ δ‖A‖, we get ‖AS−SA‖ ≤ δ‖SA‖ ≤ δ‖A‖ for all A ∈ B(H). 
This implies that ‖ΔS‖ ≤ δ, where ΔS is the map (inner derivation) sending A to AS − SA. By [19, 
Theorem 4], dist(S, CI) = 1

2‖ΔS‖ ≤ δ
2 .

Now suppose that S is unitary and dist(S, CI) ≤ δ
2 . Then by [19, Theorem 4] again, ‖ΔS‖ =

2dist(S, CI) ≤ δ. Thus, for all A ∈ B(H), we have ‖AS − SA‖ ≤ δ‖A‖, and hence ‖S−1AS − A‖ ≤
δ‖S−1A‖ = δ‖A‖. �
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