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We revisit the problem Δu = f(u) in Ω, u(x) → ∞ as x → ∂Ω, where Ω ⊂ R
N , 

N > 1, is a bounded smooth domain and f is an increasing and continuous 
function in R+ with f(0+) = 0 for which the Keller–Osserman condition holds. We 
study uniqueness of solutions, extending known results about the boundary blow-up 
behavior of solutions. Furthermore, we obtain explicit representations for the second
order terms in the explosive boundary expansion of solutions under intrinsic and 
direct assumptions. Our study is exhaustive including both ordinary and borderline 
cases providing new and sharp results.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

This paper deals with the uniqueness and asymptotic behavior near the boundary of the solutions of the 
problem

{
−Δu + f(u) = 0 in Ω,

u(x) → ∞ as x → ∂Ω,
(1.1)

where Ω ⊂ R
N , N > 1, is a bounded domain, with ∂Ω bounded, and f is a continuous and increasing 

function in R+ with f(0+) = 0. Both assumptions on Ω and f will be assumed every time in the whole 
paper, without necessity to mention them. In some results we will require extra assumptions to be specified. 
This kind of solutions are usually called large solutions due to the boundary blow-up behavior.
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A first study known of (1.1) is due to Bieberbach [12] who considered the two-dimensional case for the 
particular choice f(t) = et. Existence of solutions of (1.1) was established by Keller [25] and Osserman [38]
under the necessary and sufficient condition

∞∫
ds√
F (s)

< ∞, where F (t) =
t∫

0

f(s) ds. (1.2)

From then the property (1.2) is known as the Keller–Osserman condition. Clearly, (1.2) implies the behavior 
lim
t→∞

f(t) = ∞.
Our goal here is to study uniqueness and asymptotic behavior near the boundary of the solutions of (1.1). 

In this paper, we present an exhaustive point of view by a simple alternative in the unique available 
framework where (1.2) holds (see Remark A.2 in Appendix A for other equivalent ones).

About uniqueness, it is known that the question may be reduced to find appropriate conditions on f for 
which any couple of nonnegative solutions u and v have the same main explosive boundary behavior as

lim
x→∂Ω

u(x)
v(x) = 1. (1.3)

A way to obtain a result as (1.3) is through the study of the blow-up rate of solutions (see [20] or [22] for 
other methods). Then, we obtain uniqueness in the explosive boundary behavior of the solutions whence 
we confer the uniqueness on the whole domain by a kind of Maximum Principle. Another aspect of our 
goal is the study of the explosive boundary expansion of solutions; by simplicity we only focus on the 
two first terms, where the second one leads to the eventual influence of the mean curvature. So, we find 
representations connecting our results with the question about the difference between a solution of (1.1)
and its blow-up rate at the boundary near ∂Ω. Here, the reasonings follow a simple approach already used 
by the authors for the power like choice f(t) = tp, p > 1 (see [1,2]). It consists in appropriate balances on 
the terms involving the rest of the approximation immediately preceding. Advantages of our approach will 
be clarified later through some concrete examples.

In order to introduce our results, it is worth noting that condition (1.2) is directly related to the solution 
of a one-dimensional problem. Indeed, if we define

ψ(t) =
∞∫
t

ds√
2F (s)

, t > 0, (1.4)

then, by construction, the function

φ(δ) = ψ−1(δ), 0 < δ < b = lim
t↘0

ψ(t) ≤ ∞, (1.5)

solves the singular problem

{
−φ′′ + f(φ) = 0 in (0, b),
lim

δ→0+
φ(δ) = ∞.

Moreover, by construction ψ is decreasing and then for η > 1 one satisfies ψ(ηt) < ψ(t) for large t, whence

lim sup ψ(ηt) ≤ 1. (1.6)

t→∞ ψ(t)



S. Alarcón et al. / J. Math. Anal. Appl. 431 (2015) 365–405 367
Many results on the blow-up rate at the boundary of solutions of (1.1) are known in the literature. The 
first one was due to Loewner and Nirenberg [31] for the special choice f(t) = t(N+2)/(N−2), N > 2, and later 
extended by Kondrat’ev and Nikishkin [26] to f(t) = tp, p > 1 (see also [19]). For general nonlinearities 
Bandle and Essén [8,9] proved the blow-up rate of solutions of (1.1)

lim
x→∂Ω

ψ
(
u(x)

)
dist(x, ∂Ω) = 1

(see also [36]). In order to obtain an explicit characterization for the solutions an additional assumption on 
f was considered by Bandle and Essén [9]

lim sup
t→∞

ψ(ηt)
ψ(t) < 1 for η > 1 (1.7)

or, equivalently,

lim inf
t→∞

ψ(ηt)
ψ(t) > 1 for η ∈ (0, 1)

(see also [10] and [36]).
In order to simplify, from now on we call nonlinearities in the ordinary case to those nonlinearities, as 

the power like choices, for which (1.7) holds. Our first result is related to the blow-up rate in this ordinary 
case. In Section 3 the main behavior will be proved

Theorem 1.1 (Blow-up rate in the ordinary case). Assume ∂Ω ∈ C2 and f such that (1.2) and (1.7) hold. 
Then every solution u of (1.1) verifies

lim
d(x)→0

u(x)
φ(d(x)) = 1, (1.8)

where d(x) = dist(x, ∂Ω).

Now, we can ask

What can we say about functions f for which (1.2) holds but (1.7) fails?

as it happens for choices as f(t) = t
(
log t

)p, p > 2, for large t. According to (1.6), this situation corresponds 
to functions f for which

lim sup
t→∞

ψ(η0t)
ψ(t) = 1 for some η0 > 1 (1.9)

or, equivalently,

lim inf
t→∞

ψ(η−1
0 t)

ψ(t) = 1 for some η0 > 1

holds. We note that the alternative (1.7) or (1.9) is obviously exhaustive, provided (1.2).
As it is proved in Lemma A.2 below, condition (1.9) is equivalent to

lim sup ηf(t) = 1 for η ∈ [1, η0]. (1.10)

t→∞ f(ηt)
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Again for clarity, hereafter on we call nonlinearities in the borderline case to those nonlinearities for 
which (1.9) or (1.10) holds. Assumptions with regularly varying at infinity as (1.10) involve the Karamata 
regular variation theory (see [13,15] or [34]).

Following [2], we study in [3] the boundary behavior of the large solutions of quasilinear elliptic equations 
in the borderline case.

Several works including results on the borderline case under different hypothesis on f are known (see, 
for instance, [6,14,24,30,37,39]). We emphasize two of them. In [14], Cîrstea and Du regarded the problem 
for the choice f(t) = c1t(log t)p + c2(log t)p−1 if t > 1, p > 2, where c1 > 0 and c2 ∈ R. On the other hand, 
Zhang [39] considered choices as f(t) = t(log t)2(log(log t))p if t > 1, p > 2. In both [14] and [39], the results 
may be applied to more general equations including a weight b ∈ Cα(Ω) as in the equation

Δu = b(x)f(u) in Ω,

being b nonnegative in Ω, positive near ∂Ω and such that can be vanishing on the boundary.
In this paper, we focus on functions f verifying

lim inf
t→∞

tf ′(t)
f(t) = α

provided that f is differentiable for large t. The Keller–Osserman condition (1.2) leads to α ≥ 1 (see (A.3)). 
We prove in Lemma A.3 below that the condition of the borderline case (1.9) implies

lim
t→∞

tf ′(t)
f(t) = 1 (1.11)

(see (A.4)). In fact, in Remark A.2 we show that, under the Keller–Osserman condition, properties (1.9)
and (1.11) are equivalent and property (A.6) below is equivalent to (1.7). We also obtain other equivalent 
alternatives. On the other hand, in Lemma A.4 we prove that α > 1 (related to the ordinary case) implies 
the Keller–Osserman condition (1.2) (see also [35]). It does not happen whenever α = 1, as it is pointed out 
in Remark A.2.

The assumption (1.11) on f is more simple and generic than the assumption one used in [39]. Moreover, 
the reasonings use similar arguments to those of the proof of Theorem 1.1, now squeezing as much as possible 
the condition (1.9). As it is proved in Section 3 one has

Theorem 1.2 (Blow-up rate in the borderline case). Let f such that (1.2) and (1.9) hold, as well as f is 
differentiable at the infinity. Then for every solution u of (1.1) the property (1.8)

lim
d(x)→0

u(x)
φ(d(x)) = 1

also holds.

So that, the explosive behavior (1.8) of the solutions of (1.1) is fully obtained by the alternative: the 
ordinary case given by (1.7) or equivalently by

lim inf
t→∞

tf ′(t)
f(t) > 1, lim inf

t→∞
tf(t)
2F (t) > 1 or lim inf

t→∞
2f ′(t)F (t)(

f(t)
)2 > 1,

or the borderline case given by (1.9) or equivalently by



S. Alarcón et al. / J. Math. Anal. Appl. 431 (2015) 365–405 369
lim
t→∞

tf ′(t)
f(t)

= 1, lim
t→∞

tf(t)
2F (t)

= 1 or lim
t→∞

2f ′(t)F (t)(
f(t)

)2 = 1

(see Remark A.2). We refer to the alternative by the couple (1.7)–(1.9), but we may refer to the alternative 
by other useful equivalent couple.

As it was pointed out, there is not a unique way to study uniqueness. The uniqueness of solutions of (1.1)
is usually proved by means of the exact main term of the boundary blow-up expansion (see for example 
[1,2,9,10,14,19,22,26,31]). In particular, in [6,14,39] uniqueness was proved for special borderline cases. On 
the other hand, Marcus and Véron [32,33] and Dong, Kim and Safonov [20] obtained uniqueness without 
precise estimates of the boundary blow-up rate of solutions by means of reasoning requiring less regularity 
on ∂Ω, but under additional conditions on f . García-Melián [22] obtained also uniqueness of large solutions 
by estimating the boundary blow-up rate under the assumption

f(t)
tσ

is increasing for large t,

for some σ > 1, that implies (1.2) and (1.7). At this point on the uniqueness of solutions of (1.1), it should 
be noted a recent result by Costin, Dupaigne and Goubet [17] whose proof is direct, without using blow-up 
rates, provided that ∂Ω ∈ C3 has nonnegative mean curvature and 

√
F (t) is convex for large t.

Since Theorems 1.1 and 1.2 prove (1.3) we have the key in our reasoning in obtaining uniqueness.

Theorem 1.3 (Uniqueness). Let us suppose Ω is smooth and let f such that (1.2) holds. Assume also (1.7)
(the ordinary case) or (1.9) as well as that f is differentiable for large t (the borderline case). In both cases, if

f(t)
t

is increasing for large t, (1.12)

the problem (1.1) admits a unique nonnegative solution that verifies (1.8).

From (
f(t)
t

)′
= f(t)

t2

(
tf ′(t)
f(t) − 1

)
,

it follows that ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
tf ′(t)
f(t) → α > 1

or
tf ′(t)
f(t) ↘ 1

as t → ∞, (1.13)

implies (1.12), provided that f is differentiable for large t (see Lemma A.4). Obviously uniqueness says that 
the unique main explosive term φ

(
d(x)

)
(see (1.8)) of the boundary expansion of solutions implies that in 

fact the whole explosive boundary expansion is unique. Theorem 1.3 is near to the relative results on the 
ordinary case studied in [22].

The second goal of this paper is the study of lower terms of the asymptotic explosive boundary expansion 
of the solutions of (1.1). It is known its dependence on the mean curvature of ∂Ω when (1.7) is assumed. 
It has been studied in several works, first for the power like choice f(t) = tp, 1 < p < 3, in [18] (see also 
[1,2]) and then for a wide class of functions which verify (1.7) (see, for instance, [5–7,11]). In particular, the 
more general result that we know under assumption (1.7) is due to Bandle and Marcus [11]. In all works it 
is shown that the eventual influence of the mean curvature from the explosive boundary expansion of the 
solutions of (1.1) appears from the second order term.
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Since our interest is different to [11], the contributions use another point of view to study the second
order terms in the asymptotic expansion near the boundary of the solutions of (1.1).

Is it possible to find an explicit formula for the second order term if (1.7) holds?

In order to answer this question, for large t, we introduce the function

ϕ(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
∞∫
t

s√
2F (s)

ds provided
∞∫

s√
2F (s)

ds < ∞ and
∫
0+

s√
2F (s)

ds = ∞,

t∫
0

s√
2F (s)

ds provided
∞∫

s√
2F (s)

ds < ∞ and
∫
0+

s√
2F (s)

ds < ∞,

t∫
0

s√
2F (s)

ds provided
∞∫

s√
2F (s)

ds = ∞ and
∫
0+

s√
2F (s)

ds < ∞,

t∫
t0

s√
2F (s)

ds provided
∞∫

s√
2F (s)

ds = ∞ and
∫
0+

s√
2F (s)

ds = ∞,

(1.14)

where t0 > 0 is irrelevant for our purposes. In all cases one satisfies ϕ′(t) = −tψ′(t) > 0. Furthermore,

lim
t→∞

ϕ(t)
t

= 0, (1.15)

because it is obvious if 
∞∫

s√
2F (s)

ds < ∞, for which lim
t→∞

|ϕ(t)| < ∞, otherwise, if 
∞∫

s√
2F (s)

ds = ∞, by 

an application of the Bernoulli–L’Hôpital rule one has

lim
t→∞

ϕ(t)
t

= lim
t→∞

t√
2F (t)

= 0

(see (A.1) below).
Jointly we also consider the function

A(t) =
√

2F (t)√
2F (t) − ϕ(t)f ′(t)

for large t (1.16)

and assume the following additional hypotheses on f :

(H1) there exists lim
t→∞

A(t) ∈ R,

(H2) lim
t→∞

(
A(t)ϕ(t)

)2
f ′′(t)√

F (t)
= 0,

(H3) lim
t→∞

(
A′′(t)

√
2F (t)ϕ(t) + A′(t)f(t)ϕ(t)√

2F (t)

)
= 0,

(H4) lim
t→∞

A′(t)t = 0.

We emphasize that these hypotheses are intrinsic in the obtainment of the second terms in the explosive 
boundary expansion of solutions in the ordinary case, as we show in Remark 5.1.
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Theorem 1.4 (Second order terms in the ordinary case). Suppose ∂Ω ∈ C4 and let f a function twice 
differentiable at infinity for which (1.2), (1.7) and (H1)–(H4) hold. If u is a solution of (1.1), then we have

u(x) = φ
(
d(x)

)
+ A

(
φ
(
d(x)

))
ϕ
(
φ
(
d(x)

))(
Δd(x) + o(1)

)
(1.17)

where o(1) → 0 as d(x) → 0.

The leading term in the above expansion

φ
(
d(x)

)
+ A

(
φ
(
d(x)

))
ϕ
(
φ
(
d(x)

))(
Δd(x) + o(1)

)
is the first summand because (H1) implies that A(t) is bounded near the infinity and then

lim
d(x)→0

A
(
φ
(
d(x)

))
ϕ
(
φ
(
d(x)

))
φ
(
d(x)

) = 0

(see (1.15)). As it will be proved below, we can use Theorem 1.4 in order to give some properties of the 
second term of the expansion near ∂Ω. See also Corollary 2.1 where we prove that in some cases the influence 
of the geometry is null on the boundary ∂Ω or it appears in a nonexplosive term of the boundary expansion 
of the solution. Theorem 1.4 shows the eventual appearance of the mean curvature of ∂Ω (see (4.1) below) 
in the second order terms of the explosive boundary expansion of the solution of (1.1).

We also note that Theorem 1.4 fails in borderline cases. In this way,

What one can say about the second order terms in the borderline case?

To the best of our knowledge, a first result studying the second order terms in the explosive boundary 
expansion of the solutions of (1.1) under assumptions (1.2) and (1.11) is due to Anneda and Porru [6] for 
functions f such that for some α > 0

2F (t)f ′(t)
(f(t))2 = 1 +

(
α + o(1)

)
(− log t)−1, where o(1) → 0 as t → ∞. (1.18)

They proved that for any ε > 0 there is Cε > 0 such that the solution of (1.1) satisfies∣∣∣∣∣ u(x)
φ
(
d(x)

) − 1 − (α− 1)(N − 1)
2(2α− 1) H(x̄)d(x)

∣∣∣∣∣ < εd(x) + Cε

(
d(x)

)2 for small d(x) (1.19)

where H(x̄) is the mean curvature of ∂Ω at the projection x̄ of x at ∂Ω. The condition (1.18) fails for 
f(t) = t(log t)2(log(log t))p, if t > 1, p > 2, or f(t) = te(log t)p if t > 1, 0 < p < 1, which are functions 
satisfying (1.2) and (1.9). The next result allows us to include the above choices in the borderline case and 
also gives an estimate of the second order term much more accurate than the one given in (1.19).

Theorem 1.5 (Second order terms in the borderline case). Suppose ∂Ω ∈ C4 and let f be a function twice 
differentiable at infinity satisfying (1.2) and (1.9). If u is a solution of (1.1) we have the expansion

u(x) = φ(d(x))

⎛⎝1 +

√
2F

(
φ
(
d(x)

))
f(φ(d(x)))

(
Δd(x) + o(1)

)⎞⎠ (1.20)

where o(1) → 0 as d(x) → 0.
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It is not difficult to check that from Theorem 1.5 the difference between a solution of (1.1) and its 
respective blow-up rate tends to infinity as d(x) → 0, whenever Δd(x) 	= 0. Since (1.18) is included in 
assumption (1.9) (see Lemma A.3 and Remark A.2 below) the simple and sharp property (1.20) extends 
the results of [5,30,39]. In fact, as it is deduced from Remark 5.2, the expansion (1.20) contains the more 
explosive second order term where the influence of the geometry appears. We note that, as it is proved in 
Corollary 2.2 below, the behavior of the second term in the borderline case is always explosive.

The rest of this paper is arranged as follows. Section 2 is devoted to show examples and direct con-
sequences where our results apply. In Section 3 we give some comments about the uniqueness and for 
completeness we also give a proof of Theorem 1.3 by assuming that (1.3) holds. In Section 4 we find the 
blow-up rate of the solutions of (1.1) which leads to validate (1.3) including borderline cases, whereas in 
Section 5 we prove the results associated with the second order terms in the explosive behavior expansion 
near the boundary of the solutions of (1.1), again including borderline cases. We end with Appendix A
where we collect some technicalities to be used in previous sections.

2. Consequences, remarks and examples

The influence of the function ϕ, defined in (1.14), enables us to classify the difference between a solution 
and its respective blow-up rate. According to Theorem 1.4, it is based on

u(x) − φ(d(x)) = R
(
d(x)

)(
Δd(x) + o(1)

)
for R(δ) = A

(
φ(δ)

)
ϕ
(
φ(δ)

)
. So, from definition of the function ϕ(t), one deduces the representation:

R(δ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−

∞∫
φ(δ)

s√
2F (s)

ds

1 −
ϕ
(
φ(δ)

)
f ′(φ(δ)

)√
2F

(
φ(δ)

) if
∞∫

s√
2F (s)

ds < ∞ and
∫
0+

s√
2F (s)

ds = ∞,

φ(δ)∫
0

s√
2F (s)

ds

1 −
ϕ
(
φ(δ)

)
f ′(φ(δ)

)√
2F

(
φ(δ)

) if
∞∫

s√
2F (s)

ds < ∞ and
∫
0+

s√
2F (s)

ds < ∞,

φ(δ)∫
0

s√
2F (s)

ds

1 −
ϕ
(
φ(δ)

)
f ′(φ(δ)

)√
2F

(
φ(δ)

) if
∞∫

s√
2F (s)

ds = ∞ and
∫
0+

s√
2F (s)

ds < ∞,

φ(δ)∫
t0

s√
2F (s)

ds

1 −
ϕ
(
φ(δ)

)
f ′(φ(δ)

)√
2F

(
φ(δ)

) if
∞∫

s√
2F (s)

ds = ∞ and
∫
0+

s√
2F (s)

ds = ∞,

for small δ, where t0 > 0. Then
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Corollary 2.1 (Behavior of the second term in the ordinary case). Suppose the assumptions of Theorem 1.4. 
Let u be a solution of (1.1).

i) If 
∞∫

s√
2F (s)

ds < ∞ and
∫
0+

s√
2F (s)

ds = ∞ one verifies

u(x) − φ
(
d(x)

)
→ 0 as d(x) → 0.

Therefore the influence of the geometry is null on the boundary.

ii) If 
∞∫

s√
2F (s)

ds < ∞ and
∫
0+

s√
2F (s)

ds < ∞ there exists a positive constant c such that

|u(x) − φ(d(x))| < c near ∂Ω.

More precisely,

u(x) − φ(d(x))
Δd(x) →

⎛⎝ ∞∫
0

s√
2F (s)

ds

⎞⎠ lim
t→∞

A(t) as d(x) → 0

if H(x̄) 	= 0. Therefore the influence of the geometry appears in a nonexplosive term.

iii) If 
∞∫

s√
2F (s)

ds = ∞ one has three cases,

a) when lim
t→∞

⎛⎝A(t)
t∫

s√
2F (s)

ds

⎞⎠ = 0

u(x) − φ(d(x)) → 0 as d(x) → 0.

Therefore the influence of the geometry is null on the boundary.

b) when lim
t→∞

⎛⎝A(t)
t∫

s√
2F (s)

ds

⎞⎠ = L ∈ R \ {0} there exists a positive constant c such that

|u(x) − φ(d(x))| < c near ∂Ω.

More precisely,

u(x) − φ(d(x))
Δd(x) → L as d(x) → 0

if H(x̄) 	= 0. Therefore the influence of the geometry appears in a nonexplosive term.

c) when lim
t→∞

⎛⎝A(t)
t∫

s√
2F (s)

ds

⎞⎠ ∈ {−∞, +∞}

|u(x) − φ(d(x))| → ∞ as d(x) → 0.

Therefore the influence of the geometry appears in an explosive term. �
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Remark 2.1. Our contributions are consistent with other known studies on the difference between a 
solution of (1.1). Indeed, Lazer and MacKenna [29] prove |u(x) − φ(d(x))| → 0 as d(x) → 0 if 
limt→∞ f ′(t)/

√
2F (t) = ∞. By a different approach, the same was proved by Bandle and Marcus [11]

by assuming lim supα→1,δ→0 φ
′(αδ)/φ′(δ) < ∞ and lim supt→∞ t4/F (t) < ∞ in the ordinary case. On 

the other hand, Greco and Porru have proven that if Ω is convex, (1.2) holds, limt→0 f
′(t) < ∞ and 

limt→∞ f ′(t)/
√

2F (t) = 0, then |u(x) − φ(d(x))| → ∞ as d(x) → 0.

The following three examples are illustrative of Theorems 1.1, 1.3 and 1.4 involving ordinary cases.

Example 2.1. The power like choice f(t) = tp, p > 1, provides a simple presentation of our contributions. 
As it was also obtained in [1] or [18], the explosive boundary expansion of the unique solution u of (1.1)
verifies

u(x) =
(

2(p + 1)
(p− 1)2

) 1
p−1

(d(x))−
2

p−1

(
1 − 1

p + 3d(x)Δd(x) + o(d(x))
)
, (2.1)

hence the influence of the geometry appears in an explosive term if and only if 1 < p < 3. More precisely, 
the case 1 < p < 3 is related to the properties

∞∫
s√

2F (s)
ds = ∞ and

∫
0+

s√
2F (s)

ds < ∞

while the condition p > 3 is related to

∞∫
s√

2F (s)
ds < ∞ and

∫
0+

s√
2F (s)

ds = ∞.

In both cases

ϕ(t) =
√

2(p + 1)
3 − p

t
3−p
2 and A(t) ≡ p− 3

(p− 1)(p + 3) for t > 0,

lead to the explosive behavior of the first term where the influence of the geometry appears if 1 < p < 3
while the influence of the geometry appears on a nonexplosive term of the boundary expansion vanishing on 
∂Ω whenever p > 3. The last case p = 3 becomes a sharp application of our results. Indeed, it is related to

∫
0+

s√
2F (s)

ds = ∞ and
∞∫

s√
2F (s)

ds = ∞.

In order to avoid the second singular integral we support the reasoning on a positive lower limit t0 as in 
Corollary 2.1, for which

ϕ(t) =
√

2 ln
(
tt−1

0
)

and A(t) = 1
1 − 6 ln

(
tt−1

0
) for t > t0.

Here

A(t)ϕ(t) =
√

2 ln
(
tt−1

0
)

1 − 6 ln
(
tt−1

0
) = −

√
2

6
1

1 − 1( −1) = −
√

2
6

∑
n≥0

(
1

6 ln
(
tt−1

0
))n

= −
√

2
6 (1 + o(1))
6 ln tt0
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where o(1) goes to 0 as t → ∞. Therefore, one obtains

u(x) =
√

2
(
d(x)

)−1 −
√

2
6 Δd(x) + o(1)

where o(1) goes to 0 as d(x) → 0, according to (2.1) for p = 3.

Example 2.2. If f(t) = et, the explosive boundary expansion of the unique solution u of (1.1) verifies

u(x) = log
(

2
(d(x))2

)
− d(x)Δd(x) + o(1)

where o(1) goes to 0 as d(x) → 0. Indeed, this choice of f(t) is related to the properties

∞∫
s√

2F (s)
ds < ∞ and

∫
0+

s√
2F (s)

ds < ∞

for which

ϕ(t) =
√

2
(
2 − (t + 2)e− t

2

)
and A(t) = 1

3 + t− 2e t
2

for t > 0.

Therefore the influence of the geometry appears in a nonexplosive term.

Example 2.3. If f(t) = tet
2 , the explosive boundary expansion of the unique solution u of (1.1) verifies

u(x) =
√

2erfc−1
(

d(x)√
π

)
−

√
2

8
e
−
(
erfc−1

(
d(x)√

π

))2

(
erfc−1

(
d(x)√

π

))2 Δd(x) + o
(
d(x)

)
,

for the complementary error function

erfc(t) = 1 − erf(t) = 2√
π

∞∫
t

e−s2ds satisfying lim
t→∞

erfc(t) = 0,

as it follows from the choice of f(t) and the related properties

∞∫
s√

2F (s)
ds < ∞ and

∫
0+

s√
2F (s)

ds < ∞

for which

ϕ(t) =
√

2
(
1 − e−

t2
2

)
and A(t) = 1

1 − 2(2t2 + 1)
(
e

t2
2 − 1

) for t > 0.

The influence of the geometry vanishes on the boundary.

Next we apply our results to the borderline case.
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Corollary 2.2 (Behavior of the second term in the borderline case). Let u be a solution of (1.1). Then, under 
assumptions of Theorem 1.5 one has

|u(x) − φ(d(x))| = φ(d(x))

√
2F

(
φ(d(x))

)
f
(
φ(d(x))

) Δd(x) → ∞ as d(x) → 0,

provided H(x̄) does not change of sign.

Proof. We claim

lim
t→∞

t2F (t)
(f(t))2 = ∞. (2.2)

Indeed, if (2.2) fails we deduce

lim inf
t→∞

t3

f(t) does not go to infinity (2.3)

from

t2F (t)
(f(t))2 = t3

f(t)
F (t)
tf(t) ,

because assumption (1.9) implies

lim
t→∞

2F (t)
tf(t) = 1

(see (A.4)). On the other hand, (A.4) also implies(
t3

f(t)

)′
= 3t2f(t) − t3f ′(t)

(f(t))2 = t2

f(t)

(
3 − tf ′(t)

f(t)

)
> 0 for large t.

Then (2.3) proves lim sup
t→∞

t3

f(t) = C ∈ R. Applying the Bernoulli–L’Hôpital rule and (A.4) we get

lim
t→∞

log f(t)
log t = lim

t→∞
tf ′(t)
f(t) = 1,

for which

log(f(t)) ≤ (1 + ε) log t for large t

for any ε ∈ (0, 2) fixed, or equivalently

f(t) ≤ t1+ε for large t.

Then we obtain the contradiction

t3 ≤ (C + ε)f(t) ≤ (C + ε)t1+ε for large t.

After the proof of the claim (2.2) the result follows. �
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Assuming (1.2) and (A.4), the most intrinsic models, in the borderline case, follow the representation 

f(t) = t

B̃(t)
for some positive function B̃ ∈ C(R+) verifying

⎧⎪⎪⎪⎨⎪⎪⎪⎩
lim
t→∞

B̃(t) = lim
t→∞

t

f(t) = 0 (see (A.1)),

lim
t→∞

tB̃′(t)
B̃(t)

= lim
t→∞

(
1 − tf ′(t)

f(t)

)
= 0 (see (A.4)).

Moreover, B̃(t) is a decreasing function for large t under assumption (1.12) or (1.13). So that, we illustrate 
Theorems 1.2, 1.3 and 1.5.

Example 2.4. If f(t) = t(log t)p, t > 1, p > 2, the explosive boundary expansion of the unique solution u of 
(1.1) verifies

u(x) = e

(
2

(p−2)d(x)

) 2
p−2 + 1

2

(
1 +

(
p− 2

2

) p
p−2 (

d(x)
) p

p−2 Δd(x) + o
((

d(x)
) p

p−2
))

(2.4)

(see Theorem 1.5). Indeed, one proves that for this choices of f(t) the function

B(t) =
√

2F (t)
f(t)

verifies

lim
t→∞

B(t)
(
log t

) p
2 = 1

and

lim
d(x)→0

B
(
φ(d(x))

)(
d(x)

) p
2−p =

(
p− 2

2

) p
p−2

.

According to Corollary 2.2, the influence of the geometry appears in an explosive term. The representa-
tion (2.4) is sharper than the relative behavior of [6] and also extends some results of [14,30,39]. As it is 
commented in Remark 5.2, we also may obtain the property

u(x) = e

(
2

(p−2)d(x)

) 2
p−2 + 1

2

(
1 +

(
p− 2

2

) 2p
p−2 (

d(x)
) 2p

p−2 Δd(x) + o
((

d(x)
) 2p

p−2
))

,

when we replace B(t) by the function

B̃(t) = t

f(t) ,

but the behavior (2.4) is sharper because has a second term more explosive.

Remark 2.2 (On uniqueness). Costin and Dupaigne [16] have proven uniqueness on a ball by assuming only 
that f verifies (1.2). On the other hand, for domains that are not regular on ∂Ω, Marcus and Véron [32,33]
have proven uniqueness by assuming some conditions on f stronger than (1.12). Both mentioned works, and 
the related to uniqueness cited in the introduction, suggest possibly that while less regularly possesses ∂Ω, 
more conditions should be imposed on f .
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3. Uniqueness: proof of Theorem 1.3

In this section we give some details on our result of uniqueness. First we obtain the uniqueness of solutions 
of (1.1) in a direct way when (1.3) and

f(t)
t

is increasing for t > 0, (3.1)

are assumed. Later we will prove that (3.1) can be replaced by the more general condition (1.12).

Proposition 3.1 (Comparison principle). Suppose (3.1). If u, v ∈ C2(Ω) are two nonnegative functions veri-
fying

−Δu + f(u) ≤ 0 ≤ −Δv + f(v) in Ω

and

lim sup
x→∂Ω

u(x)
v(x) ≤ 1, (3.2)

then v > 0 near ∂Ω implies

u ≤ v in Ω. (3.3)

Proof. First we study the case

lim sup
x→∂Ω

u(x)
v(x) < 1

for which we only require

−Δu + f(u) ≤ −Δv + f(v) in Ω.

If (3.3) fails the continuous function u − v admits some point x0 ∈ Ω such that

(u− v)(x0) = max
Ω

(u− v) > 0,

but it implies the contradiction

0 ≥ Δ(u− v)(x0) ≥ f
(
u(x0)

)
− f

(
v(x0)

)
> 0.

For the general case, (3.2) implies

lim sup
x→∂Ω

u(x)
(1 + ε)v(x) < 1,

for all ε > 0. Moreover, from (3.1) we have

−Δ(1 + ε)v + f
(
(1 + ε)v

)
≥ (1 + ε) (−Δv + f(v)) ≥ 0 in Ω.

The above reasoning leads to
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u(x) ≤ (1 + ε)v(x), x ∈ Ω,

and the result follows by letting ε → 0. �
A simple consequence proves that condition (1.3) implies uniqueness.

Corollary 3.1. Suppose (3.1). If u, v ∈ C2(Ω) are two nonnegative functions for which

−Δu + f(u) = 0 = −Δv + f(v) in Ω

and (1.3) hold, then u = v on Ω. �
Condition (3.1) follows from an assumption of convexity strict on f . Indeed, it implies

−f(t) = f(0+) − f(t) > −tf ′(t),

whence (
f(t)
t

)′
= tf ′(t) − f(t)

t2
> 0 for all t.

A sharp refinement using the Strong Maximum Principle on the Laplacian operator enables us to replace 
(3.1) for the more general assumption (1.12).

Theorem 3.1. Let us assume that Ω is smooth as well as (1.2) and (1.12). If u, v ∈ C2(Ω) are two nonnegative 
large solutions of (1.1) verifying (1.3) then u = v on Ω.

Proof. First of all, as it is well known, the function vmin(x) = lim
n→∞

vn(x), where vn ∈ C2(Ω) solves

{
−Δvn + f(vn) = 0 in Ω,

vn = n on ∂Ω,

is the minimal positive large solution of (1.1). For the existence of vmin we require the extra condition 
on Ω (see for instance the reasoning of [25] or [19,27]). Therefore, vmin ≤ u in Ω for any large solution u
of (1.1). We claim that in fact vmin ≡ u in Ω. Indeed, let us assume that there exists x0 ∈ Ω such that 
vmin(x0) < u(x0), otherwise the result follows. Then, since Ω is bounded, the continuity of u and vmin imply 
that

Oε =
{
x ∈ Ω : (1 + ε)vmin(x) < u(x)

}
⊂⊂ Ω,

is a nonempty open subset, provided ε > 0 small. In order to prove the claim we rewrite (1.12) as

f(t)
t

is increasing for t greater than some large t∗,

and choose μ > 0 so small that vmin(x) ≥ t∗ holds in the open set

Ωμ = {x ∈ Ω : d(x) < μ}.

Then as ε > 0 is small
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Oμ
ε =

{
x ∈ Ω : d(x) < μ, (1 + ε)vmin(x) < u(x)

}
is a nonempty open subset where

−Δ(1 + ε)vmin(x) + f
(
(1 + ε)vmin(x)

)
≥ (1 + ε)

(
−Δvmin(x) + f

(
vmin(x)

))
≥ 0, x ∈ Oμ

ε .

So, an easy adaptation of the proof of Proposition 3.1 shows

u(x) − (1 + ε)vmin(x) ≤ max
∂Oμ

ε

(
u− (1 + ε)vmin

)
, x ∈ Oμ

ε .

By construction the maximum of u − (1 + ε)vmin cannot be achieved on ∂Oε, it implies

u(x) − (1 + ε)vmin(x) ≤ max
{y∈Oε, δ(y)=μ}

(
u− (1 + ε)vmin(y)

)
, x ∈ Oμ

ε ,

and

u(x) − vmin(x) ≤ max
{y∈Ω: δ(y)=μ}

(
u− vmin

)
(y) ≡ Cμ, x ∈ Ωμ,

when ε goes to 0. On the other hand, f
(
vmin

)
≤ f(u) in Ω gives

−Δ
(
u− vmin

)
≤ 0 in Ω

whence the Weak Maximum Principle implies

u(x) − vmin(x) ≤ max
{y∈Ω: δ(y)=μ}

(
u− vmin

)
(y) = Cμ, x ∈ Ω \ Ωμ,

thus

u(x) − vmin(x) ≤ Cμ, x ∈ Ω.

We have proved that the subharmonic function u − vmin in Ω attains the maximum at an interior point, 
hence by the Strong Maximum Principle (see [23])

u(x) − vmin(x) ≡ Cμ, x ∈ Ω.

Finally,

f
(
vmin + Cμ

)
= f(u) = Δu = Δvmin = f

(
vmin

)
in Ω

and the monotonicity of the function f concludes Cμ = 0, thus u ≡ vmin in Ω. �
Remark 3.1. The proof of Theorem 3.1 uses reasonings of [22] (see also [3]). Other versions of Theorem 3.1
in the framework of the variational solutions are available (see [21]).

So that, the next goal is to prove the property

lim
x→∂Ω

u(x)
v(x) = 1

for any couple of large solutions of (1.1) (see (1.3)).
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4. Blow-up rate: proofs of Theorems 1.1 and 1.2

In this section we propose to obtain property (1.3) under the structural assumption given by the Keller–
Osserman condition (1.2). It requires a very important technicality: (1.7) for the ordinary case or (1.9) for 
the borderline case. Following some ideas developed in [28] (see also [19]) we will prove (1.3) in the more 
appropriate version

lim
d(x)→0

u(x)
v(x) = 1

where d(x) = dist(x, ∂Ω). As it was proved in [23], if ∂Ω is bounded the distance to boundary is a Lispchitz 
function on the whole space RN . Whenever, ∂Ω ∈ C1 there exists μΩ > 0 such that d(·) ∈ C1(Ω2μΩ

)
, where 

Ω2μΩ =
{
x ∈ Ω : 0 < d(x) < 2μΩ

}
. Moreover,

|∇d(x)| = 1, x ∈ Ω2μΩ ,

and so ∂Ω ∈ Ck, k ≥ 2, implies δ(·) ∈ Ck
(
Ω2μΩ

)
and

Δd(x) = −(N − 1)H
(
x̄
)

+ o(1), x ∈ Ω2μΩ , (4.1)

where H(x̄) is the mean curvature of ∂Ω at the boundary point x̄ ∈ ∂Ω such that d(x) = |x − x̄| and where 
o(1) → 0 as d(x) → 0. Since we are interested in the behavior as d(x) → 0, we may assume, with no loss of 
generality, μΩ < 1.

We consider Ω as in Introduction with ∂Ω ∈ C2. Moreover we consider the functions ψ and φ defined by 
(1.4) and (1.5), respectively. So, the function

Φ0(x) = φ(d(x)), x ∈ ΩμΩ , (4.2)

verifies

−ΔΦ0(x) + f(Φ0(x)) = −φ′′(d(x)) − φ′(d(x))Δd(x) + f
(
φ(d(x))

)
, x ∈ ΩμΩ . (4.3)

As

φ′′(d(x)) = f(φ(d(x))), x ∈ ΩμΩ ,

Lemma A.1 implies

lim
d(x)→0

φ′(d(x))
φ′′(d(x)) = − lim

d(x)→0

√
F (φ(d(x)))
f(φ(d(x))) = 0.

Hence, since ‖Δd‖L∞(ΩμΩ ) < ∞, the term

−φ′(d(x))Δd(x), x ∈ ΩμΩ

is negligible with respect to the other terms on the right side in (4.3), and then

−ΔΦ0(x) + f(Φ0(x)) = o(φ′′(d(x))), x ∈ ΩμΩ .

In this way, one can expect that the asymptotic behavior near the boundary of the solutions u of (1.1) let 
be governed by
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u(x) = φ
(
d(x)

)
+ o

(
φ(d(x))

)
, x ∈ ΩμΩ . (4.4)

Our approach follows some ideas of [19,1–4]. It presents some differences to other approaches known in the 
literature.

As it was pointed above, technicality (1.7) plays an important role in our reasoning. More precisely,

Lemma 4.1. Suppose that (1.2) and (1.7) hold. Then for every η > 1 there exist εη > 0 and δη > 0 such that

φ(
√

1 − ε δ) ≤ ηφ(δ) for ε ∈ [0, εη] and δ ∈ [0, δη]. (4.5)

Proof. Fix η > 1. From (1.7) there exist εη > 0 and tη large enough such that

ψ(ηt)
ψ(t) <

√
1 − εη for t > tη.

Therefore

ψ(ηt)
ψ(t) <

√
1 − ε for ε ∈ [0, εη] and t > tη.

Since φ = ψ−1 is decreasing, the change of variable δ = ψ(t) concludes (4.5). �
Proposition 4.1. Under assumptions of Lemma 4.1 any solution u ∈ C2(Ω) of

−Δu + f(u) ≤ 0 in Ω

verifies

lim sup
d(x)→0

u(x)
φ
(
d(x)

) ≤ 1. (4.6)

Proof. Fix an arbitrary η > 1. Since (1.7) holds, from Lemma 4.1 there exist εη > 0 and δη > 0 such 
that (4.5) holds. Now, let ε ∈ (0,min {μΩ, εη}) and take μ∗ ∈ (0, ε/2) and C∗ > 0 both to be precised later, 
and let μ ∈ (0, μ∗). Consider the region Ωμ∗

μ = {y ∈ Ω : μ < d(y) < μ∗} and the function

Φ−μ
0,ε (x) = φ

(√
1 − ε

(
d(x) − μ

))
+ C∗, x ∈ Ωμ∗

μ .

Then for every x ∈ Ωμ∗
μ we have

−ΔΦ−μ
0,ε (x) + f

(
Φ−μ

0,ε (x)
)

> − (1 − ε)φ′′ (√1 − ε (d(x) − μ)
)
|∇d(x)|2 −

√
1 − εφ′ (√1 − ε (d(x) − μ)

)
Δd(x)

+ f
(
φ
(√

1 − ε (d(x) − μ)
))

> f
(
φ
(√

1 − ε (d(x) − μ)
))(

ε−
φ′ (√1 − ε (d(x) − μ)

)
f
(
φ
(√

1 − ε (d(x) − μ)
)) ‖Δd‖∞

)
.

Since φ′(z) = −
√

2F (φ(z)) and φ(z) → ∞ as z → 0+, Lemma A.1 enables us to choose μ∗ ∈
(
0, min{ε/2, μ̄}

)
for some μ̄ > 0 small enough in order to obtain

−ΔΦ−μ
0,ε (x) + f

(
Φ−μ

0,ε (x)
)
> 0, x ∈ Ωμ∗

μ .
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In this way, we consider the subset Γμ∗ = {y ∈ Ω : d(y) = μ∗} and the constant C∗ = max
Γμ∗

u for which

u(x) ≤ Φ−μ
0,ε (x), x ∈ Γμ∗ .

Since

lim
d(x)→μ

Φ−μ
0,ε (x) = ∞

holds, the Comparison Principle (see Proposition 3.1) leads to

u(x) ≤ Φ−μ
0,ε (x), x ∈ Ωμ∗

μ

and then

u(x)
φ
(
d(x) − μ

) ≤
φ
(√

1 − ε
(
d(x) − μ

))
φ
(
d(x) − μ

) + C∗

φ
(
d(x) − μ

) , x ∈ Ωμ∗

μ .

In consequence, letting μ → 0+, it follows

u(x)
φ
(
d(x)

) ≤
φ
(√

1 − εd(x)
)

φ
(
d(x)

) + C∗

φ
(
d(x)

) , x ∈ Ωμ∗
. (4.7)

Note that (4.5) and (4.7) imply

u(x)
φ
(
d(x)

) ≤ η + C∗

φ
(
d(x)

) , x ∈ Ωμ∗
,

whence

lim sup
d(x)→0

u(x)
φ
(
d(x)

) ≤ η.

Finally, taking η ↘ 1 one concludes (4.6). �
Next, we give a lower estimate of the blow-up rate of solutions of (1.1) when (1.7) holds. To this purpose, 

firstly we note that condition (1.7) is equivalent to

lim inf
t→∞

ψ(βt)
ψ(t) > 1 for all β ∈ (0, 1),

whence one obtains an analogous result to Lemma 4.1. More precisely,

Lemma 4.2. Suppose the assumptions of Lemma 4.1. Then for every β ∈ (0, 1) there exist εβ > 0 and δβ > 0, 
such that

φ(
√

1 + ε δ) ≥ βφ(δ) for ε ∈ [0, εβ ] and δ ∈ [0, δβ ]. � (4.8)

Proposition 4.2. Under assumptions of Proposition 4.1 any large solution u ∈ C2(Ω) of (1.1) verifies

lim inf
d(x)→0

u(x)
φ
(
d(x)

) ≥ 1. (4.9)
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Proof. Fix an arbitrary β ∈ (0, 1). Since (1.7) holds, Lemma 4.2 implies the existence of εβ > 0 and δβ > 0
such that (4.8) holds. Now, let ε ∈ (0,min {μΩ, εβ}) and take μ∗ ∈ (0, ε/2) and C∗ > 0 both to be precised 
later, and let μ ∈ (0, μ∗). Consider the function

Φ+μ
0,ε (x) = φ

(√
1 + ε (d(x) + μ)

)
− C∗, x ∈ Ωμ∗ .

Then for every x ∈ Ωμ∗
0 we have

−ΔΦ+μ
0,ε (x) + f

(
Φ+μ

0,ε (x)
)
< f

(
φ
(√

1 + ε (d(x) + μ)
))(

−ε +
φ′ (√1 + ε (d(x) + μ)

)
f
(
φ
(√

1 + ε (d(x) + μ)
)) ‖Δd‖∞

)
.

Since φ′(z) = −
√

2F (φ(z)) and φ(z) → ∞ as z → 0+, Lemma A.1 allows to choose μ∗ ∈
(
0, min{ε/2, μ}

)
for some μ > 0 small enough for which

−ΔΦ+μ
0,ε (x) + f

(
Φ+μ

0,ε (x)
)
< 0, x ∈ Ωμ∗

holds. Now, the choice C∗ = φ 
(√

1 + ε (μ∗ + μ)
)

leads to

Φ+μ
0,ε (x) = 0 ≤ u (x) , x ∈ Γμ∗ = {y ∈ Ω : d (y) = μ∗}.

We have Φ+μ
0,ε (x) < ∞ for x ∈ Ω and

lim
d(x)→0

u(x) = ∞,

then the Comparison Principle (see again Proposition 3.1) yields

u (x) ≥ Φ+μ
0,ε (x), x ∈ Ωμ∗

that leads to

u(x)
φ
(
d(x) + μ

) ≥
φ
(√

1 + ε
(
d(x) + μ

) )
φ
(
d(x) + μ

) −
φ
(√

1 + ε (μ∗ + μ)
)

φ
(
d(x) + μ

) , x ∈ Ωμ∗ .

Letting μ → 0+, inequality φ 
(√

1 + ε μ∗
)
≤ φ(μ∗) implies

u(x)
φ
(
d(x)

) ≥
φ
(√

1 + ε d(x)
)

φ
(
d(x)

) − φ (μ∗)
φ
(
d(x)

) , x ∈ Ωμ∗ . (4.10)

Now from (4.8) and (4.10) one obtains

u(x)
φ
(
d(x)

) ≥ β − φ(μ∗)
φ
(
d(x)

) , x ∈ Ωμ∗ .

Therefore,

lim inf
d(x)→0

u(x)
φ
(
d(x)

) ≥ β.

Finally, letting β ↗ 1 one concludes (4.9). �
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Propositions 4.1 and 4.2 validate the property (1.8) and therefore Theorem 1.1 holds. Moreover, from 
Theorem 3.1, the proof of Theorem 1.3 relative to the ordinary case follows.

The approach for studying the borderline case

lim sup
t→∞

ψ(ηt)
ψ(t) = 1 for some η ∈ (1, η0) (see (1.9))

is in some sense analogous to the ordinary case before studied. However, there exists a crucial difference. 
Indeed, in this borderline case we only obtain the estimates

φ(
√

1 − ε δ)
φ(δ) >

1
η

and φ(
√

1 + ε δ)
φ(δ) < η for ε ∈ (0, ε̄η) and for δ ∈ (0, δ̄η)

for some ε̄η > 0 and δ̄η > 0 small enough, and then (4.7) and (4.10) do not lead to any conclusion. Therefore, 
the issue here is much more delicate, and it is necessary to build sub- and super-solutions highly accurate, 
taking advantage as much as possible of condition (1.9).

So, related to the proof of Theorem 1.2, we are interested in proving that (4.4) holds under assump-
tions (1.9) and (1.11). According to previous reasoning, we need some results as in Lemmas 4.1 and 4.2
respectively. More precisely,

Lemma 4.3. Let us suppose that (1.2) and (1.9) hold whenever f is differentiable for large t. Then for each 

 ∈ (0, 1) one verifies

lim
δ→0

ψ
((

1 ± δ1−�
)
φ(δ)

)
δ

= 1. (4.11)

Moreover, the function

Υ(δ) = φ(δ)

2δ�
√

2F
(
φ(δ)

) (4.12)

verifies

lim
δ→0

Υ(δ) = 0

and the inequalities

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 <

φ
(
ζ+(δ)δ

)
φ(δ) < 1 + δ1−� for small δ > 0,

1 − δ1−� <
φ
(
ζ−(δ)δ

)
φ(δ) < 1 for small δ > 0,

(4.13)

hold for the functions

ζ±(δ) = 1 ∓ Υ(δ).

We send to Appendix A for the proof of Lemma 4.3. We start finding an upper estimate of solutions 
of (1.1) for nonlinearities in the borderline case.
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Proposition 4.3. Suppose the assumptions of Lemma 4.3 with (1.9) whenever f is differentiable for large t. 
Then any solution u ∈ C2(Ω) of

−Δu + f(u) ≤ 0 in Ω

verifies

lim sup
d(x)→0

u(x)
φ(d(x)) ≤ 1. (4.14)

Proof. Fixed 
 ∈ (0, 1) we consider the function ζ+(δ) = 1 − Υ(δ), δ ∈ (0, δ∗), where δ∗ > 0 is small 
enough (see Lemma 4.3 above). Next, let μ∗ ∈ (0, min{μΩ, δ∗}) and C∗ > 0 both to be precised later. So, if 
μ ∈ (0, μ∗) we consider the function

Φ−μ
0,+(x) = φ

(
ζ+(d(x) − μ)(d(x) − μ)

)
+ C∗, x ∈ Ωμ∗

μ , (4.15)

where Ωμ∗
μ = {x ∈ Ω : μ < d(x) < μ∗}. Straightforward computations lead to

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∇Φ−μ
0,+(x) = φ′(ζ+(d(x) − μ)(d(x) − μ)

)(
ζ ′+(d(x) − μ)(d(x) − μ) + ζ+(d(x) − μ)

)
∇d(x),

ΔΦ−μ
0,+(x) = φ′′(ζ+(d(x) − μ)(d(x) − μ)

(
ζ ′+(d(x) − μ)

)
(d(x) − μ) + ζ+(d(x) − μ)

)2
+ φ′(ζ+(d(x) − μ)(d(x) − μ))

(
ζ ′′+(d(x) − μ)(d(x) − μ) + 2ζ ′+(d(x) − μ)

+ (ζ ′+(d(x) − μ)(d(x) − μ) + ζ+(d(x) − μ))Δd(x)
)

for x ∈ Ωμ∗
μ . Since(

ζ ′+(d(x) − μ)(d(x) − μ) + ζ+(d(x) − μ))Δd(x) = o
(
ζ ′′+(d(x) − μ)(d(x) − μ) + 2ζ ′+(d(x) − μ))

)
and ‖Δd‖∞ < ∞ hold, if one chooses μ∗ ∈

(
0, min{μΩ, μ̄, δ∗}

)
, for some μ̄ > 0 validating Lemmas A.5

and A.6, we obtain

−ΔΦ−μ
0,+ + f(Φ−μ

0,+) > 0 in Ωμ∗

μ .

Denoting Γμ∗ = {x ∈ Ω : d(x) = μ∗}, the choice C∗ = max
Γμ∗

u implies

u(x) ≤ Φ−μ
0,+(x), x ∈ Γμ∗ .

Since

lim
d(x)→μ

Φ−μ
0,+(x) = ∞

holds, the Comparison Principle (see Proposition 3.1) implies

u(x) ≤ Φ−μ
0,+(x), x ∈ Ωμ∗

μ ,

that leads to

u(x)( ) ≤
φ
(
ζ+(d(x) − μ)

(
d(x) − μ

))( ) + C∗( ) , x ∈ Ωμ∗

μ .

φ d(x) − μ φ d(x) − μ φ d(x) − μ
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In consequence, letting μ → 0+, it follows that

u(x)
φ
(
d(x)

) ≤
φ
(
ζ+(d(x)) d(x)

)
φ
(
d(x)

) + C∗

φ
(
d(x)

) , x ∈ Ωμ∗
0 .

Observe now that (4.13) leads to

u(x)
φ
(
d(x)

) ≤ 1 +
(
d(x)

)1−� + C∗

φ
(
d(x)

) , x ∈ Ωμ∗
0 ,

for which (4.14) holds after sending d(x) to 0 in the previous inequality. �
Our next step is to obtain a lower estimate of the solutions of (1.1) for nonlinearities in the borderline 

case.

Proposition 4.4. Under assumptions of Proposition 4.3 for any large solution u ∈ C2(Ω) of problem (1.1)
one has

lim inf
d(x)→0

u(x)
φ(d(x)) ≥ 1. (4.16)

Proof. Fixed 
 ∈ (0, 1) we consider the function ζ−(δ) = 1 + Υ(δ), δ ∈ (0, δ∗), where δ∗ > 0 is small enough 
(see again Lemma 4.3). Next, let μ∗ ∈ (0, min{μΩ, δ∗}) and C∗ > 0 both to be precised later. For every 
μ ∈ (0, μ∗) we consider the function

Φ+μ
0,−(x) = φ

(
ζ−

(
d(x) + μ

)
(d(x) + μ)

)
− C∗, x ∈ Ωμ∗ . (4.17)

Then by means of straightforward computations one proves⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∇Φ+μ
0,−(x) = φ′(ζ−

(
d(x) + μ

)
(d(x) + μ))

(
ζ ′−(d(x) + μ)(d(x) + μ) + ζ−(d(x) + μ)

)
∇d(x),

ΔΦ+μ
0,−(x) = φ′′(ζ−(d(x) + μ)(d(x) + μ)

(
ζ ′−(d(x) + μ)

)
(d(x) + μ) + ζ−(d(x) + μ)

)2
+ φ′(ζ−(d(x) + μ)(d(x) + μ))

(
ζ ′′−(d(x) + μ)(d(x) + μ) + 2ζ ′−(d(x) + μ)

+ (ζ ′−(d(x) + μ)(d(x) + μ) + ζ−(d(x) + μ))Δd(x)
)

for x ∈ Ωμ∗ . Since

(ζ ′−(d(x) + μ)(d(x) + μ) + ζ−(d(x) + μ))Δd(x) = o
(
ζ ′′−(d(x) + μ)(d(x) + μ) + 2ζ ′−(d(x) + μ))

)
and ‖Δd‖∞ < ∞ hold, if one chooses μ∗ ∈

(
0, min{μΩ, μ, δ∗}

)
, for some μ > 0 validating Lemmas A.5

and A.6, we obtain

−ΔΦ+μ
0,− + f(Φ+μ

0,−) < 0 in Ωμ∗
.

Considering C∗ = φ 
(
ζ−(μ∗ + μ)

(
μ∗ + μ

))
one has

Φ+μ
0,−(x) = φ

(
ζ−(μ∗ + μ)

(
μ∗ + μ

))
− C∗ = 0 ≤ u(x) on Γμ∗

where Γμ∗ = {x ∈ Ω : d(x) = μ∗}. Since Φ+μ
0,−(x) < ∞ on ∂Ω and
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lim
d(x)→0

u(x) = ∞

hold, the Comparison Principle (see Proposition 3.1) yields

u(x) ≥ Φ+μ
0,−(x), x ∈ Ωμ∗ ,

that leads to

u(x)
φ (d(x) + μ) ≥ φ (ζ−(d(x) + μ) (d(x) + μ))

φ (d(x) + μ) −
φ
(
ζ−(μ∗ + μ)

(
μ∗ + μ

))
φ (d(x) + μ) , x ∈ Ωμ∗ .

Letting μ → 0+, it follows that

u(x)
φ (d(x)) ≥ φ (ζ−(d(x))d(x))

φ (d(x)) − φ (ζ−(μ∗)μ∗)
φ (d(x)) , x ∈ Ωμ∗ .

Note that (4.13) implies

u(x)
φ (d(x)) ≥ 1 −

(
d(x)

)1−� − φ (ζ−(μ∗)μ∗)
φ (d(x)) , x ∈ Ωμ∗ ,

whence (4.16) holds after passing to the limit as d(x) goes to 0 in the previous inequality. �
Now from Propositions 4.3 and 4.4 the proof of Theorem 1.2 follows. Moreover, it concludes also the 

proof of Theorem 1.3 relative to the borderline case.

5. Second order estimates: proofs of Theorems 1.4 and 1.5

In order to obtain a second term in the expansion near the boundary of the solution u of (1.1) we require 
the additional assumption ∂Ω ∈ C4. Sometimes, for simplicity, we will use the notation d = d(x). Here we 
define

Φ1(x) = Φ0(x) + A
(
Φ0(x)

)
ϕ
(
Φ0(x)

)
Δd(x), x ∈ ΩμΩ ,

where Φ0, A and ϕ are the functions given in (4.2), (1.16) and (1.14), respectively. Since |∇d|2 = 1 and 
Δ|∇d|2 = 0 in ΩμΩ , straightforward computations lead to

f(Φ1) = f
(
φ(d)

)
+ A

(
φ(d)

)
ϕ
(
φ(d)

)
Δdf ′(φ(d)

)
+

(
A
(
φ(d)

)
ϕ
(
φ(d)

)
Δd

)2
2 f ′′(ξ)

for some ξ between φ(d) and φ(d) + A
(
φ(d)

)
ϕ
(
φ(d)

)
Δd and

−ΔΦ1 + f(Φ1) = −
(
φ′(d) + A

(
φ(d)

)(
φ′′(d)ϕ′(φ(d)

)
+
(
φ′(d)

)2
ϕ′′(φ(d)

)
− f ′(φ(d)

)
ϕ
(
φ(d)

)))
Δd

+ R1
(
φ(d)

)
Δd + R2

(
φ(d)

)(
Δd

)2 + R3
(
φ(d)

)
f ′′(ξ)

(
Δd

)2 + R4
(
φ(d)

)
Δ2d

for
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R1(t) = − (A′′(t)2F (t)ϕ(t) + 2A′(t)2F (t)ϕ′(t) + A′(t)f(t)ϕ(t))

= −
(
A′′(t)

√
2F (t)ϕ(t) + A′(t)ϕ(t)f(t)√

2F (t)
+ 2A′(t)t

)√
2F (t)

R2(t) = −
(
A′(t)

√
2F (t)ϕ(t) + A(t)

√
2F (t)ϕ′(t)

)
= −

(
A′(t)tϕ(t)

t
+ A(t) t√

2F (t)

)√
2F (t)

R3(t) = 1
2
(
A(t)ϕ(t)

)2 =
(

1
2

(
A(t)ϕ(t)

)2√
2F (t)

)√
2F (t)

R4(t) = −A(t)ϕ(t) = −
(
A(t)ϕ(t)

t

t√
2F (t)

)√
2F (t)

(5.1)

where we have used φ′(d) = −
√

2F
(
φ(d)

)
, φ′′(d) = f

(
φ(d)

)
and the variable t = φ(d). Then, since (H1) 

proves that A(t) is bounded at the infinity, we deduce that⎧⎪⎪⎨⎪⎪⎩
(H3) and (H4) imply R1(t) = o

(√
2F (t)

)
,

(H1), (H4), Lemma A.1 and (1.15) imply R2(t) = o
(√

2F (t)
)
,

(H1), Lemma A.1 and (1.15) imply R4(t) = o
(√

2F (t)
)
.

(5.2)

Moreover,

lim
d→0

R3
(
φ(d)

)
f ′′(ξ)

φ′(d) = − lim
t→∞

R3
(
t)f ′′(t)√
2F (t)

= − lim
t→∞

1
2

(
A(t)ϕ(t)

)2
f ′′(t)√

2F (t)
= 0 (5.3)

provided (H2). Therefore, under hypotheses (H1)–(H4) one has

−ΔΦ1 + f(Φ1) = −
(
φ′(d) + A

(
φ(d)

)(
φ′′(d)ϕ′(φ(d)

)
+
(
φ′(d)

)2
ϕ′′(φ(d)

)
− f ′(φ(d)

)
ϕ
(
φ(d)

)))
Δd

+ o
(
φ′(d)

)
in ΩμΩ , whence one finds

−ΔΦ1 + f(Φ1) = o
(
φ′(d)

)
in ΩμΩ

provided

A
(
φ(d)

)(
φ′′(d)ϕ′(φ(d)

)
+
(
φ′(d)

)2
ϕ′′(φ(d)

)
− f ′(φ(d)

)
ϕ
(
φ(d)

))
= −φ′(d). (5.4)

By using the change of variable t = φ(d) we deduce that

A(t) (f(t)ϕ′(t) + 2F (t)ϕ′′(t) − f ′(t)ϕ(t)) =
√

2F (t)

holds for the choice of function A(t) given in (1.16). Indeed, since ϕ′(t) = −tψ′(t), one has

f(t)ϕ′(t) + 2F (t)ϕ′′(t) = −f(t)tψ′(t) − 1(
ψ′(t)

)2(ψ′(t) − f(t)t
(
ψ′(t)

)3) = − 1
ψ′(t) =

√
2F (t)

whence the choice
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A(t) =
√

2F (t)√
2F (t) − f ′(t)ϕ(t)

,

given in (1.16), satisfies (5.4). Moreover, A
(
φ(d)

)
∈ C2(ΩμΩ

)
∩ L∞(

ΩμΩ
)
.

Remark 5.1. As it was pointed out in the Introduction, assumptions (H2)–(H4) are intrinsic and direct in 
the above reasonings. Since (1.15) holds by construction, we note that property (H2) follows when

(
A(t)

)2 t√
F (t)

tf ′′(t) is bounded,

but this last condition is more restrictive. Also we note that property (H3) follows from (H4) when

A′′(t)
√

F (t)t and ϕ(t)
t

f(t)√
F (t)

are bounded,

but again these last conditions are more restrictive.

So that, from the definition of function Φ1(x) above, it is reasonable to expect that the asymptotic 
behavior of the solution of (1.1) near ∂Ω is of the form

u(x) = φ
(
d(x)

)
+ A

(
φ(d(x))

)
ϕ
(
φ(d(x))

)(
Δd(x) + o(1)

)
,

including the influence of the mean curvature in terms of second order on the explosive expansion of the 
solution u of (1.1) near the boundary. Here o(1) → 0 as d(x) → 0.

As above, we want to construct suitable sub- and super-solutions. We begin with the ordinary case.

Proposition 5.1. Suppose ∂Ω ∈ C4 and f is twice differentiable at infinity verifying (H1)–(H4), (1.2) and 
(1.7). Then, for every solution u ∈ C2(Ω) of

−Δu + f(u) ≤ 0 in Ω

one has

lim sup
d(x)→0

u(x)
φ
(
d(x)

)
+ A

(
φ(d(x)

)
ϕ
(
φ(d(x))

)
Δd(x)

≤ 1. (5.5)

Proof. Fix η > 1. Since (1.7) holds, one can consider εη > 0 and δη > 0 given in Lemma 4.1. Now, let 
ε ∈ (0,min {μΩ, εη}) given, and take μ∗ ∈ (0, ε/2) and C∗ > 0 both to be precised later, and let μ ∈ (0, μ∗). 
Consider the function

Φ−μ
1,ε (x) = φ

(√
1 − ε

(
d(x) − μ

))
+ A

(
φ
(√

1 − ε(d(x) − μ)
))

ϕ
(
φ
(√

1 − ε
(
d(x) − μ)

))
Δd(x) + C∗, x ∈ Ωμ∗

μ .

In order to simplify we use the notation d = d(x) and z = φ
(√

1 − ε(d(x) − μ)
)
. Then
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f
(
Φ−μ

1,ε (x)
)

= f
(
φ(z)

)
+
(
A
(
φ(z)

)
ϕ
(
φ(z)

)
Δd + C∗

)
f ′(φ(z)

)
+

(
A
(
φ(z)

)
ϕ
(
φ(z)

)
Δd + C∗)2

2 f ′′(ξ),

∇Φ−μ
1,ε (x) =

√
1 − ε

[
1 +

(
A′(φ(z)

)
ϕ
(
φ(z)

)
+ A

(
φ(z)

)
ϕ′(φ(z)

))
Δd

]
φ′(z)∇d

+ A
(
φ(z)

)
ϕ
(
φ(z)

)
∇Δd,

ΔΦ−μ
1,ε (x) = (1 − ε)

[
1 +

(
A′(φ(z)

)
ϕ
(
φ(z)

)
+ A

(
φ(z)

)
ϕ′(φ(z)

))
Δd

](
φ′′(z) + φ′(z)√

1 − ε
Δd

)
+ (1 − ε)

(
A′′(φ(z)

)
ϕ
(
φ(z)

)
+ 2A′(φ(z)

)
ϕ′(φ(z)

)
+ A

(
φ(z)

)
ϕ′′(φ(z)

))(
φ′(z)

)2Δd

+ A
(
φ(z)

)
ϕ
(
φ(z)

)
Δ2d

for some ξ between φ(z) and φ(z) +A
(
φ(z)

)
ϕ(z)Δd +C∗, because |∇d|2 = 1 and Δ|∇d|2 = 1. So, by using 

the rests introduced in (5.1), one gets

−ΔΦ−μ
1,ε + f

(
Φ−μ

1,ε
)
≥ εf

(
φ(z)

)
−

√
1 − ε

[
φ′(z) +

√
1 − εA

(
φ(z)

)(
φ′′(z)ϕ′(φ(z)

)
+
(
φ′(z)

)2
ϕ′′(φ(z)

)
− f ′(φ(z)

)
ϕ
(
φ(z)

)]
Δd + (1 − ε)R1

(
φ(z)

)
Δd +

√
1 − εR2

(
φ(z)

)(
Δd

)2
+
(

1 + C∗

A
(
φ(z)

)
ϕ
(
φ(z)

))2

R3
(
φ(z)

)
f ′′(ξ)(Δd)2 + R4

(
φ(z)

)
Δ2d

in Ωμ∗
μ . In this point, the definition of the function A(t) (see (5.4)) leads to

−ΔΦ−μ
1,ε + f

(
Φ−μ

1,ε
)
≥ f

(
φ(z)

){
ε−

[(
1 −

√
1 − ε + (1 − ε)

R1
(
φ(z)

)
φ′(z)

)
Δd +

√
1 − ε

R2
(
φ(z)

)
φ′(z)

(
Δd

)2
+
(

1 + C∗

A
(
φ(z)

)
ϕ
(
φ(z)

))2
R3

(
φ(z)

)
φ′(z) f ′′(ξ)(Δd)2 +

R4
(
φ(z)

)
φ′(z) Δ2d

]
φ′(z)
φ′′(z)

}
= f

(
φ(z)

)(
ε + o(1)

)
where o(1) → 0 as d(x) − μ → 0, due to the properties (5.2) and (5.3) and

φ′(z)
φ′′(z) = −

√
2F

(
φ(z)

)
f
(
φ(z)

) → 0 as z → 0

(see (A.1)). Therefore, one can choose μ∗ ∈
(
0, min{ε/2, μ̄}

)
, with μ̄ > 0 small enough such that

−ΔΦ−μ
1,ε + f(Φ−μ

1,ε ) ≥ 0 in Ωμ∗
μ .

Considering the set Γμ∗ = {x ∈ Ω : d(x) = μ∗} and C∗ = max
Γμ∗

u(y), one has

Φ−μ
1,ε (x) = φ

(√
1 − ε(μ∗ − μ)

)
+ A

(
φ
(√

1 − ε(μ∗ − μ)
)
ϕ
(
φ
(√

1 − ε(μ∗ − μ)
))

+ C∗ ≥ u(x), x ∈ Γμ∗ .

Then

lim
d(x)→μ

Φ−μ
1,ε (x) = ∞

implies, by the Comparison Principle (see Proposition 3.1),
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u(x) ≤ Φ−μ
1,ε (x), x ∈ Ωμ∗

μ .

Next, we divide each side on the previous inequality by

φ
(
d(x) − μ

)
+ A

(
φ
(
d(x) − μ

))
ϕ
(
φ
(
d(x) − μ

))
Δd(x)

in order to use reasonings as in the end of the proof of Proposition 4.1 for which letting μ ↘ 0 and then 
η ↘ 1 one concludes (5.5). �

Analogously, we obtain

Proposition 5.2. Suppose ∂Ω ∈ C4 and let f be twice differentiable at infinity satisfying (H1)–(H4), (1.2)
and (1.7). Then, for every solution u of the problem (1.1) one has

lim inf
d(x)→0

u(x)
φ
(
d(x

)
+ A

(
φ
(
d(x)

))
ϕ
(
φ
(
d(x)

))
Δd(x)

≥ 1. (5.6)

Proof. Let β < 1 given. Since (1.7) holds, one can consider numbers εβ > 0 and δβ > 0 given in Lemma 4.2. 
Now, let ε ∈ (0,min {μΩ, εβ}) given, and take μ∗ ∈ (0, ε/2) and C∗ > 0 both to be precised later, and let 
μ ∈ (0, μ∗). Consider the function

Φ+μ
1,ε (x) = φ

(√
1 + ε(d(x) + μ)

)
+ A

(
φ
(√

1 + ε(d(x) + μ)
))

ϕ
(
φ
(√

1 + ε(d(x) + μ)
))

Δd(x) − C∗, x ∈ Ωμ∗ .

Then one can choose μ∗ < min{ε/2, μ} with μ > 0 so small that a reasoning as in the above proof leads to

−ΔΦ+μ
1,ε (x) + f(Φ+μ

1,ε )(x) ≤ f
(
φ
(√

1 + ε(d(x) + μ)
))

(−ε + o (1)) ≤ 0, x ∈ Ωμ∗ ,

where o(1) → 0 as d(x) + μ → 0. Choosing

C∗ = φ
(√

1 + ε(μ∗ + μ)
)

+ A
(
φ
(√

1 + ε(μ∗ + μ)
))

ϕ
(
φ
(√

1 + ε(μ∗ + μ)
))

,

one has

Φ+μ
1,ε (x) = 0 ≤ u(x), x ∈ Γμ∗ = {y ∈ Ω : d(y) = μ∗}.

Since Φ+μ
1,ε < ∞ on ∂Ω and

lim
d(x)→0

u(x) = ∞,

the Comparison Principle (see Proposition 3.1) leads to

Φ+μ
1,ε (x) ≤ u(x), x ∈ Ωμ∗ .

Therefore, dividing each side of the previous inequality by

φ (d(x) + μ) + A
(
φ
(
d(x) + μ

))
ϕ
(
φ
(
d(x) + μ

))
Δd(x)

and then taking μ ↘ 0 and later ε → 0, one obtains (5.6) after applying Lemma 4.2 and by taking β ↗ 1. �
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Now from Propositions 5.1 and 5.2, the proof of Theorem 1.4 follows validating (1.17) in the ordinary 
case.

Finally, we deal with borderline cases. In order to prove Theorem 1.5 we need the following result

Lemma 5.1. Let f be a function twice differentiable at infinity satisfying (1.2) and (1.9). Then the function

B(t) =
√

2F (t)
f(t) , t > 0,

verifies

Δ
(
B
(
φ
(
d(x)

))
φ
(
d(x)

)
Δd(x)

)
= B

(
φ
(
d(x)

))
Δd(x)f(φ(d(x))) + o

(
φ′(d(x))

)
. (5.7)

Proof. Since⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
B′(t) = 1√

2F (t)

(
1 − 2f ′(t)F (t)(

f(t)
)2

)
,

B′′(t) = − f(t)(
2F (t)

) 3
2

(
1 − 2f ′(t)F (t)(

f(t)
)2

)
− 1√

2F (t)

[
f ′′(t)
f ′(t)

2f ′(t)F (t)(
f(t)

)2 + 2f ′(t)
f(t)

(
1 − 2f ′(t)F (t)(

f(t)
)2

)]

and |∇d|2 = 1 and Δ|∇d|2 = 0 in ΩμΩ , straightforward computations lead to{
∇
(
B(φ(d))φ(d)Δd

)
= (B′(φ(d))φ′(d)φ(d) + B(φ(d))φ′(d))Δd∇d + B(φ(d))φ(d)∇Δd,

Δ
(
B(φ(d))φ(d)Δd

)
= B(φ(d))φ′′(d)Δd + R1

(
φ(d)

)
Δd + R2

(
φ(d)

)(
Δd

)2 + R3
(
φ(d)

)
Δ2d,

in ΩμΩ , for⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R1(t) = B′(t)f(t)t + 2B′(t)
(
2F (t)

)
+ B′′(t)

(
2F (t)

)
t

= 2
√

2F (t)
(

1 − 2f ′(t)F (t)(
f(t)

)2
)

−
√

2F (t)
(
tf ′′(t)
f ′(t)

2f ′(t)F (t)(
f(t)

)2 + 2tf ′(t)
f(t)

(
1 − 2f ′(t)F (t)(

f(t)
)2

))

=
[
2
(

1 − 2f ′(t)F (t)(
f(t)

)2
)

− tf ′′(t)
f ′(t)

2f ′(t)F (t)(
f(t)

)2 − 2tf ′(t)
f(t)

(
1 − 2f ′(t)F (t)(

f(t)
)2

)]√
2F (t),

R2(t) = −
(
B(t) + B′(t)t

)√
2F (t) = −

[√
2F (t)
f(t) + t√

2F (t)

(
1 − 2f ′(t)F (t)(

f(t)
)2

)]√
2F (t)

R3(t) = B(t)t =
[

B(t)t√
2F (t)

]√
2F (t) =

[
t

f(t)

]√
2F (t)

where we have used φ′(d) = −
√

2F
(
φ(d)

)
, φ′′(d) = f

(
φ(d)

)
and the variable t = φ(d). Due to (1.2)

and (1.9) imply (A.1), (A.4) and (A.5), we deduce

Δ
(
B(φ(d))φ(d)Δd

)
= B(φ(d))f

(
φ(d)

)
Δd + o

(
φ′(d)

)
. �

Remark 5.2. Straightforward computations enable us to prove that the functions

B̂(t) = t√ and B̃(t) = t

f(t)
2F (t)
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also satisfy (5.7). Moreover B(t) and B̂(t) have the same behavior for large t because

B̂(t)
B(t) = tf(t)

2F (t) → 1 as t → ∞

(see (A.4)). On the other hand, (A.2) says that B̃(t) tends to zero faster than B(t). Consequently

B
(
φ
(
d(x)

))
φ
(
d(x)

)
Δd(x)

is more explosive near ∂Ω than

B̃
(
φ
(
d(x)

))
φ
(
d(x)

)
Δd(x).

Proposition 5.3. Suppose ∂Ω ∈ C4 and let f be a function twice differentiable at infinity satisfying (1.2) and 
(1.9). Then, for every solution u of

−Δu + f(u) ≤ 0 in Ω

one has

lim sup
d(x)→0

u(x)
φ(d(x))

(
1 + B

(
φ
(
d(x)

))
Δd(x)

) ≤ 1.

Proof. Fixed 
 ∈ (0, 1) we consider the function ζ+(δ) = 1 −Υ(δ), δ ∈ (0, δ∗), where δ∗ > 0 is small enough 
(see Lemma 4.3). Also one considers μ ∈ (0, μ∗), with μ∗ ∈ (0, min{μΩ, μ̃0, δ∗}) to be precised as well as 
the constant C∗ > 0. To conclude the proof it suffices to apply Lemma 5.1 and to argue as in the proof of 
Proposition 4.3 on the perturbed function

Φ̂−μ
1,+(x) = Φ−μ

0,+(x) + φ
(
ζ+(d(x) − μ)(d(x) − μ)

)
B
(
φ
(
ζ+(d(x) − μ)(d(x) − μ)

))
Δd(x), x ∈ Ωμ∗

μ

(see (4.15)). �
Proposition 5.4. Suppose ∂Ω ∈ C4 and let f be a function twice differentiable at infinity satisfying (1.2) and 
(1.9). Then, for every solution u of the problem (1.1) one has

lim inf
d(x)→0

u(x)
φ(d(x))

(
1 + B(φ(d(x)))Δd(x)

) ≥ 1.

Proof. Fixed 
 ∈ (0, 1) we consider the function ζ−(δ) = 1 + Υ(δ), δ ∈ (0, δ∗), where δ∗ > 0 is small enough 
(see Lemma 4.3). Here we also consider μ ∈ (0, μ∗), with μ∗ ∈ (0, min{μΩ, μ0, δ∗}) suitably chosen as well 
as a constant C∗ > 0. Then one argues with the function

Φ̂+μ
1,−(x) = Φ+μ

0,−(x) + φ
(
ζ−(d(x) + μ)(d(x) + μ)

)
B
(
φ
(
ζ−(d(x) + μ)(d(x) + μ)

))
Δd(x), x ∈ Ωμ∗

(see (4.17)). So that, as in the proof of Proposition 5.2, one concludes the result by using Lemma 5.1 and 
reasoning as in the proof of Proposition 4.4. �

Clearly, from Propositions 5.3 and 5.4 the estimate (1.20) is validated.
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Appendix A. Some basic estimates and technical results

A first basic result, that we have used in proving all our results, is the following

Lemma A.1. Let us assume (1.2). Then

lim
t→∞

t√
F (t)

= 0, lim
t→∞

t

f(t) = 0 and lim
t→∞

√
F (t)
f(t) = 0. (A.1)

Hence

t

f(t) = o

(
t√
F (t)

)
and t

f(t) = o

(√
F (t)
f(t)

)
(A.2)

hold. Moreover,

lim inf
t→∞

tf(t)
2F (t) ≥ 1, lim inf

t→∞
tf ′(t)
f(t) ≥ 1 and lim inf

t→∞
2f ′(t)F (t)(

f(t)
)2 ≥ 1. (A.3)

Proof. The Mean Value Integral Theorem provides the inequality

0 ≤ 1
2

t√
F (t)

≤
t∫

t
2

ds√
F (s)

for large t.

Since (1.2) implies

lim
t→∞

t∫
t
2

ds√
F (s)

= 0,

we obtain

lim
t→∞

t√
F (t)

= 0

after letting t → ∞. On the other hand, it is clear that by monotonicity and the Fundamental Calculus 
Theorem one has F (t) ≤ tf(t) for all t > 0, which implies

0 ≤ t ≤ t2
.

f(t) F (t)
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Then, letting t → ∞, one gets

lim
t→∞

t

f(t) = 0

by the above contribution. This property implies

0 ≤ F (t)
(f(t))2 ≤ t

f(t)

and (A.1) concludes. Then the behavior (A.2) follows from the equality

t

f(t) = t√
F (t)

√
F (t)
f(t) .

On the other hand, from lim
t→∞

t

f(t) = 0 we deduce t ≤ f(t) for large t. Taking logarithm one obtains

1 ≤ lim inf
t→∞

log f(t)
log t .

Therefore we use the Bernoulli–L’Hôpital rule for obtaining

1 ≤ lim inf
t→∞

log f(t)
log t = lim inf

t→∞
tf ′(t)
f(t) .

Analogous reasoning imply

1 ≤ lim inf
t→∞

tf(t)
2F (t) and 1 ≤ lim inf

t→∞
2f ′(t)F (t)(

f(t)
)2 . �

The next technicalities claim the obtainment of a simple way to describe the borderline case assumption. 
In order to do it, we are interested in to study the behavior of the quotients

ψ(ηt)
ψ(t) ,

ηf(t)
f(ηt) and tf ′(t)

f(t) with η > 1

for large t, where ψ is the function defined by (1.4). These quotients involve regularly varying properties.

Lemma A.2. Suppose that f verifies (1.2). Then for η > 1 one verifies

lim sup
t→∞

ηf(t)
f(ηt) =

(
lim sup
t→∞

ψ(ηt)
ψ(t)

)2

≤ 1.

In particular, (1.9) is equivalent to (1.10)

lim sup
t→∞

ηf(t)
f(ηt) = 1 for η ∈ [1, η0].

Proof. It is clear that any continuous and increasing function g on R+, with g(0) = 0, satisfies

0 ≤ ηg(t) ≤ η for all t sufficiently large,

g(ηt)
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provided η > 1, whence the properties

0 ≤ lim inf
t→∞

ηg(t)
g(ηt) ≤ lim sup

t→∞

ηg(t)
g(ηt) ≤ η

hold. In particular, the choice g(t) =
√
F (t) shows

0 ≤ lim inf
t→∞

η
√
F (t)√

F (ηt)
≤ lim sup

t→∞

η
√
F (t)√

F (ηt)
≤ η

again for η > 1. In fact, by the Bernoulli–L’Hôpital rule we have

lim sup
t→∞

η
√
F (t)√

F (ηt)
= lim sup

t→∞

ψ(ηt)
ψ(t) ≤ 1 with η > 1.

Analogously, the above monotonicity reasoning implies

0 ≤ lim inf
t→∞

ηf(t)
f(ηt) ≤ lim sup

t→∞

ηf(t)
f(ηt) ≤ η,

whence now the Bernoulli–L’Hôpital rule leads to

1 ≥
(

lim sup
t→∞

ψ(ηt)
ψ(t)

)2

= lim sup
t→∞

η2F (t)
F (ηt) = lim sup

t→∞

ηf(t)
f(ηt) with η > 1. �

Whenever f is differentiable for large t we obtain another characterization more useful to the reasoning 
of the paper.

Lemma A.3. Suppose that f is differentiable for large t and verifies (1.2) and (1.9). Then

lim
t→∞

tf(t)
2F (t) = lim

t→∞
tf ′(t)
f(t) = lim

t→∞
2f ′(t)F (t)(

f(t)
)2 = 1. (A.4)

Furthermore, if f is twice differentiable at infinity one has

lim
t→∞

tf ′′(t)
f ′(t) = 0. (A.5)

Proof. From (A.3) we have

1 ≤ lim inf
t→∞

tf(t)
2F (t) .

On the other hand, since f is increasing and positive, for η > 1 we may construct the inequalities

(η − 1)tf(t) ≤
ηt∫
t

f(s)ds = F (ηt) − F (t)

and

η − 1
2 + F (t)

2 ≤ F (ηt) f(ηt)
,

η η tf(t) ηtf(ηt) ηf(t)
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for which

1
η + 1 = η − 1

η2 − 1 ≤ lim inf
t→∞

F (t)
tf(t)

holds, provided η ∈ (1, η0] (see (1.10)). Letting η ↘ 1 one has

1
2 ≤ lim inf

t→∞
F (t)
tf(t) ,

thus

2 ≤ lim inf
t→∞

tf(t)
F (t) ≤ lim sup

t→∞

tf(t)
F (t) ≤ 2.

By applying the Bernoulli–L’Hôpital rule we deduce

lim
t→∞

tf(t)
F (t) = lim

t→∞

(
1 + tf ′(t)

f(t)

)
,

and so by

2f ′(t)F (t)(
f(t)

)2 = tf ′(t)
f(t)

2F (t)
tf(t)

we conclude (A.4). Finally, applying again the Bernoulli–L’Hôpital rule we deduce

1 = lim
t→∞

tf ′(t)
f(t) = lim

t→∞

(
1 + tf ′′(t)

f ′(t)

)
,

whence (A.5) holds. �
Remark A.1. We also note that from (1.2) and (1.9) we deduce lim

t→∞
f ′(t) = ∞. In fact, if f is a function of 

class Ck at infinity, one proves

lim
t→∞

tf j)(t)
f j−1)(t)

= 2 − j for 1 ≤ j ≤ k,

whence lim
t→∞

f j)(t) = ∞, 1 ≤ j ≤ k.

Lemma A.4. The condition

lim inf
t→∞

tf ′(t)
f(t) = α > 1 (A.6)

implies

f(t)
tβ

is increasing for large t, (A.7)

provided β < α. Moreover, (1.2) and

lim sup
t→∞

ψ(ηt)
ψ(t) < 1

also follow.
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Proof. Straightforward computations lead to(
f(t)
tβ

)′
= t−(β+1)f(t)

(
tf ′(t)
f(t) − β

)
and (A.7) follows. On the other hand, given ε ∈ (0, α− 1) the assumption (A.6) implies

α− ε

t
≤ f ′(t)

f(t) for large t

whence an integration gives

(α− ε) ln t

t1
≤ ln f(t)

f(t1)
, t > t1 for large t1,

thus

Ctα−ε ≤ f(t), t > t1 for large t (A.8)

and √
C

1 + α− ε
t

1+α−ε
2 ≤

√
F (t) for large t

hold for C = f(t1)
tα−ε
1

> 0. So that, we have

t∫
t2

ds√
F (s)

≤ 2
α− 1 − ε

√
1 + α− ε

C

(
t

1−α+ε
2

2 − t
1−α+ε

2
)
, t > t2 > t1 for large t.

Since ε ∈ (0, α− 1) the Keller–Osserman condition (1.2) is concluded by letting t → ∞. Finally, it follows

lim sup
t→∞

ψ(ηt)
ψ(t) < 1

otherwise Lemma A.3 implies

lim inf
t→∞

tf ′(t)
f(t) = 1

contrary to (A.6). �
Remark A.2. Under condition (1.2), Lemmas A.2 and A.3 prove that (1.9) implies (1.11). On the other hand, 
Lemma A.4 proves that (1.11) implies (1.9), provided (1.2), because whenever (1.9) fails the same happens 
with (1.11). So that, in the class of functions satisfying the Keller–Osserman condition, the properties (1.9)
and (1.11) are equivalent. Therefore, under condition (1.2) the couple (A.6)–(1.11) is an equivalent alter-
native to the couple (1.7)–(1.9). From Lemmas A.1, A.2 and A.3 analogous alternative can be constructed. 
So, the ordinary case is governed by the properties

lim inf
t→∞

tf(t)
2F (t) > 1 or lim inf

t→∞
2f ′(t)F (t)( )2 > 1
f(t)
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and the borderline case by

lim
t→∞

tf(t)
2F (t) = 1 or lim

t→∞
2f ′(t)F (t)(

f(t)
)2 = 1.

We note that, in general,

lim
t→∞

tf ′(t)
f(t) = 1

does not imply the Keller–Osserman condition (1.2), as it follows from the choice f(t) = t log t, t > 1, but 
it is an irrelevant question in this paper because, as it was proved by Keller [25] and Osserman [38], the 
property (1.2) is a necessary condition for the existence of large solutions.

In the rest of Appendix A we denote by φ to the function defined by (1.5).

Proof of Lemma 4.3. Let η0 > 1. It is clear that{
η0 > 1 + δ1−� for small δ > 0,
η−1
0 < 1 − δ1−� for small δ > 0.

Since ψ is decreasing at infinity we obtain⎧⎪⎪⎨⎪⎪⎩
ψ
(
η0φ(δ)

)
δ

<
ψ
(
(1 + δ1−�)φ(δ)

)
δ

<
ψ(φ(δ))

δ
= 1 for small δ > 0,

1 = ψ(φ(δ))
δ

<
ψ
(
(1 − δ1−�)φ(δ)

)
δ

<
ψ
(
η−1
0 φ(δ)

)
δ

for small δ > 0,

respectively, whence (1.9) implies (4.11). Next, we rewrite property (A.1) as

lim
t→∞

tψ′(t) = − lim
t→∞

t√
2F (t)

= 0

(see Lemma A.1). Since (A.4) implies that given k > 1 the bound

1 − k

2 ≤ 1 − tf(t)
2F (t) ≤ 1

2 for large t

(see Lemma A.3) the Bernoulli–L’Hôpital rule enables us to obtain

lim
t→∞

tψ′(t)
(ψ(t))� = lim

t→∞
(ψ(t))1−�




(
1 − tf(t)

2F (t)

)
= 0. (A.9)

Then, there exist t± for which we deduce the expansion

ψ
(
(1 ± (ψ(t))1−�)t

)
= ψ(t) ± t

(
ψ(t)

)1−�
ψ′(t) +

(t
(
ψ(t)

)1−�)2

2 ψ′′(t±)

or equivalently

ψ
(
(1 ± (ψ(t))1−�)t

)
ψ(t) = 1 ± tψ′(t)

�
+ t2(ψ(t))1−2�

2 ψ′′(t±)

(ψ(t))
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where t < t+ < (1 + (ψ(t))1−�)t and (1 − (ψ(t))1−�)t < t− < t. The monotonicity of the function f gives⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

F (t) = F (t+) + (t− t+)f(t̃+) ≥ F (t+) + (t− t+)f(t+)

≥ F (t+) − (ψ(t))1−�tf(t+) ≥ F (t+) − (ψ(t))1−�t+f(t+)

F (t) = F (t−) + (t− t−)f(t̃−) ≤ F (t−) + (t− t−)f(t)

≤ F (t−) + (ψ(t))1−�tf(t)

for some t̃+ ∈ (t, t+) and t̃− ∈ (t−, t), whence⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 ≥ F (t)

F (t+) ≥ 1 − (ψ(t))1−� t+f(t+)
F (t+)

1 ≤ F (t)
F (t−) ≤ 1

1 − (ψ(t))1−�
tf(t)
F (t)

hold, then the property (A.4) (see again Lemma A.3) implies

lim
t→∞

F (t)
F (t±) = 1.

So that, the bounds⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 ≤ −t2

(
ψ(t)

)1−2�
ψ′′(t+)

(
ψ(t)

)�
tψ′(t) = t(ψ(t))1−� f(t+)

2F (t+)

√
F (t)
F (t+) ≤ (ψ(t))1−� t+f(t+)

2F (t+)

0 ≥ t2
(
ψ(t)

)1−2�
ψ′′(t−)

(
ψ(t)

)�
tψ′(t) = −t(ψ(t))1−� f(t−)

2F (t−)

√
F (t)
F (t−) ≥ − (ψ(t))1−�

1 − (ψ(t))1−�

t−f(t−)
2F (t−)

√
F (t)
F (t−)

imply

lim
t→∞

t2
(
ψ(t)

)1−2�
ψ′′(t±)

(
ψ(t)

)�
tψ′(t) = 0.

Therefore one deduces that the functions

ζ±
(
ψ(t)

)
= 1 ± tψ′(t)

2
(
ψ(t)

)� for large t

verify ⎧⎪⎪⎪⎨⎪⎪⎪⎩
ψ
(
(1 + (ψ(t))1−�)t

)
ψ(t) < ζ+

(
ψ(t)

)
< 1 for large t,

1 < ζ−
(
ψ(t)

)
<

ψ
(
(1 − (ψ(t))1−�)t

)
ψ(t) for large t.

The change of variable t = φ(δ) and the monotonicity of ψ conclude⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 <

φ
(
ζ+(δ)δ

)
φ(δ) < 1 + δ1−� for small δ > 0,

1 − δ1−� <
φ
(
ζ−(δ)δ

)
φ(δ) < 1 for small δ > 0.

�
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Remark A.3. Lemmas A.4 and 4.3 enable us refine the properties given in (A.1). For instance, for the 
ordinary case (A.8) leads to

t

f(t) = o
(
t−β

)
for all β ∈ (0, α− 1), and for the borderline case (A.9) implies

t

f(t) = o
((

ψ(t)
)2�)

for all 
 ∈ (0, 1).

Lemma A.5. Suppose the assumptions of Lemma 4.3. Then the following relation holds√
F (φ(ζ±(δ)δ))
f(φ(ζ±(δ)δ)) =

√
F (φ(δ))
f(φ(δ)) + o(1) (A.10)

where o(1) goes to 0 as δ → 0.

Proof. Straightforward computation leads to√
2F (φ(ζ±(δ)δ))
f(φ(ζ±(δ)δ)) =

√
2F (φ(δ))
f(φ(δ)) ± δς(φ(δ)) 1

φ(δ̄±)f(φ(δ̄±))

(
φ(δ̄±)f(φ(δ̄±))

2F (φ(δ̄±))
− φ(δ̄±)f ′(φ(δ̄±))

f(φ(δ̄±))

)
for small δ > 0, δ̄+ ∈ (ζ+(δ)δ, δ) and δ̄− ∈ (δ, ζ−(δ)δ), where the function

ς(t) = Υ
(
ψ(t)

)
= t

2(ψ(t))�
√

2F (t)
for large t (A.11)

(see (4.12)) verifies

lim
t→∞

ς(t) = 0 (A.12)

(see (A.9) and Lemma A.3). Hence, assumption (1.9) concludes (A.10). �
Lemma A.6. Suppose the assumptions and notations of Lemma 4.3. Then the following relations hold⎧⎪⎪⎨⎪⎪⎩

1 −
(
ζ ′+(δ)δ + ζ+(δ)

)2 − φ′(ζ+(δ)δ)
φ′′(ζ+(δ)δ)

(
ζ ′′+(δ)δ + 2ζ ′+(δ)

)
> 0 for small δ > 0,

1 −
(
ζ ′−(δ)δ + ζ−(δ)

)2 − φ′(ζ−(δ)δ)
φ′′(ζ−(δ)δ)

(
ζ ′′−(δ)δ + 2ζ ′−(δ)

)
< 0 for small δ > 0.

Proof. By simplicity, we focus only on ζ+(δ) (the reasoning for ζ−(δ) is analogous). We sketch some straight-
forward calculations. We begin with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ+(δ) = 1 + φ(δ)
2δ�φ′(δ) , 
 ∈ (0, 1),

ζ ′+(δ) = 1
2δ�+1

[
δ −

(

 + δφ′′(δ)

φ′(δ)

)
φ(δ)
φ′(δ)

]
,

ζ ′′+(δ) = −1
2

(
2

δ�+1 + 1

δ�
φ′′(δ)
φ′(δ) − 
(
 + 1)

δ�+2
φ(δ)
φ′(δ) − 2


δ�+1
φ(δ)φ′′(δ)(

′
)2 + 1

δ�
φ(δ)φ′′′(δ)(

′
)2 − 2

δ�
φ(δ)

(
φ′′(δ)

)2(
′

)3
)

φ (δ) φ (δ) φ (δ)
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for which equalities

1 −
(
ζ ′+(δ)δ + ζ+(δ)

)2 = − 1
4δ2(�−1) − 1

4δ2�

(
φ(δ)
φ′(δ)

)2
[
(1 − 
)2 +

(
δ
φ′′(δ)
φ′(δ)

)2

− 2(1 − 
)δ φ
′′(δ)
φ′(δ)

]

− 1
δ�−1 − 1

δ�
φ(δ)
φ′(δ)

(
(1 − 
) − δ

φ′′(δ)
φ′(δ)

)(
1 − 1

2δ�−1

)
and

ζ ′′+(δ)δ + 2ζ ′+(δ) = 1 − 


δ�
+ (
− 1)


2
1

δ�+1
φ(δ)
φ′(δ) + 
− 1

δ�
φ(δ)φ′′(δ)(
φ′(δ)

)2
− 1

2δ�−1

(
φ′′(δ)
φ′(δ) + φ(δ)φ′′′(δ)(

φ′(δ)
)2 − 2

φ(δ)
(
φ′′(δ)

)2(
φ′(δ)

)3
)

hold. So that, by using

φ′(δ) = −
√

2F
(
φ(δ)

)
, φ′′(δ) = f

(
φ(δ)

)
and φ′′′(δ) = −f ′(φ(δ)

)√
2F

(
φ(δ)

)
the function

F(δ) = 1 − (ζ ′+(δ)δ + ζ+(δ))2 +
√

2F (φ(δ))
f(φ(δ))

(
ζ ′′+(δ)δ + 2ζ ′+(δ)

)
verifies

F(δ) = −δ1−�

2

(
1 + δ1−�

2

)
+ δ2(1−�)

2
φ(δ)f

(
φ(δ)

)
2F

(
φ(δ)

)
⎛⎝1 − (1 − 
)δ φ(δ)√

2F
(
φ(δ)

)
⎞⎠

−
(
(1 − 
)ς

(
φ(δ)

))2 − δ2(1−�)

4

(
φ(δ)f

(
φ(δ)

)
2F

(
φ(δ)

) )2

+ δ1−�

2
φ(δ)f ′(φ(δ)

)
f
(
φ(δ)

)
+ 1 − 


δ�

√
2F

(
φ(δ)

)
φ(δ) + (1 − 
)


2δ�+1
φ(δ)

f
(
φ(δ)

) + (1 − 
)δ1−2�

2
φ(δ)√

2F
(
φ(δ)

)
(see (A.11)). Relative to the right hand side of the last equality we note:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

the first summand goes to 0 as δ → 0,
from (A.1) and (A.4) the second summand goes to 0 as δ → 0,
from (A.12) the third summand goes to 0 as δ → 0,
from (A.4) the fourth and fifth summands go to 0 as δ → 0,
from (A.1) the sixth summand goes to ∞ as δ → 0,
the seventh and eighth summands are positive.

Therefore, from Lemma A.5 we conclude

1 −
(
ζ ′+(δ)δ + ζ+(δ)

)2 − φ′(ζ+(δ)δ)
φ′′(ζ+(δ)δ)

(
ζ ′′+(δ)δ + 2ζ ′+(δ)

)
> 0

for small δ > 0. �
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