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A UNIFIED APPROACH FOR THE HANKEL DETERMINANTS

OF CLASSICAL COMBINATORIAL NUMBERS

MOHAMED ELOUAFI

Abstract. We give a general formula for the determinants of a class of Han-

kel matrices which arise in combinatorics theory. We revisit and extend exis-
tant results on Hankel determinants involving the sum of consecutive Catalan,
Motzkin and Schroder numbers and we prove a conjecture in [20] about the

recurrence relations satisfied by the Hankel transform of linear combinations
of Catalans numbers.

1. Introduction

Let a = {an}n∈N
denote a sequence of numbers. The n× n matrix

Hn (a) = (ai+j)0≤i,j≤n−1 ,

is called Hankel matrix. If hn = det (Hn (a)), then the sequence {hn}n≥0 is
referenced as the Hankel transform of the sequence a and was widely investigated
in numerous papers. Hankel determinants are particularly interesting when applied
to classical combinatorial sequences arising from the lattice path enumerations and
has attracted an increasing amount of attention recently [2, 3, 5, 7, 15, 18]. One of
the most popular themes in this context is to consider the determinant of the Hankel
matrix generated by the sequence that are linear combinations of the sequences
{an} where an = Cn, Mn and Rn are Catalan, Motzkin or Schroder numbers
respectively. For instance, Hankel determinant evaluations such as

det
(
(Ci+j)0≤i,j≤n−1

)
= 1,

det
(
(Mi+j)0≤i,j≤n−1

)
= 1,

det
(
(Ri+j)0≤i,j≤n−1

)
= 2(

n
2),

or these involving consecutive terms have been addressed numerous times in
the literature. Among the method employed to prove such formulae we cite the
combinatorial methods based on the Lindström–Gessel–Viennot lemma on non-
intersecting lattice paths and orthogonal polynomials. The reader is referred to
Krattenthaler papers [12, 13].

In this paper, our main focus is an overall generalization of these results. We
evaluate det (Hn (b)) for b = {bn} of the form

bn =

r∑
k=0

λkan+k,
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where λ0, λ1, . . . , λr−1, λr, r ≥ 1, are complex numbers such that λr = 1. We

shall assume that det
(
(ai+j)0≤i,j≤n−1

)
�= 0 for all n ≥ 0 and we denote by L

the linear functional on the vector space of all polynomials defined by

L (xn) = an for n = 0, 1, . . .

To {an} we associate the monic orthogonal polynomial sequence {pn (x)} n∈N

[30] such that pn is monic of degree n and

L (pnpm) = 0 for n �= m.

We remark that bn =
r∑

k=0

λkan+k = L (xnq) , where

q (x) = xr + λr−1x
r−1 + . . .+ λ0.

The r−kernel K(r)
n,P of P = {pn}n∈N

is defined by

K(r)
n,P (x1, x2, . . . , xr) =

det
(
(pn+i−1 (xj))1≤i,j≤r

)
∏

1≤i<j≤r

(xj − xi)

for r ≥ 2 and K(1)
n,P (x) = pn (x) . As it will be shown latter, K(r)

n,P (x1, x2, . . . , xr)
is a polynomial of the variables x1, x2, . . . and xr.

The following Theorem constitutes our main result:

Theorem 1. We have

(1.1) det (Hn (b)) = (−1)
nr

det (Hn (a))K(r)
n,P (α1, α2, . . . , αr) .

where α1, α2, . . . , αr are the zeros of q.

In most examples considered in the existing literature, bn has a specific pattern.
Namely

bn = an+r − can+r−1, with c ∈ C.

Theorem 2. We have for c �= 0 :

det
(
(ai+j+r − cai+j+r−1)0≤i,j≤n−1

)
= (−1)

nr
det (Hn (a))(1.2)

× det

⎛
⎜⎜⎜⎜⎜⎜⎝

pn(0)
0!

p′
n(0)
1! . . .

p(r−2)
n (0)
(r−2)!

pn(c)
cr−1

pn+1(0)
0!

p′
n+1(0)

1! . . .
p
(r−2)
n+1 (0)

(r−2)!
pn+1(c)
cr−1

...
... · · · ...

...
pn+r−1(0)

0!

p′
n+r−1(0)

1! . . .
p
(r−2)
n+r−1(0)

(r−2)!
pn+r−1(c)

cr−1

⎞
⎟⎟⎟⎟⎟⎟⎠



A UNIFIED APPROACH FOR THE HANKEL DETERMINANTS OF CLASSICAL COMBINATORIAL NUMBERS3

and

det
(
(ai+j+r)0≤i,j≤n−1

)
= (−1)

nr
det (Hn (a))(1.3)

× det

⎛
⎜⎜⎜⎜⎜⎜⎝

pn(0)
0!

p′
n(0)
1! . . .

p(r−1)
n (0)
(r−1)!

pn+1(0)
0!

p′
n+1(0)

1! . . .
p
(r−1)
n+1 (0)

(r−1)!

...
... · · · ...

pn+r−1(0)
0!

p′
n+r−1(0)

1! . . .
p
(r−1)
n+r−1(0)

(r−1)!

⎞
⎟⎟⎟⎟⎟⎟⎠

The proof of these theorems will be the object of the next section. In the
second section we give various of its applications on Catalan, Motzkin and Schroder
sequences. This is done by identifying the corresponding orthogonal polynomials
through their generating functions. In the last section, we will prove a conjecture
in [20].

2. Hankel determinant as a generalized kernel

2.1. Proof of the Theorem 1. The proof of the Theorem 1. follows the method in
[28]. We will divide it into many lemmas but first, we will assume that α1, α2, . . . , αr

are pairwise distinct.

Lemma 1. K(r)
n,P (α1, α2, . . . , αr) is polynomial of degree n of the variable λ0 = q (0)

with leading coefficient (−1)
nr

.

Proof. Let the alternant determinant

h (x1, x2, . . . , xr) =

∣∣∣∣∣∣∣∣∣∣

pn(x1) pn(x2) · · · pn(xr)

pn+1(x1)
. . .

...
...

. . .
...

pn+r−1(x1) pn+r−1(x2) · · · pn+r−1(xr)

∣∣∣∣∣∣∣∣∣∣
.

We have by the Leibniz formula

h (x1, x2, . . . , xr) =
∑
σ∈Sn

sgn (σ)
r∏

k=1

pn+k−1(xσ(k)),

which show that h (x1, x2, . . . , xr) is a multivariate polynomial of degree at most
r∑

k=1

n + k − 1 = nr +
r (r − 1)

2
. For any i < j, xj − xi divide h and hence

K(r)
n,P (x1, x2, . . . , xr) is a symmetric polynomial in variables x1, x2, . . . , xr, of de-

gree at most nr, since the polynomial
∏

1≤i<j≤r

(xj − xi) is of degree
r (r − 1)

2
. By

consequent, K(r)
n,P (x1, x2, . . . , xr) can be expressed in terms of elementary symmet-

ric polynomials

σ1 =
r∑

i=1

xi, . . . , σr =
r∏

i=1

xi.
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Let us write

K(r)
n,P (x1, x2, . . . , xr) = Aσn

r + F,

where F is of degree< n of σr andA ∈ C. The coefficient of the term xn
1x

n+1
2 . . . xn+r−1

r =
σn
r x

1
2 . . . x

r−1
r in h (x1, x2, . . . , xr) is 1, while its coefficient in∏

1≤i<j≤r

(xj − xi)×K(r)
n,P (x1, x2, . . . , xr) ,

is A, this because one of the terms in polynomial
∏

1≤i<j≤r

(xj − xi) is x1
2 . . . x

r−1
r .

This give A = 1. On the other hand, we have by Vieta’s formulas:

σr (α1, α2, . . . , αr) = (−1)
r
λ0.

The proof is completed. �

Lemma 2. det
(
(bi+j)0≤i,j≤n−1

)
is polynomial of degree n of the variable λ0 =

q (0) with leading coefficient det (Hn (a)) .

Proof. We can write(
(bi+j)0≤i,j≤n−1

)
0≤i,j≤n−1

= λ0 (ai+j)0≤i,j≤n−1 +B,

where the matrix B is independant of λ0. The result follows. �

Lemma 3. We have

det
(
(bi+j)0≤i,j≤n−1

)
= det

(
(L (pipjq))0≤i,j≤n−1

)
.

Proof. Let us write

pi (x) =
i∑

k=0

ci,kx
k,

with ci,i = 1. The j, k entry of the matrix (L (pipjq))0≤i,j≤n−1 is∑
m≤j

∑
l≤k

cj,mck,lL
(
xm+lq

)
.

Form this it follows that (L (pipjq))0≤i,j≤n−1 is a product of three matrices THn (b)T
t

where the matrix T is lower triangular with entries cj,m,m ≤ j. It is easy to see
from this that the lemma follows. �

Lemma 4. If K(r)
n,P (α1, α2, . . . , αr) = 0 then det

(
(bi+j)0≤i,j≤n−1

)
= 0. The con-

verse is true.

Proof. Assume that K(r)
n,P (α1, α2, . . . , αr) = 0. Then, the row vectors of the matrix⎛

⎜⎜⎜⎜⎝
pn(α1) pn(α2) · · · pn(αr)

pn+1(α1) pn+1(α2)
. . . pn+1(αr)

...
. . .

...
pn+r−1(α1) pn+r−1(α2) · · · pn+r−1(αr)

⎞
⎟⎟⎟⎟⎠ ,
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are linearly dependants, i.e, there exist scalar c1, c2, . . . , cr, not all zero such that

r−1∑
i=0

cipn+i (αk) = 0, for k = 1, 2, . . . , r.

It follows that α1, α2, . . . , αr are zeros of the polynomial g (x) =
r−1∑
i=0

cipn+i (x) and

consequently q divide g :

g = qh.

Obviously h is of degree at most n− 1, we can write

h =
n−1∑
j=0

μjpj , with (μ1, . . . , μn) ∈ C
n − {0} .

and then g =
n−1∑
j=0

μjqpj .We have for k = 0, 1, 2, . . . , n− 1 :

L (gpk) =

r−1∑
i=0

ciL (pkpn+i) = 0,

so we obtain
n−1∑
j=0

μjL (pkpjq) = 0 for k = 0, 1, 2, . . . , n− 1,

which implies that the matrix (L (pkpjq))
n−1
j,k=0 is singular and so is for (bi+j)0≤i,j≤n−1.

�

It follows from the Lemmas that (−1)
nr K(r)

n,P (α1, α2, . . . , αr) and det (Hn (a))
−1×

det
(
(bi+j)0≤i,j≤n−1

)
are monic polynomials of the variable λ0 with degree n, with

the same distinct zeros. Consequently, if their zeros are all simple then

det (Hn (a))
−1 × det

(
(bi+j)0≤i,j≤n−1

)
= (−1)

nr K(r)
n,P (α1, α2, . . . , αr) .

Since this relation is an equality between multivariate polynomials then it still valid
for the general case. This completes the proof of the theorem.

Example 1. Assume that q (x) = x− c. Then

det
(
(ai+j+1 − cai+j)0≤i,j≤n−1

)
= (−1)

n
det (Hn (a))× pn (c) .

This formula can derived by rows operations from the formula:

pn (c) =
1

det (Hn (a))
×

∣∣∣∣∣∣∣∣∣∣∣

a0 a1 . . . an−1 1
a1 a2 . . . an c
a2 a3 . . . an+1 c2

...
...

...
...

an an+1 . . . a2n−1 cn

∣∣∣∣∣∣∣∣∣∣∣
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Example 2. Assume that q (x) = (x− c) (x− d) . Then

det
(
(ai+j+2 − (c+ d) ai+j+1 + cdai+j)0≤i,j≤n−1

)
= det (Hn (a))×K(2)

n,P (c, d)

where K(2)
n,P (c, d) is the classical kernel of the orthogonal polynomials P defined by:

K(2)
n,P (c, d) =

1

d− c

∣∣∣∣ pn (c) pn (d)
pn+1 (c) pn+1 (d)

∣∣∣∣
if c �= d and K(2)

n,P (c, c) = p′n+1 (c) pn (c)− pn+1 (c) p
′
n (c) .

2.2. Proof of the Theorem 2. By the proof of the Theorem 1.we have seen that

K(r)
n,P (α1, α2, . . . , αr) is well defined even if α1, α2, . . . , αr are not distinct. We will

explicit K(r)
n,P (α1, α2, . . . , αr) in this case.

Let assume first that α1, α2, . . . , αr are pairwise distinct and write

pn+i (x) = di (x) q (x) + ri (x)

where di (x) , ri (x) are polynomials with ri (x) =
r−1∑
j=0

βi,jx
j of degree < r. Then

pn+i (αk+1) =

r−1∑
j=0

βi,jα
j
k+1,

and hence

(pn+i (αk+1))0≤i,k≤r−1 =
(
βi,j

)
0≤i,j≤r−1

×
(
αj
k+1

)
0≤j,k≤r−1

.

Using the formula for the Vandermonde determinant, one can find that

(2.1) K(r)
n,P (α1, α2, . . . , αr) = det

((
βi,j

)
0≤i,j≤r−1

)
.

Since βi,j are polynomial functions of the variables λ0, λ1, . . . , λr−1, then the
formula (2.1) is valid in the general case. We assume more generally that

q (x) =

s∏
k=1

(x− αk)
mk ,

where m1,m2, . . . ,ms are non null integers with
s∑

k=1

mk = r and α1, α2, . . . , αs

are pairwise distinct. For k = 1, . . . , s, 0 ≤ i ≤ r− 1 and 0 ≤ l ≤ mk − 1, we have

p
(l)
n+i (αk) =

r−1∑
j=l

βi,j

j!

(j − l)!
αj−l
k .
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It follows that if we denote by A the r × r matrix⎛
⎜⎜⎜⎜⎝

pn (α1) p′n (α1) . . . p
(m1−1)
n (α1)

pn+1 (α1) p′n+1 (α1) . . . p
(m1−1)
n+1 (α1)

...
...

...
...

pn+r−1 (α1) p′n+r−1 (α1) . . . p
(m1−1)
n+r−1 (α1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pn (α2) p′n (α2) . . . p
(m2−1)
n (α2) pn (α3) · · ·

pn+1 (α2) p′n+1 (α2) . . . p
(m2−1)
n+1 (α2) pn+1 (α3) · · ·

...
...

...
...

... · · ·
pn+r−1 (α2) p′n+r−1 (α2) . . . p

(m2−1)
n+r−1 (α2) pn+r−1 (α3) · · ·

⎞
⎟⎟⎟⎟⎠

and by V the confluent Vandermonde matrix⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0

α1 1
. . .

...
α2
1 2α1 2
...

. . .
. . .

0

αm1−1
1 · · · (m1−1)!

1!
m1!
2! α1

...
...

αr−1
1 (r − 1)αr−2

1 · · · · · · (r−1)!
(r−m1)!

αr−m1
1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · 0 1 · · ·
α2 1

. . .
... α3 · · ·

α2
2 2α2 2 0 α2

3 · · ·
...

. . .
. . . 0

...

αm2−1
2 · · · (m2−1)!

1! · · ·
...

... αm3−1
3 · · ·
...

αr−1
2 (r − 1)αr−2

2 · · · · · · (r−1)!
(r−m2)!

αr−m2
2 αr−1

3 · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

then A =
(
βi,j

)
0≤i,j≤r−1

× V and consequently

K(r)
n,P (α1, α2, . . . , αr) =

det (A)

det (V )
.

If q (x) = xr−1 (x− c) , c �= 0, then

A =

⎛
⎜⎜⎜⎜⎝

pn (0) p′n (0) . . . p
(r−2)
n (0) pn (c)

pn+1 (0) p′n+1 (0) . . . p
(r−2)
n+1 (0) pn+1 (c)

...
... · · · ...

...

pn+r−1 (0) p′n+r−1 (0) . . . p
(r−2)
n+r−1 (0) pn+r−1 (c)

⎞
⎟⎟⎟⎟⎠ ,
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and

V =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 1
0 1! c
...

. . .
. . .

...
...

. . . (r − 2)! cr−2

0 · · · · · · 0 cr−1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The formula (1.2) follows immediately. Similarly, if q (x) = xr then

A =

⎛
⎜⎜⎜⎜⎝

pn (0) p′n (0) . . . p
(r−2)
n (0) p

(r−1)
n (0)

pn+1 (0) p′n+1 (0) . . . p
(r−2)
n+1 (0) p

(r−1)
n+1 (0)

...
... · · · ...

...

pn+r−1 (0) p′n+r−1 (0) . . . p
(r−2)
n+r−1 (0) p

(r−1)
n+r−1 (0)

⎞
⎟⎟⎟⎟⎠ .

and

V =

⎛
⎜⎜⎜⎜⎝

1 0 · · · 0

0 1!
. . .

...
...

. . .
. . . 0

0 · · · 0 (r − 1)!

⎞
⎟⎟⎟⎟⎠ ,

and so we obtain the formula (1.3).

Remark 1. Let for u ∈ C, Lu be the linear functional on the vector space of all
polynomials defined by

Lu (x
n) = L ((x− u)

n
) for n = 0, 1, . . .

Hence, the moments sequence of Lu is qu = {qn (u)}n such that

qn (u) =

n∑
k=0

ak

(
n

k

)
(−u)

n−k
.

One can see that the monic orthogonal polynomials {pn,u (x)} associated with the
moments sequence {qn (u)} are given by

pn,u (x) = pn (x+ u) ,

this because

Lu (pn (x+ u) pm (x+ u)) = L (pn (x) pm (x)) = 0 for n �= m.

Then it follows form (1.3):

det
(
(qr+i+j (u))0≤i,j≤n−1

)
= (−1)

nr
det (Hn (qu))×det

⎛
⎝(

p
(i−1)
n+j−1 (u)

(i− 1)!

)
1≤i,j≤n

⎞
⎠ .

On the other hand, we have for u �= 0,

qn (u) = una∗n (u) ,

where a∗u = { a∗n (u)}n is the inverse binomial transform of the sequence au =
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{ anu
−n}n [26, 27]. It is known [26, 27] that

det (Hn (a
∗
u )) = det (Hn (au)) ,

and hence

det (Hn (qu)) = det
((

ui+ja∗i+j (u)
)
0≤i,j≤n−1

)
= un(n−1) det (Hn (a

∗
u))

= det (Hn (a)) .

Since we have

pn (x) =
1

det (Hn (a))
×

∣∣∣∣∣∣∣∣∣∣∣

a0 a1 . . . an−1 1
a1 a2 . . . an x
a2 a3 . . . an+1 x2

...
...

...
...

an an+1 . . . a2n−1 xn

∣∣∣∣∣∣∣∣∣∣∣
,

then we obtain the following formula due to Bernard Leclerc [23]:

det
(
(qr+i+j (u))0≤i,j≤n−1

)
= (−1)

nr
det (Hn (a))× det

⎛
⎝(

p
(i−1)
n+j−1 (u)

(i− 1)!

)
1≤i,j≤n

⎞
⎠ .

A generalization of this formula was given by Antonio Duran [25]. Reciprocally,
the formula (1.3) follows from the above by choosing u = 0.

3. Hankel determinants with classical sequences

It is a common knowledge that the monic orthogonal polynomials associated
with the moments sequence {an} can be obtained in the following way:

Let

f(x) =

+∞∑
n=0

anx
n =

a0

1− α0x− β1x
2

1− α1x− β2x
2

1− α2x− β3x
2

1− α3x− · · ·

,

be the generating function of the sequence {an} . Then {pn (x)} satisfies the
three-term recurrence:

pn+1 (x) = (x− αn)pn(x)− βnpn−1(x), for n ≥ 1,

with p0 = 1 and p1 (x) = x − α0 [21]. All sequences considered here have
generating functions satisfying a certain type of quadratic equations of the form

f (x) = a+ bxf (x) + cx2f (x)
2
,

or
f (x) = a+ bxf (x) + cxf (x)

2
,

for some constants a, b, c, a �= 0.
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Lemma 5. (1) Assume that f (x) = a+bxf (x)+cx2f (x)
2
, for some constants

a, b, c, a �= 0. Then

(3.1) f (x) =
a

1− bx− acx2

1− bx− acx2

1− bx− · · ·

(2) Assume that f (x) = a+bxf (x)+cxf (x)
2
, for some constants a, b, c, a �= 0.

Then

(3.2) f (x) =
a

1− (b+ ac)x− a′cx2

1− b′x− a′cx2

1− b′x− a′cx2

1− b′x− · · ·

where a′ = a (ac+ b) and b′ = 2ac+ b .

Proof. 1. We have

f (x) =
a

1− bx− cx2f (x)

=
a

1− bx− acx2

1− bx− cx2f (x)

=
a

1− bx− acx2

1− bx− acx2

1− bx− · · ·

.

2. We put g (x) =
f (x)− a

x
, thus g is the generating function of the sequence

{an+1} . We have

g (x) = bf(x) + cf(x)2

= b (xg (x) + a) + c (xg (x) + a)
2

= a′ + b′xg(x) + cx2g(x)2,

where a′ = a (ac+ b) and b′ = 2ac+ b . According to (3.1 )we get

g (x) =
a′

1− b′x− a′cx2

1− b′x− a′cx2

1− b′x− · · ·
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and then

f (x) =
a

1− bx− cxf (x)

=
a

1− (b+ ac)x− cx2g (x)

=
a

1− (b+ ac)x− a′cx2

1− b′x− a′cx2

1− b′x− a′cx2

1− b′x− · · ·
�

3.1. Hankel determinants of Catalan numbers. The Catalan number Cn =
1

n+1

(
2n
n

)
counts the number of Dyck paths of length n, which are the lattice paths

in the plane Z × Z from (0, 0) to (2n, 0) using steps U = (1, 1), D = (1,−1) that

never pass below the x-axis. It is a folklore that det
(
(Ci+j)0≤i,j≤n−1

)
= 1 [16] ,

on the other hand , f (x) =
+∞∑
n=0

Cnx
n satisfies

f (x) = 1 + xf (x)
2
.

Hence the monic orthogonal polynomials {pn (x)} satisfies the three-term recur-
rence:

pn+1 (x) = (x− 2)pn(x)− pn−1(x), for n ≥ 1,

with p0 = 1 and p1 (x) = x − 1 . We see that pn (x) = Wn

(
x
2 − 1

)
, where Wn is

the Chebychev polynomials of the fourth kinds [29].
It follows immediately from the Theorem 2. that

det
(
(Ci+j+1 + Ci+j)0≤i,j≤n−1

)
= (−1)

n
pn (−1) = (−1)

n
Wn

(
−3

2

)
.

and

det
(
(Ci+j+2 + Ci+j+1)0≤i,j≤n−1

)
=

∣∣∣∣ pn (−1) pn (0)
pn+1 (−1) pn+1 (0)

∣∣∣∣
=

∣∣∣∣ Wn

(− 3
2

)
(−1)

n

Wn+1

(− 3
2

)
(−1)

n+1

∣∣∣∣ .
One can check by recurrence that (−1)nWn

(− 3
2

)
= F2n+1, where {Fn} are the

Fibonnacci numbers. It follows that det
(
(Ci+j+1 + Ci+j)0≤i,j≤n−1

)
= F2n+1 and

det
(
(Ci+j+2 + Ci+j+1)0≤i,j≤n−1

)
= F2n+3 − F2n+1 = F2n+2.

This results is due to Cvetkovic, Rajkovic and Ivkovic [8]. On the other hand, it
can be shown [22] that

pn (x) =

n∑
k=0

(−1)
n+k

(
n+ k

n− k

)
xk
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and then we obtain form the formula (1.3)

det
(
(Ci+j+r)0≤i,j≤n−1

)
= (−1)

nr
det

(
(−1)

n+i+j

(
n+ i+ j

n+ i− j

))
0≤i,j≤r−1

(3.3)

= det

((
n+ i+ j

n+ i− j

))
0≤i,j≤r−1

.

Note that De Sainte-Catherine and Viennot [6] proved that

det
(
(Ci+j+r)0≤i,j≤n−1

)
=

∏
1≤i≤j≤r−1

i+ j + 2n

i+ j

so we obtain the following formula:

det

((
n+ i+ j

n+ i− j

))
0≤i,j≤r−1

=
∏

1≤i≤j≤r−1

i+ j + 2n

i+ j
.

By applying the Theorem 2 using the value of pn (1) = Wn

(− 1
2

)
where

Wn

(
−1

2

)
= Wn

(
cos

(
2π

3

))

=
sin (n+ 1/2) 2π

3

sin
(
2π
3

)
=

2√
3
sin

(2n+ 1)π

3
,

we obtain the following theorem:

Theorem 3. We have.

(1)

det
(
(Ci+j+r − Ci+j+r−1)0≤i,j≤n−1

)
=

(−1)
n+r−1

2√
3

(3.4)

× det

⎛
⎜⎜⎜⎜⎜⎜⎝

(
n
n

) (
n+1
n−1

) · · · (
n+r−2
n−r+2

)
sin (2n+1)π

3(
n+1
n+1

) (
n+2
n

) · · · (
n+r−1
n−r+3

) − sin (2n+3)π
3(

n+2
n+2

) (
n+3
n+1

) · · · (
n+r

n−r+4

)
sin (2n+1)π

3
...

...
...

...(
n+r−1
n+r−1

) (
n+r

n+r−2

) · · · (
n+2r−3

n+3

)
(−1)

r−1
sin (2n+2r−1)π

3

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(2)

det
(
(Ci+j+r + Ci+j+r−1)0≤i,j≤n−1

)
=(3.5)

det

⎛
⎜⎜⎜⎜⎜⎜⎝

(
n
n

) (
n+1
n−1

) · · · (
n+r−2
n−r+2

)
F2n+1(

n+1
n+1

) (
n+2
n

) · · · (
n+r−1
n−r+3

)
F2n+3(

n+2
n+2

) (
n+3
n+1

) · · · (
n+r

n−r+4

)
F2n+5

...
...

...
...(

n+r−1
n+r−1

) (
n+r

n+r−2

) · · · (
n+2r−3

n+3

)
F2n+2r−1

⎞
⎟⎟⎟⎟⎟⎟⎠

where Fn are the Fibonnacci numbers.



A UNIFIED APPROACH FOR THE HANKEL DETERMINANTS OF CLASSICAL COMBINATORIAL NUMBERS13

Remark 2. Krattenthaler provided a formula for det

((
Cβi+j + Cβi+1+j

)
0≤i,j≤n−1

)
, where β0, β1, . . . , βn are non-negative integers [13].

Example 3. We have the following formulae:

det
(
(Ci+j+3 − Ci+j+2)0≤i,j≤n−1

)
=

{
(−1)

k
if n = 3k

(−1)
k
3 (k + 1) if n = 3k + 1 or n = 3k + 2

and

det
(
(Ci+j+4 − Ci+j+3)0≤i,j≤n−1

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−1)
k+1 (k + 1)(3k + 2)(6k − 1)

2
if n = 3k

(−1)
k
9 (k + 1)

2
if n = 3k + 1

(−1)
k (k + 1)(3k + 4)(6k + 13)

2
if n = 3k + 2

3.2. Hankel determinants of Motzkin numbers. The Motzkin numbers Mn

count the number of Motzkin paths of length n, which are the lattice paths in the
plane Z × Z from (0, 0) to ( n, 0) using steps U = (1, 1), D = (1,−1), L = (1, 0)
that never pass below the x-axis. The t-Motzkin numbers {M t

n} is a general-
ization of these numbers, thus Mn = M1

n [5]. The evaluation of Hankel de-
terminants with Motzkin numbers are performed in [5], for instance we have

det
(
(Mi+j)0≤i,j≤n−1

)
= 1 and Cameron and Yip [5] had evaluated by combinato-

rial methods det
((

M t
i+j+r +M t

i+j+r−1

)
0≤i,j≤n−1

)
and det

((
M t

i+j+r

)
0≤i,j≤n−1

)
for

r = 1, 2.If f (x) =
+∞∑
n=0

M t
nx

n then

f (x) = 1 + txf (x) + x2f (x)
2
,

and by consequent the corresponding monic orthogonals polynomials satisfy
the three-term recurrence:

pn+1 (x) = (x− t)pn(x)− pn−1(x), for n ≥ 1,

with pn0 (x) = 1 and p1 (x) = x− t . We obtain

pn (x) = Un

(
x− t

2

)
where Un is the Chebyshev polynomial of the second kind [29]. After this we get
by the Theorem 2:

det
((

M t
i+j+1

)
0≤i,j≤n−1

)
= (−1)

n
Un

(−t

2

)
= Un

(
t

2

)

det
((

M t
i+j+2

)
0≤i,j≤n−1

)
=

∣∣∣∣ pn (0) p′n (0)
pn+1 (0) p′n+1 (0)

∣∣∣∣
=

1

2

∣∣∣∣ Un

(−t
2

)
U ′
n

(−t
2

)
Un+1

(−t
2

)
U ′
n+1

(−t
2

) ∣∣∣∣
det

((
M t

i+j+1 +M t
i+j

)
0≤i,j≤n−1

)
= (−1)

n
Un

(−1− t

2

)
= Un

(
1 + t

2

)
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and

det
((

M t
i+j+2 +M t

i+j+1

)
0≤i,j≤n−1

)
= K(2)

n,P (−1, 0)

=

∣∣∣∣ Un

(−1−t
2

)
Un

(−t
2

)
Un+1

(−1−t
2

)
Un+1

(−t
2

) ∣∣∣∣ .
This is in agreement with [5]. Furthermore:

det
((

M t
i+j+3 +M t

i+j+2

)
0≤i,j≤n−1

)
=

∣∣∣∣∣∣
pn (0) p′n (0) pn (−1)

pn+1 (0) p′n+1 (0) pn (−1)
pn+2 (0) p′n+2 (0) pn (−1)

∣∣∣∣∣∣
=

1

2

∣∣∣∣∣∣
Un

(−t
2

)
U ′
n

(−t
2

)
Un

(−1−t
2

)
Un+1

(−t
2

)
U ′
n+1

(−t
2

)
Un+1

(−1−t
2

)
Un+2

(−t
2

)
U ′
n+2

(−t
2

)
Un+2

(−1−t
2

)
∣∣∣∣∣∣ .

Since we have

(3.6) U ′
k (x) =

xUk (x)− (k + 1)Tk+1 (x)

1− x2
,

where Tk+1 is the Chebyshev polynomial of the first kind [29], then we obtain
finally

det
((

M t
i+j+3 +M t

i+j+2

)
0≤i,j≤n−1

)
=

−2

4− t2

∣∣∣∣∣∣
Un

(−t
2

)
(n+ 1)Tn+1

(−t
2

)
Un

(−1−t
2

)
Un+1

(−t
2

)
(n+ 2)Tn+2

(−t
2

)
Un+1

(−1−t
2

)
Un+2

(−t
2

)
(n+ 3)Tn+3

(−t
2

)
Un+2

(−1−t
2

)
∣∣∣∣∣∣ .

Let us put t = 1. We will give a method to compute explicitly the first coefficients
of the polynomial pn. It is well known that the polynomial Un satisfies the second
order linear differential equation:

(3.7)
(
1− x2

)
U ′′
n (x)− 3xU ′

n (x) + n (n+ 2)Un (x) = 0.

If we note for k ∈ N, Pn,k (x) = U
(k)
n (x) then differentiating (3.7) up to order

k − 1, k ≥ 1, we obtain(
1− x2

)
Pn,k+1 (x)− 2 (k − 1)xPn,k (x) + 2

(
k − 1

2

)
Pn,k−1 (x)

−3xPn,k (x)− 3 (k − 1)Pn,k−1 (x) + n (n+ 2)Pn,k−1 (x) = 0,

which can be transformed into the three term recurrence
(3.8)(
1− x2

)
Pn,k+1 (x)− (2k + 1)xPn,k (x) + (n+ k + 1) (n− k + 1)Pn,k−1 (x) = 0.

We denote by an,k =
p
(k)
n (0)

k!
=

1

2k × k!
U

(k)
n

(−1
2

)
. Thus {an,k}k verifies the

three term recurrence

3an,k+1 +
2k + 1

k + 1
an,k +

(n+ k + 1) (n− k + 1)

k (k + 1)
an,k−1 = 0.

The initial values can be computed as follows:

an,0 = Un

(
−1

2

)
= Un

(
cos

(
2π

3

))
=

2√
3
sin

(
2 (n+ 1)π

3

)
where we have used the relation

(3.9) sin (θ)Un (cos (θ)) = sin ((n+ 1) θ)
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By using (3.6) we get

an,1 =
1

2
U ′
n

(
−1

2

)
= −1

3
an,0 − 2 (n+ 1)

3
cos

(
2 (n+ 1)π

3

)
.

Using the expressions for pn (1) and pn (−1) :

pn (1) = Un (0) = sin

(
(n+ 1)π

2

)
pn (−1) = Un (−1) = (−1)

n
(n+ 1) ,

we obtain the following theorem:

Theorem 4. Let for n ∈ N the sequence {an,k}k that verifies the three term
recurrence

3an,k+1 +
2k + 1

k + 1
an,k +

(n+ k + 1) (n− k + 1)

k (k + 1)
an,k−1 = 0.

with the initial conditions an,0 = 2√
3
sin

(
2(n+1)π

3

)
and

an,1 = −1

3
an,0 − 2 (n+ 1)

3
cos

(
2 (n+ 1)π

3

)
.

Then we have

(1)

det
(
(Mi+j+r +Mi+j+r−1)0≤i,j≤n−1

)

= (−1)
(n+1)(r+1)

det

⎛
⎜⎜⎜⎜⎜⎝

an,0 an,1 · · · an,r−2 (n+ 1)
an+1,0 an+1,1 · · · an+1,r−2 − (n+ 2)
an+2,0 an+2,1 · · · an+2,r−2 (n+ 3)

...
...

...
...

an+r−1,0 an+r−1,1 · · · an+r−1,r−2 (−1)
r−1

(n+ r)

⎞
⎟⎟⎟⎟⎟⎠

(2)

det
(
(Mi+j+r −Mi+j+r−1)0≤i,j≤n−1

)

= (−1)
nr

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

an,0 an,1 · · · an,r−2 sin
(

(n+1)π
2

)
an+1,0 an+1,1 · · · an+1,r−2 sin

(
(n+2)π

2

)
an+2,0 an+2,1 · · · an+2,r−2 sin

(
(n+3)π

2

)
...

...
...

...

an+r−1,0 an+r−1,1 · · · an+r−1,r−2 sin
(

(n+r)π
2

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3)

det
(
(Mi+j+r)0≤i,j≤n−1

)
= (−1)

nr
det

⎛
⎜⎜⎜⎜⎜⎝

an,0 an,1 · · · an,r−1

an+1,0 an+1,1 · · · an+1,r−1

an+2,0 an+2,1 · · · an+2,r−1

...
...

...
an+r−1,0 an+r−1,1 · · · an+r−1,r−1

⎞
⎟⎟⎟⎟⎟⎠ .
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Example 4. By using the Maple software, we obtained the following formulae
which some are new:

det
(
(Mi+j+2)0≤i,j≤n−1

)
=

{
2k + 1 if n = 3k
2k + 2 if n = 3k + 1 or n = 3k + 2

.

det
(
(Mi+j+3)0≤i,j≤n−1

)
=

⎧⎪⎨
⎪⎩

(−1)
k
(k + 1) (2k + 1) if n = 3k

(−)
k
4 (k + 1)

2
if n = 3k + 1

(−1)
k
(k + 1) (2k + 3) if n = 3k + 2

det
(
(Mi+j+4)0≤i,j≤n−1

)
=

⎧⎨
⎩

(k + 1)2(2k + 1)2 if n = 3k
(2k + 3)2(k + 1)2 if n = 3k + 1

(k + 2)(k + 1)(2k + 3)2 if n = 3k + 2

det
(
(Mi+j+2 +Mi+j+1)0≤i,j≤n−1

)
=

{
(−1)

k
if n = 3k

(−1)
k
3 (k + 1) if n = 3k + 1 or n = 3k + 2

det
(
(Mi+j+3 +Mi+j+2)0≤i,j≤n−1

)
=

⎧⎨
⎩

(k + 1)(6k + 1) if n = 3k
6(k + 1)2 if n = 3k + 1

(6k + 11)(k + 1) if n = 3k + 2

det
(
(Mi+j+4 +Mi+j+3)0≤i,j≤n−1

)
=

⎧⎪⎨
⎪⎩

(−1)
k+1

(6k − 1)(k + 1)2 if n = 3k

(−1)
k
(6k + 13)(k + 1)2 if n = 3k + 1

(−1)
k
(2k + 3)(k + 2)(k + 1) if n = 3k + 2

3.3. Hankel determinants of Schroder numbers. The (large) Schroder num-
bers Rn count the number of large Schroder paths of length n, which are the paths
in the plane Z × Z from (0, 0) to (2n, 0) using U = (1, 1), D = (1,−1), L = (2, 0)
that never pass below the x-axis. Many determinants evaluation with Schroder

numbers are known [4, 9, 24], for example we have det
(
(Ri+j)0≤i,j≤n−1

)
= 2(

n
2).

Let f(x) =
+∞∑
n=0

Rnx
n then

f(x) = 1 + xf(x) + xf(x)2.

The monic orthogonal polynomials associated to the sequences {Rn} satisfy
satisfies the three-term recurrence:

(3.10) pn (x) = (x− 3) pn−1 (x)− 2pn−2 (x) for n ≥ 2,

with p0 (x) = 1 and p1 (x) = x− 2. We get easily the following values:

pn (0) = (−2)
n

pn (1) = (−1)
n
2

n
2 cos

(nπ
4

)
pn (−1) =

(−1)
n

4

((
2 +

√
2
)n+1

+
(
2−

√
2
)n+1

)
,
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from which follows immediately the formulas:

det
(
(Ri+j+1)0≤i,j≤n−1

)
= (−1)

n
2(

n
2)pn (0) = 2(

n+1
2 ),

det
(
(Ri+j+1 −Ri+j)0≤i,j≤n−1

)
= (−1)

n
2(

n
2)pn (1)

= 2(
n
2)+

n
2 cos

(nπ
4

)
det

(
(Ri+j+1 +Ri+j)0≤i,j≤n−1

)
= (−1)

n
2(

n
2)pn (−1)

= 2(
n
2)−2

((
2 +

√
2
)n+1

+
(
2−

√
2
)n+1

)
.

The polynomial pn seems to have a complex form to be of any use. Fortunately,
this is not the case of the shifted sequence {Rn+1}n . Indeed, if g is the generating

function of the sequence {Rn+1}n , then g (x) =
f (x)− 1

x
and verifies

g (x) = 2 + 3xg(x) + x2g(x)2.

Therefore, the monic orthogonal polynomials {qn} associated with {Rn+1} verify

qn (x) = (x− 3) qn−1 (x)− 2qn−2 (x) for n ≥ 2,

with q0 (x) = 1 and q1 (x) = x− 3. This give

qn (x) =
√
2
n
Un

(
x− 3

2
√
2

)
.

The values q
(k)
n (0) can been computed as for the Motzkin case. Let us denotes by

an,k =
q
(k)
n (0)

k!
=

√
2
n−k

2k × k!
U (k)
n

( −3

2
√
2

)
.

Through the relation (3.8), U
(k)
n

(
−3
2
√
2

)
verifies the three term recurrence

−1

8
U (k+1)
n

( −3

2
√
2

)
+
3 (2k + 1)

2
√
2

U (k)
n

( −3

2
√
2

)
+(n+k+1) (n− k + 1)U (k−1)

n

( −3

2
√
2

)
= 0 ,

for k ≥ 1.Hence for k ≥ 1 :

−an,k+1 +
3 (2k + 1)

k + 1
an,k +

(n+ k + 1) (n− k + 1)

k (k + 1)
an,k−1 = 0.

Using the fact that for |x| > 1 :

Un (x) =

(
x+

√
x2 − 1

)n+1 − (
x−√

x2 − 1
)n+1

2
√
x2 − 1

and

Tn (x) =

(
x+

√
x2 − 1

)n
+

(
x−√

x2 − 1
)n

2
,
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one can obtain the initial values an,0 and an,1 as follows:

an,0 =
√
2
n
Un

( −3

2
√
2

)

=
√
2
n

(
−3
2
√
2
+

√(
−3
2
√
2

)2

− 1

)n+1

−
(

−3
2
√
2
−

√(
−3
2
√
2

)2

− 1

)n+1

2

√(
−3
2
√
2

)2

− 1

= (−1)
n (

2n+1 − 1
)
,

and

an,1 =

√
2
n−1

2
U ′
n

( −3

2
√
2

)

=

√
2
n−1

2

−3
2
√
2
Un

(
−3
2
√
2

)
− (n+ 1)Tn+1

(
−3
2
√
2

)
1− 9

8

= −4
√
2
n−1

( −3

2
√
2
Un

( −3

2
√
2

)
− (n+ 1)Tn+1

( −3

2
√
2

))
with

Tn+1

( −3

2
√
2

)
=

(
−3
2
√
2
+

√(
−3
2
√
2

)2

− 1

)n+1

+

(
−3
2
√
2
−

√(
−3
2
√
2

)2

− 1

)n+1

2

=
(−1)

n+1

2
√
2
n+1

(
2n+1 + 1

)
.

Finally we get

an,1 = −4
√
2
n−1 −3

2
√
2
Un

( −3

2
√
2

)
+ (n+ 1) 4

√
2
n−1 (−1)

n+1

2
√
2
n+1

(
1 + 2n+1

)
= 3an,0 + (−1)

n+1
(n+ 1)

(
1 + 2n+1

)
.

Since we have

qn (1) =
√
2
n
Un

(−1√
2

)

= (−1)
n
√
2
n
Un

(
cos

π

4

)
= (−1)

n
√
2
n+1

sin

(
(n+ 1)π

4

)
,

then we obtain:

Theorem 5. Let for n ∈ N the sequence {an,k}k that verifies the three term
recurrence

−an,k+1 +
3 (2k + 1)

k + 1
an,k +

(n+ k + 1) (n− k + 1)

k (k + 1)
an,k−1 = 0 for k ≥ 1,

with the initial conditions an,0 = (−1)
n (

2n+1 − 1
)

and

an,1 = 3an,0 + (−1)
n+1

(n+ 1)
(
2n+1 + 1

)
.
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Then we have

(1)

det
(
(Ri+j+r+1)0≤i,j≤n−1

)

= (−1)nr2(
n+1
2 ) det

⎛
⎜⎜⎜⎜⎜⎝

an,0 an,1 · · · an,r−1

an+1,0 an+1,1 · · · an+1,r−1

an+2,0 an+2,1 · · · an+2,r−1

...
...

...
an+r−1,0 an+r−1,1 · · · an+r−1,r−1

⎞
⎟⎟⎟⎟⎟⎠ .

(2)

det
(
(Ri+j+r+2 −Ri+j+r+1)0≤i,j≤n−1

)
= (−1)nr+n2(

n+1
2 ) ×

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

an,0 an,1 · · · an,r−2

√
2
n+1

sin
(

(n+1)π
4

)
an+1,0 an+1,1 · · · an+1,r−2 −√

2
n+2

sin
(

(n+2)π
4

)
an+2,0 an+2,1 · · · an+2,r−2

√
2
n+3

sin
(

(n+2)π
4

)
...

...
...

an+r−1,0 an+r−1,1 · · · an+r−1,r−2 (−1)
r−1 √

2
n+r

sin
(

(n+r)π
4

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Example 5. Here some examples computed with the Maple software:

det
(
(Ri+j+2)0≤i,j≤n−1

)
= 2(

n+1
2 ) (2n+1 − 1

)
det

(
(Ri+j+3)0≤i,j≤n−1

)
= 2(

n+1
2 ) (22n+3 − (4n+ 6)2n − 1

)

det
(
(Ri+j+3 −Ri+j+2)0≤i,j≤n−1

)
=

⎧⎪⎪⎨
⎪⎪⎩

(−1)
k
28k

2+4k if n = 4k

(−)
k
28k

2+8k+2 if n = 4k + 1

(−)
k
28k

2+12k+4 if n = 4k + 2
0 if n = 4k + 3

det
(
(Ri+j+4 −Ri+j+3)0≤i,j≤n−1

)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−1)
k
28k

2+4k if n = 4k

(−)
k
28k

2+12k+4 if n = 4k + 1

(−)
k
28k

2+12k+4
(
2k+1 − 1

) (
2k+1 + 1

) (
22k+2 + 1

)
if n = 4k + 2

(−)
k
28k

2+12k+8
(
2k+1 − 1

) (
2k+1 + 1

) (
22k+2 + 1

)
if n = 4k + 3

4. Hankel Transforms of Linear Combinations of Catalan and

Motzkin Numbers

Many authors has carried out the computation of Hankel determinant of more
than tow consecutives Catalan or Motzkin numbers [17, 20]. It is conjectured [20]
that for Catalan numbers, the Hankel transform {hn}n satisfies a homogeneous
linear recurrence relation of order 2r. We shall give a positive answer to this
conjecture and we give explicitly the coefficients of such relation.
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Theorem 6. Let for n ∈ N

bn =
r∑

k=0

λkCn+k

where Cm are Catalan numbers. Let us write for j = 1, . . . , r :

αj

2
− 1 =

1

2

(
ζj +

1

ζj

)

where ζj ,
1

ζj
are assumed pairwise distinct. If

B (z) =
∏

J⊂{1,...,r}
(1− (−1)rωJz) =

2r∑
k=0

γkz
k

where ωJ =
r∏

k=1

ζ
IJ (k)
k with IJ (k) = 1 if k ∈ J, −1 otherwise, then {hn}n ,

hn = det (Hn (b)) , satisfies the following homogeneous linear recurrence relation

2r∑
k=0

γkhn+2r−k = 0

Proof. For 1 ≤ i ≤ r we have

pn+i−1 (αj) = Wn+i−1

(αj

2
− 1

)
= Wn+i−1

(
1

2

(
ζj +

1

ζj

))

=
ζ
(n+i−1)+1/2
j − ζ

−(n+i−1)−1/2
j

ζ
1/2
j − ζ

−1/2
j

.

Using the formula (1.1) and following the method in [28] we obtain

hn = (−1)
nr

K
∑

J⊂{1,2,...,r}
(−1)

|J|
γJω

n+1/2
J

where

K =
∏

1≤i<j≤r

(αj − αi)
−1

r∏
k=1

(
ζ
1/2
k − ζ

−1/2
k

)−1

,

and for J ⊂ {1, 2, . . . , r}:

ωJ =

r∏
k=1

ζ
IJ (k)
k with IJ (k) =

{
1 if k ∈ J
−1 if k /∈ J

,
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and γJ =
∏

1≤j<k≤r

(
ζ
IJ (j)
k − ζ

IJ (k)
j

)
.By consequent we obtain :

f (z) =
+∞∑
n=0

hnz
n = K

∑
J

(−1)
|J|

γJω
1/2
J

(
+∞∑
n=0

((−1)rωJz)
n

)

= K
∑
J

(−1)
|J|

γJω
1/2
J

1− (−1)rωJz

=
A (z)

B (z)
,

which show that f (z) is a rational function. �

References

[1] X. G. Viennot, A combinatorial theory for general orthogonal polynomials with extensions

and applications”, Polynomes Orthogonaux et Applications, Proceedings, Bar - le - Duc,

Springer 1984, 139 { 157.

[2] M. Aigner. Catalan-like numbers and determinants. J. Combin. Theory Ser. A, 87(1):33–51,

1999.

[3] A. Benjamin, N. Cameron, J. Quinn, and C. Yerger. Catalan determinants – a combinatorial

approach. Congr. Numer., 200:27–34, 2010.

[4] R. A. Brualdi and S. Kirkland. Aztec diamonds and digraphs, and Hankel determinants of

Schroder numbers. J. Combin. Theory Ser. B, 94(2):334–351, 2005.

[5] N. T. Cameron and A. C. M. Yip. Hankel determinants of sums of consecutive Motzkin

numbers. Linear Algebra Appl., 434(3):712–722, 2011.

[6] M. De Sainte-Catherine and G. Viennot. Enumeration of certain Young tableaux with

bounded height. In Combinatoire ´enum´erative (Montreal, Que., 1985/Quebec, Que., 1985),

volume 1234 of Lecture Notes in Math., pages 58–67. 1986.

[7] J. Cigler and C. Krattenthaler. Some determinants of path generating functions. Adv. in

Appl. Math., 46(1-4):144–174, 2011.

[8] A. Cvetkovi´c, P. Rajkovi´c, and M. Ivkovi´c. Catalan numbers, and Hankel transform, and

Fibonacci numbers. J. Integer Seq., 5(1):Article 02.1.3, 8 pp. (electronic), 2002.

[9] S.-P. Eu and T.-S. Fu. A simple proof of the Aztec diamond theorem. Electron. J. Combin.,

12:Research Paper 18, 8 pp. (electronic), 2005.

[10] I. Gessel and G. Viennot. Binomial determinants, paths, and hook length formulae. Adv. in

Math., 58 (3):300–321, 1985.

[11] M. Ishikawa, H. Tagawa and J. Zeng. A q-analogue of Catalan Hankel determinants. RIMS

Kkyoroku Bessatsu B11, 19-41 (2009).

[12] C. Krattenthaler. Advanced determinant calculus: a complement. Linear Algebra Appl.,

411:68–166, 2005.
[13] C. Krattenthaler. Determinants of (generalised) Catalan numbers. J. Statist. Plann. Inference,

140(8): 2260–2270, 2010.

[14] P. M. Rajkovi´c, M. D. Petkovi´c, and P. Barry. The Hankel transform of the sum of con-
secutive generalized Catalan numbers. Integral Transforms Spec. Funct., 18(3-4):285–296,

2007.
[15] R. A. Sulanke and G. Xin. Hankel determinants for some common lattice paths. Adv. in

Appl. Math., 40(2):149–167, 2008. Department of Applied
[16] M.E. Mays and J. Wojciechowski, A determinant property of Catalan numbers. Discrete

Math. 211 (2000), no. 1-3, 125–133.
[17] B. Bouras. Hankel Determinants of a Linear Combination of Three Successive Catalan Num-

bers, Mediterranean Journal of Mathematics, Volume 10, Issue 2, pp 693-705(2013)
[18] U. Tamm, Some aspects of Hankel matrices in coding theory and combinatorics, Electon. J.

Combin. 8 (2001
[19] Bojičić, R. Marko D. Petkovi, Paul Barry Hankel transform of a series reversion of a certain

rational function. Linear Algebra and its Applications, 438(11), 4237-4248.



22 MOHAMED ELOUAFI

[20] Michael Dougherty, Christopher French, Benjamin Saderholm, and Wenyang Qian. Hankel
Transforms of Linear Combinations of Catalan Numbers. Journal of Integer Sequences, Vol.
14 (2011),

[21] H. S. Wall, Analytic Theory of Continued Fractions, AMS Chelsea Publishing, 1967.
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