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We investigate potential spaces associated with Jacobi expansions. We prove 
structural and Sobolev-type embedding theorems for these spaces. We also establish 
their characterizations in terms of suitably defined fractional square functions. 
Finally, we present sample applications of the Jacobi potential spaces connected 
with a PDE problem.
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1. Introduction

This paper is a continuation of our study from [11], where Sobolev spaces and potential spaces in the 
context of expansions into Jacobi trigonometric ‘functions’ were investigated. The main achievement of [11]
is a proper definition of Jacobi Sobolev spaces in terms of suitably chosen higher-order distributional deriva-
tives, so that these spaces coincide with the Jacobi potential spaces with certain parameters (see Section 2
for details). The latter spaces are defined similarly as in the classical situation, via integral operators arising 
from negative powers of the Jacobi Laplacian (or its shift, in some cases).

In the present paper we focus on the Jacobi potential spaces. Nevertheless, in view of what was just said 
above, our results implicitly pertain also to the Jacobi Sobolev spaces. We prove structural and Sobolev-type 
embedding theorems for the potential spaces (Theorems 3.1 and 3.2). We also establish their characteriza-
tions in terms of suitably defined fractional square functions (Theorems 4.1 and 4.7). This part is motivated 
by the recent results of Betancor et al. [4], and the associated analysis uses the theory of vector-valued 
Calderón–Zygmund operators on spaces of homogeneous type. As a result of independent interest, we prove 
Lp-boundedness of the ‘vertical’ fractional g-functions associated with Jacobi trigonometric ‘function’ and 
polynomial expansions (Theorems 6.1 and 6.3). Finally, inspired by some of the results in [5–7], we present 
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sample applications of the Jacobi potential spaces connected with a Cauchy PDE problem based on the 
Jacobi Laplacian.

We believe that our results enrich the line of research concerning Sobolev and potential spaces related to 
classical discrete and continuous orthogonal expansions, see in particular [3,4,6,7,9,11,20]; see also [1,2] where 
some results on Jacobi potential spaces can be found, though in a different Jacobi setting and with a different 
approach from ours. We point out that intimately connected to potential spaces are potential operators, and 
in the above-mentioned contexts they were studied intensively and thoroughly in the recent past. We refer 
the interested readers to [13,17–19] and also to references given in these works. In particular, [13] delivers 
a solid ground for our developments.

The paper is organized as follows. In Section 2 we introduce the Jacobi setting and basic notions. In Sec-
tion 3 we prove the structural and embedding theorems announced above. Section 4 contains the fractional 
square function characterizations of the Jacobi potential spaces. Section 5 is devoted to sample applications 
of the potential spaces. Finally, in Section 6 we prove the Lp results for the fractional square functions 
needed in Section 4.

Notation. Throughout the paper we use a standard notation We write X � Y to indicate that X ≤ CY

with a positive constant C independent of significant quantities. We shall write X � Y when simultaneously 
X � Y and Y � X.

2. Preliminaries

Given parameters α, β > −1, the Jacobi trigonometric functions are defined as

φα,β
n (θ) := Ψα,β(θ)Pα,β

n (θ), θ ∈ (0, π), n ≥ 0,

where

Ψα,β(θ) :=
(

sin θ

2

)α+1/2(
cos θ2

)β+1/2

and

Pα,β
n (θ) := cα,βn Pα,β

n (cos θ)

with Pα,β
n denoting the classical Jacobi polynomials as defined in Szegö’s monograph [24] and cα,βn being 

normalizing constants. The system {φα,β
n : n ≥ 0} is an orthonormal basis in L2(0, π). This basis consists 

of eigenfunctions of the Jacobi Laplacian

Lα,β = − d2

dθ2 − 1 − 4α2

16 sin2 θ
2
− 1 − 4β2

16 cos2 θ
2

= D∗
α,βDα,β + A2

α,β ;

here Aα,β = (α + β + 1)/2, Dα,β = d
dθ − 2α+1

4 cot θ
2 + 2β+1

4 tan θ
2 is the first order ‘derivative’ naturally 

associated with Lα,β , and D∗
α,β = Dα,β −2 d

dθ is its formal adjoint in L2(0, π). The eigenvalue corresponding 
to φα,β

n is

λα,β
n :=

(
n + Aα,β

)2
.

It is well known that Lα,β, considered initially on C2
c (0, π), has a non-negative self-adjoint extension to 

L2(0, π) whose spectral resolution is discrete and given by the φα,β
n . We denote this extension by still the 

same symbol Lα,β. Notice that for some choices of α and β we get the same differential operator Lα,β, 
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nevertheless the resulting self-adjoint extensions are different. Some problems in harmonic analysis related 
to Lα,β were investigated recently in [11,13,15,23].

When α, β ≥ −1/2, the functions φα,β
n belong to all Lp(0, π), 1 < p < ∞. However, if α < −1/2 or 

β < −1/2, then φα,β
n are in Lp(0, π) if and only if p < −1/ min(α+1/2, β+1/2). This leads to the so-called 

pencil phenomenon manifesting in the restriction p ∈ E(α, β) for Lp mapping properties of various harmonic 
analysis operators associated with Lα,β . Here

E(α, β) :=
(
p′(α, β), p(α, β)

)
with

p(α, β) :=
{∞, α, β ≥ −1/2,
−1/min(α + 1/2, β + 1/2), otherwise

and p′ denoting the conjugate exponent of p, 1/p +1/p′ = 1. Recall that (see [23, Lemma 2.3]) the subspace

Sα,β := span{φα,β
n : n ≥ 0}

is dense in Lp(0, π) provided that 1 ≤ p < p(α, β).
We denote by {Hα,β

t }t≥0 the Poisson–Jacobi semigroup, that is the semigroup of operators generated in 
L2(0, π) by the square root of Lα,β. In view of the spectral theorem, for f ∈ L2(0, π) and t ≥ 0 we have

Hα,β
t f =

∞∑
n=0

exp
(
− t

√
λα,β
n

)
aα,βn (f)φα,β

n , (1)

where

aα,βn (f) :=
π̂

0

f(θ)φα,β
n (θ) dθ

is the nth Fourier–Jacobi coefficient of f . The series in (1) converges in L2(0, π). Moreover, if t > 0, it 
converges pointwise and that even for f ∈ Lp(0, π), p > p′(α, β), defining a smooth function both in t and 
the space variable. Thus (1) provides an extension of {Hα,β

t }t>0 to the above Lp spaces (which we denote 
by still the same symbol). The pointwise convergence and smoothness are easily seen with the aid of the 
polynomial bound (cf. [24, (7.32.2)])

|φα,β
n (θ)| ≤ C Ψα,β(θ) (n + 1)1/2+max{α,β,−1/2}, θ ∈ (0, π), n ≥ 0, (2)

and the resulting polynomial growth in n of aα,βn (f). Furthermore, {Hα,β
t }t>0 has an integral representation

Hα,β
t f(θ) =

π̂

0

Hα,β
t (θ, ϕ)f(ϕ) dϕ, t > 0, θ ∈ (0, π),

valid for f ∈ Lp(0, π), p > p′(α, β). We note that sharp estimates of the Poisson–Jacobi kernel Hα,β
t (θ, ϕ)

follow readily from [15, Theorem A.1 in the appendix] and [16, Theorem 6.1].
Next, we gather some facts about potential operators associated with Lα,β. Let σ > 0. We consider the 

Riesz type potentials L−σ
α,β assuming that α + β �= −1 (when α + β = −1, the bottom eigenvalue of Lα,β

is 0) and the Bessel type potentials (Id + Lα,β)−σ with no restrictions on α and β. Clearly, these operators 
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are well defined spectrally and bounded in L2(0, π). Moreover, both L−σ
α,β and (Id+Lα,β)−σ possess integral 

representations that extend actions of these potentials to Lp(0, π), p > p′(α, β), see [13]. We keep the same 
notation for the corresponding extensions. According to [11, Proposition 2.4], L−σ

α,β and (Id + Lα,β)−σ are 
bounded and one-to-one on Lp(0, π) for p ∈ E(α, β). An exhaustive study of Lp − Lq mapping properties 
of the potential operators is contained in [13]. In particular, from [13, Theorem 2.4] (see also comments in 
[13, Section 1]) we get the following.

Proposition 2.1. Let α, β > −1 and σ > 0. Assume that p > p′(α, β) and 1 ≤ q < p(α, β). Then L−σ
α,β, 

α + β �= −1, and (Id + Lα,β)−σ are bounded from Lp(0, π) to Lq(0, π) if and only if

1
q
≥ 1

p
− 2σ.

Moreover, these operators are bounded from Lp(0, π) to L∞(0, π) if and only if

α, β ≥ −1/2 and 1
p
< 2σ.

Following the classical picture, see e.g. [22, Chapter V], potential spaces in the Jacobi context should 
be defined as the ranges of the Bessel type potentials acting on Lp(0, π). However, in our situation the 
spectrum of Lα,β is discrete and separated from 0 if α + β �= −1. Therefore in case α + β �= −1 one can 
employ equivalently the Riesz type potentials, which are simpler. Consequently, given s > 0 and p ∈ E(α, β)
we set (see [11])

Lp,s
α,β :=

{
L
−s/2
α,β

(
Lp(0, π)

)
, α + β �= −1,

(Id + Lα,β)−s/2(Lp(0, π)
)
, α + β = −1.

Then the formula

‖f‖Lp,s
α,β

:= ‖g‖Lp(0,π),

{
f = L

−s/2
α,β g, g ∈ Lp(0, π), α + β �= −1,

f = (Id + Lα,β)−s/2g, g ∈ Lp(0, π), α + β = −1,

defines a complete norm on Lp,s
α,β. We call the resulting Banach spaces Lp,s

α,β the Jacobi potential spaces. Note 
that according to [11, Corollary 2.6], Sα,β is a dense subspace of Lp,s

α,β.
In [11] the author introduced the Jacobi Sobolev spaces

W p,m
α,β :=

{
f ∈ Lp(0, π) : D(k)f ∈ Lp(0, π), k = 1, . . . ,m

}
,

equipped with the norms

‖f‖Wp,m
α,β

:=
m∑

k=0

‖D(k)f‖Lp(0,π).

Here m ≥ 1 is integer and the operators

D(k) := Dα+k−1,β+k−1 ◦ · · · ◦Dα+1,β+1 ◦Dα,β

play the role of higher-order derivatives, with the differentiation understood in the weak sense. The main 
result of [11] says that, for α, β > −1, p ∈ E(α, β) and m ≥ 1, we have the coincidence W p,m = Lp,m in 
α,β α,β
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the sense of isomorphism of Banach spaces. A bit surprisingly, the isomorphism does not hold in general if 
D(k) is replaced by seemingly more natural in this context (Dα,β)k.

We finish this preliminary section by invoking (see [11, Section 2]) the following useful result, which 
is essentially a special case of the general multiplier-transplantation theorem due to Muckenhoupt [12, 
Theorem 1.14] (see [12, Corollary 17.11] and also [8, Theorem 2.5] together with the related comments on 
pp. 376–377 therein). Here and elsewhere we use the convention that φα,β

n ≡ 0 if n < 0.

Lemma 2.2 (Muckenhoupt). Let α, β, γ, δ > −1 and let d ∈ Z. Assume that h(n) is a sequence satisfying for 
sufficiently large n the smoothness condition

h(n) =
J−1∑
j=0

cj n
−j + O(n−J ),

where J ≥ α + β + γ + δ + 6 and cj are fixed constants.
Then for each p satisfying p′(γ, δ) < p < p(α, β) the operator

f �→
∞∑

n=0
h(n) aα,βn (f)φγ,δ

n+d(θ), f ∈ Sα,β ,

extends uniquely to a bounded operator on Lp(0, π).

3. Structural and embedding theorems

In this section we establish structural and embedding theorems for the Jacobi potential spaces. We begin 
with recalling definitions of the variants of higher-order Riesz–Jacobi transforms considered in [11],

Rk
α,β =

{
D(k)L

−k/2
α,β , α + β �= −1,

D(k)(Id + Lα,β)−k/2, α + β = −1.

Here k ≥ 0 and Rk
α,β are well defined at least on Sα,β . Using Lemma 2.2 it can be shown, see [11, Proposi-

tion 3.4], that Rk
α,β extend (uniquely) to bounded operators on Lp(0, π), p ∈ E(α, β), α, β > −1.

The following result reveals mutual relations between Jacobi potential spaces with different parameters. 
It also describes mapping properties of the Riesz–Jacobi transforms acting on the potential spaces.

Theorem 3.1. Let α, β > −1 and p ∈ E(α, β). Assume that r, s > 0 and k ≥ 1.

(i) If r < s, then Lp,s
α,β ⊂ Lp,r

α,β ⊂ Lp(0, π) and the inclusions are proper and continuous.
(ii) The spaces Lp,r

α,β and Lp,s
α,β are isometrically isomorphic.

(iii) If k < s, then D(k) is bounded from Lp,s
α,β to Lp,s−k

α+k,β+k. Moreover, D(k) is bounded from Lp,k
α,β to Lp(0, π).

(iv) The Riesz operator Rk
α,β is bounded from Lp,s

α,β to Lp,s
α+k,β+k.

Proof. Throughout the proof we assume that α + β �= −1. The opposite case is essentially parallel (with 
(iii) and (iv) requiring a little bit more attention) and thus is left to the reader.

We first prove (i). Take f ∈ Lp,s
α,β . Then, by the definition of Lp,s

α,β, there exists g ∈ Lp(0, π) such that 
f = L

−s/2
α,β g. But this identity can be written as

f = L
−r/2(

L
−(s−r)/2

g
)
.
α,β α,β
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Indeed, the equality

L
−s/2
α,β g = L

−r/2
α,β (L−(s−r)/2

α,β g), 0 < r < s, (3)

is clear when g ∈ Sα,β , and then for g ∈ Lp(0, π) it follows by an approximation argument and 
Lp-boundedness of the potential operators. Now, since Proposition 2.1 implies L−(s−r)/2

α,β g ∈ Lp(0, π), we 

conclude that f ∈ Lp,r
α,β . Moreover, the inclusion just proved is continuous because L−(s−r)/2

α,β is bounded on 

Lp(0, π). The remaining inclusion is even more straightforward, in view of the Lp-boundedness of L−r/2
α,β . 

The fact that the reverse inclusions do not hold is verified as follows.
Observe that, in view of the inclusions already proved, it suffices to show that Lp,r

α,β �= Lp,s
α,β when 0 < r < s

are rational numbers. This task further reduces to proving that

Lp,r
α,β �= Lp(0, π), 0 < r ∈ Q. (4)

Indeed, suppose on the contrary that Lp,r
α,β = Lp,s

α,β . Then, for any f ∈ Lp(0, π) we have L−r/2
α,β f ∈ Lp,r

α,β

and so there is g ∈ Lp(0, π) such that L−r/2
α,β f = L

−s/2
α,β g = L

−r/2
α,β L

−(s−r)/2
α,β g, see (3). Since the Riesz 

potentials are injective (see [11, Proposition 2.4]), it follows that f = L
−(s−r)/2
α,β g. This implies f ∈ Lp,s−r

α,β

and, consequently, Lp,s−r
α,β = Lp(0, π). A contradiction with (4).

It remains to justify (4). Suppose that Lp,r
α,β = Lp(0, π) for some rational r > 0. We will derive a 

contradiction. Take 1 ≤ m ∈ N such that mr is integer and pick an arbitrary f ∈ Lp(0, π). Then, taking 
into account what we have assumed, f ∈ Lp,r

α,β and so there is g1 ∈ Lp(0, π) such that f = L
−r/2
α,β g1. 

Similarly, we can find g2 ∈ Lp(0, π) such that g1 = L
−r/2
α,β g2. Iterating this procedure we get, see (3), f =

(L−r/2
α,β )mgm = L

−mr/2
α,β gm for some gm ∈ Lp(0, π). Consequently, f ∈ Lp,mr

α,β . According to [11, Theorem A], 
Lp,mr
α,β = W p,mr

α,β , the Jacobi Sobolev space. We conclude that Lp(0, π) = W p,mr
α,β . This means, in particular, 

that Dα,βf ∈ Lp(0, π) for each f ∈ Lp(0, π). But the latter is false, as can be easily seen by taking either 
f ≡ 1 in case (α, β) �= (−1/2, −1/2) or f(θ) = log θ otherwise. The desired contradiction follows.

To show (ii) we may assume, for symmetry reasons, that r < s. Then it is straightforward to see that 
the operator

L
−(s−r)/2
α,β :Lp,r

α,β −→ Lp,s
α,β

is an isometric isomorphism, see (3).
We pass to showing (iii). Observe that it is enough to treat the case k = 1, since then the general case is 

obtained by simple iterations. To see that Dα,β is bounded from Lp,s
α,β to Lp,s−1

α+1,β+1 for s > 1, it suffices to 
prove that

∥∥L(s−1)/2
α+1,β+1Dα,βL

−s/2
α,β g

∥∥
p

� ‖g‖p, g ∈ Sα,β .

Taking into account the identities

Dα,βφ
α,β
n = −

√
λα,β
n − λα,β

0 φα+1,β+1
n−1 ,

see [11, (5)], and λα,β
n = λα+1,β+1

n−1 , n ≥ 1, we write

L
(s−1)/2
α+1,β+1Dα,βL

−s/2
α,β g = −

∞∑(
λα,β
n − λα,β

0

λα,β

)1/2

aα,βn (g)φα+1,β+1
n−1 , g ∈ Sα,β .
n=1 n
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Now an application of Lemma 2.2 leads directly to the desired conclusion. The fact that the function 
h(n) = (1 −λα,β

0 /λα,β
n )1/2 indeed satisfies the assumptions of Lemma 2.2 is verified by arguments analogous 

to those in the proof of [11, Proposition 3.4].
Finally, (iv) is a consequence of (iii) and the fact that L−k/2

α,β is bounded from Lp,s
α,β to Lp,s+k

α,β . �
Our next result corresponds to the classical embedding theorem due to Sobolev (the latter can be found, 

for instance, in [22, Chapter V]). Recall that for integer values of s, say s = m, the potential spaces Lp,m
α,β

coincide with the Jacobi Sobolev spaces W p,m
α,β investigated in [11].

Theorem 3.2. Let α, β > −1, p ∈ E(α, β) and 1 ≤ q < p(α, β).

(i) If s > 0 is such that 1/q ≥ 1/p − s, then Lp,s
α,β ⊂ Lq(0, π) and

‖f‖q � ‖f‖Lp,s
α,β

, f ∈ Lp,s
α,β . (5)

(ii) If α, β ≥ −1/2 and s > 1/p, then Lp,s
α,β ⊂ C(0, π) and (5) holds with q = ∞.

Proof. We assume that α + β �= −1, the opposite case is analogous. Let f ∈ Lp,s
α,β . Then there exists 

g ∈ Lp(0, π) such that f = L
−s/2
α,β g. According to Proposition 2.1, the potential operator L−s/2

α,β is of strong 
type (p, q) for p and q admitted in (i) and (ii) (to be precise, in (ii) q = ∞). Thus f ∈ Lq(0, π) and (5)
holds.

It remains to show that, under the assumptions of (ii), f is continuous. Since Sα,β is a dense subspace of 
Lp,s
α,β , there exists a sequence {fn} ⊂ Sα,β such that fn → f in Lp,s

α,β . Then

‖f − fn‖∞ � ‖f − fn‖Lp,s
α,β

→ 0, n → ∞,

and we see that f is a uniform limit of continuous functions. �
4. Characterization by fractional square functions

Let α, β > −1. Following Betancor et al. [4], we consider a pair of fractional square functions

g
γ
α,β(f)(θ) =

( ∞̂

0

∣∣tγ∂γ
t H

α,β
t f(θ)

∣∣2 dt
t

)1/2

, γ > 0,

g
γ,k
α,β(f)(θ) =

( ∞̂

0

∣∣∣tk−γ ∂k

∂tk
Hα,β

t f(θ)
∣∣∣2 dt

t

)1/2

, 0 < γ < k, k ∈ N.

Here ∂γ
t denotes a Caputo type fractional derivative given, for suitable F , by

∂γ
t F (t) = 1

Γ(m− γ)

∞̂

0

∂m

∂tm
F (t + s) sm−γ−1 ds, t > 0, (6)

where m = �γ� + 1, �·� being the floor function. The study of square functions involving ∂γ
t goes back to 

Segovia and Wheeden [21], where the classical setting was considered.
Note that gγα,β(f) and gγ,kα,β(f) are well defined pointwise for f ∈ Lp(0, π), p > p′(α, β). This is clear in 

case of gγ,kα,β, since Hα,β
t is smooth in t > 0. To see this property for gγα,β, we observe that ∂γ

t H
α,β
t f is well 

defined pointwise if f is as above. In fact
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∂γ
t H

α,β
t f(θ) = (−1)m

∞∑
n=0

(
λα,β
n

)γ/2 exp
(
− t

√
λα,β
n

)
aα,βn (f)φα,β

n (θ), (7)

and the series converges for each t > 0 and θ ∈ (0, π). This follows by term-by-term differentiation and 
integration of the series defining Hα,β

t f . Such manipulations are indeed legitimate, as can be easily checked 
with the aid of (2) and the resulting polynomial growth in n of aα,βn (f).

The first main result of this section is the following characterization of the Jacobi potential spaces in 
terms of gγ,kα,β.

Theorem 4.1. Let α, β > −1, p ∈ E(α, β) and assume that α + β �= −1. Fix 0 < γ < k with k ∈ N. Then 
f ∈ Lp,γ

α,β if and only if f ∈ Lp(0, π) and gγ,kα,β(f) ∈ Lp(0, π). Moreover,

‖f‖Lp,γ
α,β

�
∥∥gγ,kα,β(f)

∥∥
p
, f ∈ Lp,γ

α,β .

Remark 4.2. To get a similar characterization in the singular case α+β = −1 one has to modify suitably the 
square function gγ,kα,β. The corresponding statement can be found at the end of this section, see Theorem 4.7.

To prove Theorem 4.1 we follow a general strategy presented in [4]. The main difficulty in this approach 
is showing that the fractional square function gγα,β preserves Lp norms, as stated below.

Theorem 4.3. Let α, β > −1, p ∈ E(α, β) and γ > 0. Then

‖f‖p �
∥∥gγα,β(f)

∥∥
p

+ χ{α+β=−1}
∣∣aα,β0 (f)

∣∣, f ∈ Lp(0, π).

For the time being, in this section we assume that Theorem 4.3 holds and postpone its proof until 
Section 6. Then to show Theorem 4.1 it suffices to ensure that the general arguments in [4] work when 
specified to the Jacobi framework. We begin with two auxiliary results which appear almost explicitly in [4].

Lemma 4.4. Let α, β > −1, p ∈ E(α, β) and assume that 0 < γ < k ≤ l with k, l ∈ N. Then∥∥gγ,lα,β(f)
∥∥
p

�
∥∥gγ,kα,β(f)

∥∥
p
, f ∈ Lp(0, π).

Proof. We use the Lp-boundedness of g1
α,β (see Theorem 4.3) and repeat the arguments from the proof 

of [4, Proposition 2.6]. Everything indeed works for general f ∈ Lp(0, π) thanks to the smoothness of Hα,β
t f

in t > 0. �
Lemma 4.5. Let α, β > −1, α + β �= −1, p ∈ E(α, β) and 0 < γ < k with k ∈ N. Then gγ,kα,β is bounded on 
Lp,γ
α,β. Furthermore,

g
γ,k
α,β(f) = g

k−γ
α,β

(
L

γ/2
α,β f

)
, f ∈ Lp,γ

α,β ,

with Lγ/2
α,β understood as the inverse of the potential operator L−γ/2

α,β .

Proof. In view of [4, Lemma 2.2 (ii)], the identity gγ,kα,β(f) = g
k−γ
α,β (L γ/2

α,β f) holds for f ∈ Sα,β . Taking into 

account that Lp,γ
α,β = L

−γ/2
α,β (Lp(0, π)) and L−γ/2

α,β is one-to-one, Sα,β is dense in Lp,γ
α,β and gk−γ

α,β is bounded 
on Lp(0, π) (see Theorem 4.3), we arrive at the desired conclusion. �

Lemma 4.5 together with Theorem 4.3 implies the equivalence of norms asserted in Theorem 4.1, which 
we state as the following.
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Proposition 4.6. Let α, β > −1, α + β �= −1, p ∈ E(α, β) and 0 < γ < k with k ∈ N. Then

‖f‖Lp,γ
α,β

�
∥∥gγ,kα,β(f)

∥∥
p
, f ∈ Lp,γ

α,β .

We are now in a position to prove Theorem 4.1. We follow the line of reasoning from the proof of [4, 
Proposition 4.1].

Proof of Theorem 4.1. In view of Proposition 4.6, what we need to prove is that f ∈ Lp,γ
α,β if f ∈ Lp(0, π)

and gγ,kα,β(f) ∈ Lp(0, π). Thus we assume that f, gγ,kα,β(f) ∈ Lp(0, π).
Let

Ft =
∞∑

n=0

(
λα,β
n

)γ/2 exp
(
− t

√
λα,β
n

)
aα,βn (f)φα,β

n , t > 0.

Notice that Ft = (−1)m∂γ
t H

α,β
t f , see (7). The series defining Ft converges in Lp(0, π), as can be easily 

verified by means of (2). Since the potential operator L−γ/2
α,β is Lp-bounded, we have L−γ/2

α,β Ft = Hα,β
t f and, 

consequently, Hα,β
t f ∈ Lp,γ

α,β for t > 0.
Next, let l ∈ N be such that l > k and l > γ + 1/2. By Proposition 4.6 one has

‖Ft‖p =
∥∥Hα,β

t f
∥∥
Lp,γ

α,β
�

∥∥gγ,lα,β(Hα,β
t f)

∥∥
p
, f ∈ Lp(0, π), t > 0.

Further, exploiting the semigroup property of {Hα,β
t } we get, for θ ∈ (0, π),

∣∣gγ,lα,β(Hα,β
t f)(θ)

∣∣2 =
∞̂

0

∣∣∣sl−γ ∂l

∂sl
Hα,β

t+sf(θ)
∣∣∣2 ds

s

≤
∞̂

0

∣∣∣(t + s)l−γ ∂l

∂sl
Hα,β

t+sf(θ)
∣∣∣2 ds

t + s

≤
∞̂

0

∣∣∣sl−γ ∂l

∂sl
Hα,β

s f(θ)
∣∣∣2 ds

s

=
∣∣gγ,lα,β(f)(θ)

∣∣2.
Combining the above with Lemma 4.4 we obtain

‖Ft‖p �
∥∥gγ,kα,β(f)

∥∥
p
, f ∈ Lp(0, π), t > 0.

Now, by the Banach–Alaoglu theorem there exists a decreasing positive sequence tn → 0 and a function 
F ∈ Lp(0, π) such that Ftn → F in the weak∗ topology of Lp(0, π). Then, since L−γ/2

α,β is Lp-bounded, we 
also have

Hα,β
tn f = L

−γ/2
α,β Ftn → L

−γ/2
α,β F

in the weak∗ topology of Lp(0, π). On the other hand, Hα,β
tn f → f in Lp(0, π), which follows by the 

Lp-boundedness of the maximal operator f �→ supt>0 |Hα,β
t f | (see [11, Proposition 2.2]) and the density of 

Sα,β in Lp(0, π). We conclude that f = L
−γ/2

F , which means that f ∈ Lp,γ . �
α,β α,β
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We now come back to the issue of characterizing Lp,γ
α,β when α+ β = −1. Actually, by means of a variant 

of gγ,kα,β, we will characterize the Jacobi potential spaces for any α, β > −1, see Theorem 4.7 below. This is 
the second main result of this section.

Let α, β > −1 and γ > 0. Consider the modified Jacobi Laplacian

L̃α,β :=
(
Id +

√
Lα,β

)2
and the related modified Bessel type potentials L̃−γ/2

α,β . Clearly, the latter operators are well defined spectrally 
and bounded on L2(0, π). Moreover, Lemma 2.2 shows that they extend uniquely to bounded operators on 
Lp(0, π), p ∈ E(α, β) (we keep the same notation for these extensions). Furthermore, similarly as in the 
proof of [11, Proposition 2.4], one can verify that L̃−γ/2

α,β is one-to-one on Lp(0, π), p ∈ E(α, β). Thus we can 
define alternative potential spaces via the modified Bessel type potentials,

L̃p,γ
α,β := L̃

−γ/2
α,β

(
Lp(0, π)

)
, p ∈ E(α, β),

normed by ‖f‖L̃p,γ
α,β

:= ‖g‖p, where f = L̃
−γ/2
α,β g. These are Banach spaces, and the crucial fact is that they 

are isomorphic to Lp,γ
α,β. More precisely, Lp,γ

α,β and L̃p,γ
α,β coincide as sets of functions and the two norms are 

equivalent. To see this, it is enough to observe that the multiplier operators

(Id + Lα,β)γ/2

(Id +
√

Lα,β)γ
,

(Id +
√

Lα,β)γ

(Id + Lα,β)γ/2
,

being mutual inverses defined initially on L2(0, π), both extend to bounded operators on Lp(0, π), p ∈
E(α, β). The latter follows readily by means of Lemma 2.2.

The Poisson semigroup corresponding to L̃α,β is generated by −Id −
√
Lα,β , hence it has the form 

{e−tHα,β
t }. Consequently, the relevant fractional square functions are given by

g̃
γ
α,β(f)(θ) =

( ∞̂

0

∣∣tγ∂γ
t

[
e−tHα,β

t f(θ)
]∣∣2 dt

t

)1/2

, γ > 0,

g̃
γ,k
α,β (f)(θ) =

( ∞̂

0

∣∣∣tk−γ ∂k

∂tk
[
e−tHα,β

t f(θ)
]∣∣∣2 dt

t

)1/2

, 0 < γ < k, k ∈ N.

A reasoning parallel to that in Section 6 shows that, given p ∈ E(α, β),

∥∥g̃ γ
α,β(f)

∥∥
p
� ‖f‖p, f ∈ Lp(0, π).

All the above facts and a direct adaptation of the ingredients and arguments proving Theorem 4.1 lead 
to the following alternative characterization of Lp,γ

α,β, valid for all α, β > −1.

Theorem 4.7. Let α, β > −1 and p ∈ E(α, β). Fix 0 < γ < k with k ∈ N. Then f ∈ Lp,γ
α,β if and only if 

f ∈ Lp(0, π) and g̃ γ,k
α,β (f) ∈ Lp(0, π). Moreover,

‖f‖Lp,γ
α,β

�
∥∥g̃ γ,k

α,β (f)
∥∥
p
, f ∈ Lp,γ

α,β .

Proof. This is a repetition of the arguments already presented. We leave details to interested readers. �
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5. Sample applications of the potential spaces

The first application we present is motivated by the results in [6, Section 7] and [7, Section 6], see also 
references therein. Given some initial data f ∈ L2(0, π), consider the following Cauchy problem based on 
the Jacobi Laplacian: {(

i∂t + Lα,β

)
u(θ, t) = 0,

u(θ, 0) = f(θ),
a.a. θ ∈ (0, π), t ∈ R.

It is straightforward to check that exp(itLα,β)f is a solution to this problem (here exp(itLα,β) is understood 
spectrally). Then a natural and important question is the following: what regularity conditions should be 
imposed on f to guarantee pointwise almost everywhere convergence of the solution to the initial condition? 
It turns out that a sufficient condition for this convergence can be stated in terms of the Jacobi potential 
spaces.

Proposition 5.1. Let α, β > −1 and s > 1/2. Then for each f ∈ L2,s
α,β

lim
t→0

exp(itLα,β)f(θ) = f(θ) a.a. θ ∈ (0, π).

Proof. In the proof we assume that α+β �= −1; the opposite case requires obvious modifications, which are 
left to the reader. Let f ∈ L2,s

α,β ⊂ L2(0, π) and observe that exp(itLα,β)f is well defined in the L2 sense. It 
is straightforward to check that

lim
t→0

exp(itLα,β)f(θ) = f(θ), θ ∈ (0, π), f ∈ Sα,β .

Recall that Sα,β is a dense subspace of L2,s
α,β.

We will show that the set

A =
{
θ ∈ (0, π) : lim sup

t→0
| exp(itLα,β)f(θ) − f(θ)| > 0

}
has Lebesgue measure zero. Denote IN = [ 1

N , π − 1
N ] and

AN,k =
{
θ ∈ IN : lim sup

t→0
| exp(itLα,β)f(θ) − f(θ)| > 1

k

}
.

Since the sum of AN,k over N, k ≥ 1 gives A, it is enough to prove that |AN,k| = 0 for each N and k fixed.
To proceed, we consider the maximal operator

T∗f(θ) = sup
t∈R

| exp(itLα,β)f(θ)|.

We have
ˆ

IN

T∗f(θ) dθ ≤
∞∑

n=0

∣∣aα,βn (f)
∣∣ ˆ
IN

|φα,β
n (θ)| dθ.

The integrals here can be bounded by means of the estimate, see [24, Theorem 8.21.8],

|φα,β
n (θ)| ≤ CN , θ ∈ IN , n ≥ 0
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(the constant CN depends on N and possibly also on α and β). Then, using Schwarz’ inequality, we get

ˆ

IN

T∗f(θ) dθ ≤ CN

( ∞∑
n=0

∣∣(λα,β
n

)s/2
aα,βn (f)

∣∣2)1/2( ∞∑
n=0

(
λα,β
n

)−s
)1/2

= C ′
N‖f‖L2,s

α,β
, (8)

where C ′
N depends also on s.

Now we are ready to show that |AN,k| = 0. Take 0 < ε < 1 and choose f0 ∈ Sα,β such that ‖f −
f0‖L2,s

α,β
< ε. We have AN,k ⊂ A1

N,k ∪A2
N,k ∪A3

N,k, where

A1
N,k =

{
θ ∈ IN : |f(θ) − f0(θ)| >

1
3k

}
,

A2
N,k =

{
θ ∈ IN : lim sup

t→0

∣∣ exp(itLα,β)f0(θ) − f0(θ)
∣∣ > 1

3k

}
,

A3
N,k =

{
θ ∈ IN : lim sup

t→0

∣∣ exp(itLα,β)f(θ) − exp(itLα,β)f0(θ)
∣∣ > 1

3k

}
.

Notice that A2
N,k = ∅. For A1

N,k we write

|A1
N,k| ≤ (3k)2

ˆ

IN

|f(θ) − f0(θ)|2 dθ ≤ (3k)2‖f − f0‖2
2 ≤ (3k)2

∣∣λα,β
0

∣∣−s‖f − f0‖2
L2,s

α,β

< (3k)2
∣∣λα,β

0
∣∣−s

ε,

where we used the equality 
∥∥L−s/2

α,β

∥∥
L2→L2 =

∣∣λα,β
0

∣∣−s/2. Finally, to deal with A3
N,k we use (8) and obtain

|A3
N,k| ≤ 3k

ˆ

IN

T∗(f − f0)(θ) dθ ≤ 3kC ′
N‖f − f0‖L2,s

α,β
< 3kC ′

N ε.

Since we can choose ε arbitrarily small, it follows that |AN,k| = 0. �
Another result involving the Jacobi potential spaces is the mixed norm smoothing estimate motivated 

by the results of [5, Section 3]. For a function F : (0, π) × (0, 2π) �→ C denote

∥∥F∥∥
Lp

θ((0,π),L2
t (0,2π)) =

( π̂

0

‖F (θ, t)
∥∥p
L2

t (0,2π) dθ

)1/p

=
( π̂

0

( 2πˆ

0

|F (θ, t)|2 dt
)p/2

dθ

)1/p

.

Proposition 5.2. Let α, β > −1 and p ∈ E(α, β). Assume that s > 0 is such that s ≥ 1/2 + max{α, β, −1/2}
and α + β is integer. Then

∥∥ exp(itLα,β)f
∥∥
Lp

θ((0,π),L2
t (0,2π)) � ‖f‖L2,s

α,β
, f ∈ L2,s

α,β .

Proof. Throughout the proof we assume that α + β �= −1, since the opposite case requires only minor 
modifications. By a density argument it suffices to prove the asserted bound for f ∈ Sα,β . For such f we 
have
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∥∥ exp(itLα,β)f
∥∥2
L2

t (0,2π) =
2πˆ

0

( ∞∑
n=0

eitλ
α,β
n aα,βn (f)φα,β

n

)( ∞∑
n=0

e−itλα,β
n aα,βn (f)φα,β

n

)
dt

= 2π
∞∑

n=0

∣∣aα,βn (f)
∣∣2 (φα,β

n

)2
,

since λα,β
n − λα,β

m = (n −m)(n + m + α + β + 1) is integer. Then applying Minkowski’s inequality we get

‖ exp(itLα,β)f‖Lp
θ((0,π),L2

t (0,2π)) ≤
√

2π
( ∞∑

n=0

∣∣aα,βn (f)
∣∣2 ∥∥φα,β

n

∥∥2
p

)1/2

.

By means of (2) we can estimate the Lp norms here,∥∥φα,β
n

∥∥
p

�
∥∥Ψα,β

∥∥
p
(n + 1)1/2+max{α,β,−1/2} � (n + 1)s, n ≥ 0.

Applying now Parseval’s identity we arrive at

‖ exp(itLα,β)f‖Lp
θ((0,π),L2

t (0,2π)) �
( ∞∑

n=0
(n + 1)2s

∣∣aα,βn (f)
∣∣2)1/2

�
( ∞∑

n=0

(
λα,β
n

)s∣∣aα,βn (f)
∣∣2)1/2

=
∥∥∥∥ ∞∑

n=0

(
λα,β
n

)s/2
aα,βn (f)φα,β

n

∥∥∥∥
2

= ‖f‖L2,s
α,β

.

This finishes the proof. �
Finally, we give an extension of Proposition 5.2.

Proposition 5.3. Let α, β, p and s be as in Proposition 5.2 and assume that q > 2. Then∥∥ exp(itLα,β)f
∥∥
Lp

θ((0,π),Lq
t (0,2π)) � ‖f‖L2,s+1−2/q

α,β
, f ∈ L2,s+1−2/q

α,β .

The proof uses a fractional Sobolev inequality due to Wainger [25].

Lemma 5.4 (Wainger). Let 1 < r < q < ∞. Then∥∥∥∥ ∑
k∈Z,k �=0

|k|−1/r+1/q F̂ (k) eitk
∥∥∥∥
Lq

t (0,2π)
� ‖F‖Lr(0,2π), F ∈ Lr(0, 2π),

where F̂ (k) is the kth Fourier coefficient of F .

Proof of Proposition 5.3. We assume that α+β �= −1, the opposite case being similar. Taking into account 
that λα,β

n are non-zero integers, we apply Lemma 5.4 with r = 2 to get

∥∥ exp(itLα,β)f
∥∥
Lq

t (0,2π) �
∥∥∥∥ ∞∑

n=0
eitλ

α,β
n

(
λα,β
n

)1/2−1/q
aα,βn (f)φα,β

n

∥∥∥∥
L2

t (0,2π)
.

This estimate combined with Proposition 5.2 yields
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∥∥ exp(itLα,β)f
∥∥
Lp

θ((0,π),Lq
t (0,2π)) �

∥∥∥∥ ∞∑
n=0

(
λα,β
n

)1/2−1/q
aα,βn (f)φα,β

n

∥∥∥∥
L2,s

α,β

=
∥∥∥∥ ∞∑

n=0

(
λα,β
n

)1/2−1/q+s/2
aα,βn (f)φα,β

n

∥∥∥∥
2

= ‖f‖L2,s+1−2/q
α,β

.

The conclusion follows. �
6. Proof of Theorem 4.3

Theorem 4.3 is a direct consequence of Lp-boundedness of gγα,β and standard arguments, see e.g. [4, 
Section 2]. The following result will be proved in Sections 6.1–6.3 below.

Theorem 6.1. Let α, β > −1, p ∈ E(α, β) and γ > 0. Then gγα,β is bounded on Lp(0, π).

We also need to know that gγα,β is essentially an isometry on L2(0, π), or rather a polarized variant of 
this fact; see, for instance, [4, Proposition 2.1 (ii)].

Proposition 6.2. Let α, β > −1 and γ > 0. Then, for f, g ∈ L2(0, π),

〈f, g〉 = 22γ

Γ(2γ)

π̂

0

〈
∂γ
t H

α,β
t f(θ), ∂γ

t H
α,β
t g(θ)

〉
L2(t2γ−1dt) dθ + χ{α+β=−1}a

α,β
0 (f) aα,β0 (g).

In particular, taking above g = f we get

‖f‖2
2 = 22γ

Γ(2γ)‖g
γ
α,β‖2

2 + χ{α+β=−1}|aα,β0 (f)|2, f ∈ L2(0, π). (9)

We are now ready to justify Theorem 4.3, assuming that Theorem 6.1 holds.

Proof of Theorem 4.3. In view of Theorem 6.1 and the estimate |aα,β0 (f)| � ‖f‖p (the latter is a simple 
consequence of Hölder’s inequality), we get

‖gγα,β(f)‖p + χ{α+β=−1}| aα,β0 (f)| � ‖f‖p, f ∈ Lp(0, π).

To show the opposite relation, we use Proposition 6.2 to write

‖f‖p = sup
g∈Lp′ ,‖g‖p′=1

|〈f, g〉| = sup
g∈Lp′ ,‖g‖p′=1

∣∣∣∣ 22γ

Γ(2γ)

π̂

0

〈
∂γ
t H

α,β
t f(θ), ∂γ

t H
α,β
t g(θ)

〉
L2(t2γ−1dt) dθ

+ χ{α+β=−1}a
α,β
0 (f) aα,β0 (g)

∣∣∣∣.
Applying now the Cauchy–Schwarz inequality to the inner product under the last integral, and then Hölder’s 
inequality and Lp′-boundedness of gγα,β (Theorem 6.1), we conclude that

‖f‖p � sup
g∈Lp′ ,‖g‖p′=1

(
22γ

Γ(2γ)
∣∣〈gγα,β(f), gγα,β(g)

〉∣∣ + χ{α+β=−1}|aα,β0 (f) aα,β0 (g)|
)

� ‖gγα,β(f)‖p + χ{α+β=−1}|aα,β0 (f)|,

uniformly in f ∈ Lp(0, π). �
It remains to prove Theorem 6.1.
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6.1. Proof of Theorem 6.1

As we shall see, Lp-boundedness of gγα,β follows in a straightforward manner from power-weighted 
Lp-boundedness of an analogous fractional g-function in the framework of expansions into Jacobi trigono-
metric polynomials. Thus we are going to study weighted counterpart of Theorem 6.1 in the above-mentioned 
setting. Our main tool will be vector-valued Calderón–Zygmund operator theory and its implementation in 
the Jacobi context established in [14,16]. We begin with a brief introduction of the Jacobi trigonometric 
polynomial setting. For all these and further facts we refer to [14–16].

Let α, β > −1. The normalized Jacobi trigonometric polynomials are given by Pα,β
n = φα,β

n /Ψα,β , n ≥ 0. 
The system {Pα,β

n : n ≥ 0} is an orthonormal basis in L2((0, π), dμα,β), where

dμα,β(θ) =
(

sin θ

2

)2α+1(
cos θ2

)2β+1
dθ, θ ∈ (0, π).

Each Pα,β
n is an eigenfunction of the Jacobi Laplacian

Jα,β = − d2

dθ2 − α− β + (α + β + 1) cos θ
sin θ

d

dθ
+

(α + β + 1
2

)2
,

the corresponding eigenvalue being λα,β
n . Thus Jα,β has a natural self-adjoint extension in this context 

(denoted by still the same symbol), whose spectral resolution is given in terms of Pα,β
n .

The semigroup of operators {Hα,β
t }t≥0 generated in L2(dμα,β) by means of the square root of Jα,β is 

called the Jacobi–Poisson semigroup. We have

Hα,β
t f(θ) =

∞∑
n=0

exp
(
− t

√
λα,β
n

)〈
f,Pα,β

n

〉
dμα,β

Pα,β
n (θ), (10)

the series being convergent not only in L2(dμα,β), but also pointwise if t > 0. Actually, the last series 
converges pointwise for any f ∈ Lp(wdμα,β), w ∈ Aα,β

p , 1 ≤ p < ∞, providing a definition of Hα,β
t , t > 0, 

on these weighted spaces. Here and elsewhere Aα,β
p stands for the Muckenhoupt class of weights associated 

with the measure μα,β in (0, π), see e.g. [14, Section 1] for the definition. Moreover, Hα,β
t f(θ) is always a 

smooth function of (t, θ) ∈ (0, ∞) × (0, π). All this can be verified with the aid of the bounds, see (2) and 
[14, Section 2],

|Pα,β
n (θ)| � (n + 1)α+β+2, θ ∈ (0, π), n ≥ 0, (11)∣∣〈f,Pα,β

n

〉
dμα,β

∣∣ � ‖f‖Lp(dμα,β)(n + 1)α+β+2, n ≥ 0; (12)

here w ∈ Aα,β
p and 1 ≤ p < ∞. There is also an integral representation of {Hα,β

t }t>0, valid on the weighted 
Lp spaces appearing above. We have

Hα,β
t f(θ) =

π̂

0

Hα,β
t (θ, ϕ)f(ϕ) dμα,β(ϕ), θ ∈ (0, π), t > 0,

where

Hα,β
t (θ, ϕ) =

∞∑
exp

(
− t

√
λα,β
n

)
Pα,β
n (θ)Pα,β

n (ϕ)

n=0
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is the Jacobi–Poisson kernel. A useful integral representation of Hα,β
t (θ, ϕ) was established in [14, Proposi-

tion 4.1] for α, β ≥ −1/2 and in [16, Proposition 2.3] in the general case. This representation will implicitly 
play a crucial role in what follows, however we decided not to invoke it here due to its complexity.

Given γ > 0, we define the vertical fractional square function in the present setting by

gγα,β(f)(θ) =
∥∥∂γ

t Hα,β
t f(θ)

∥∥
L2(t2γ−1dt).

This definition makes sense pointwise for f ∈ Lp(wdμα,β), w ∈ Aα,β
p , 1 ≤ p < ∞, as can be verified by 

combining (10) with (11) and (12); we leave details to the reader. The following result not only implies 
Theorem 6.1, but certainly is also of independent interest. In particular, it enhances [14, Corollary 2.5]
and [16, Corollary 5.2].

Theorem 6.3. Let α, β > −1 and γ > 0. Then gγα,β is bounded on Lp(wdμα,β), w ∈ Aα,β
p , 1 < p < ∞, and 

from L1(wdμα,β) to weak L1(wdμα,β), w ∈ Aα,β
1 .

We give the proof of Theorem 6.3 in Sections 6.2–6.3 below. First, however, let us see how Theorem 6.3
allows us to conclude Theorem 6.1.

Proof of Theorem 6.1. We argue similarly as in the proof of [11, Proposition 2.2]. Observe that

g
γ
α,β(f) = Ψα,β gγα,β(Ψ−α−1,−β−1f).

Furthermore, since wα,β := (Ψα,β)p/Ψ2α+1/2,2β+1/2 ∈ Aα,β
p , p ∈ E(α, β) (see the proof of [11, Proposi-

tion 2.2]), Theorem 6.3 shows that gγα,β is bounded on Lp(wα,βdμα,β) when p ∈ E(α, β). Then we get

‖gγα,β(f)‖pp =
π̂

0

∣∣gγα,β(Ψ−α−1,−β−1f)(θ)
∣∣pwα,β(θ) dμα,β(θ)

�
π̂

0

∣∣f(θ)Ψ−α−1,−β−1(θ)
∣∣pwα,β(θ) dμα,β(θ)

= ‖f‖pp,

uniformly in f ∈ Lp(0, π). The conclusion follows. �
6.2. Proof of Theorem 6.3

We employ the theory of Calderón–Zygmund operators specified to the space of homogeneous type 
((0, π), dμα,β, | · |), where | · | stands for the ordinary distance. Let us briefly recall the related notions; for 
more details see [14,16].

Let B be a Banach space and let K(θ, ϕ) be a kernel defined on (0, π) × (0, π)\{(θ, ϕ) : θ = ϕ} and taking 
values in B. We say that K(θ, ϕ) is a standard kernel if it satisfies the growth estimate

‖K(θ, ϕ)‖B � 1
μα,β(B(θ, |θ − ϕ|)) (13)

and the smoothness estimates
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‖K(θ, ϕ) −K(θ′, ϕ)‖B � |θ − θ′|
|θ − ϕ|

1
μα,β(B(θ, |θ − ϕ|)) , |θ − ϕ| > 2|θ − θ′|, (14)

‖K(θ, ϕ) −K(θ, ϕ′)‖B � |ϕ− ϕ′|
|θ − ϕ|

1
μα,β(B(θ, |θ − ϕ|)) , |θ − ϕ| > 2|ϕ− ϕ′|; (15)

here B(θ, r) denotes the ball (interval) centered at θ and of radius r. As it was observed in [16, Section 4], 
even when K(θ, ϕ) is not scalar-valued, the difference conditions (14) and (15) can be replaced by the more 
convenient gradient condition

‖∂θK(θ, ϕ)‖B + ‖∂ϕK(θ, ϕ)‖B � 1
|θ − ϕ|μα,β(B(θ, |θ − ϕ|)) . (16)

The derivatives here are taken in the weak sense, which means that for any v ∈ B∗

〈v, ∂θK(θ, ϕ)〉 = ∂θ〈v,K(θ, ϕ)〉 (17)

and similarly for ∂ϕ.
A linear operator T assigning to each f ∈ L2(dμα,β) a measurable B-valued function Tf on (0, π) is said 

to be a (vector-valued) Calderón–Zygmund operator associated with B if

(a) T is bounded from L2(dμα,β) to L2
B
(dμα,β), and

(b) there exists a standard B-valued kernel K(θ, ϕ) such that

Tf(θ) =
π̂

0

K(θ, ϕ)f(ϕ) dμα,β(ϕ), a.e. θ /∈ supp f,

for every f ∈ L2(dμα,β) with compact support in (0, π).

When (b) holds, we say that T is associated with K.
Obviously, gγα,β is not linear, but it can be interpreted in a standard way as a linear operator

Gγ
α,β : f �→

{
∂γ
t Hα,β

t f
}
t>0

mapping into B-valued functions, where B = L2(t2γ−1dt). The following result together with a general 
Calderón–Zygmund theory and well-known arguments (see the proof of [14, Corollary 2.5] and also references 
given there) justifies Theorem 6.3.

Theorem 6.4. Let α, β > −1 and γ > 0. Then Gγ
α,β is a vector-valued Calderón–Zygmund operator in the 

sense of the space ((0, π), dμα,β, | · |), associated with the Banach space B = L2(t2γ−1dt).

The most difficult step in proving Theorem 6.4 is showing that the vector-valued kernel

Gγ
α,β(θ, ϕ) =

{
∂γ
t Hα,β

t (θ, ϕ)
}
t>0

satisfies the standard estimates. This is the content of the next lemma.

Lemma 6.5. Let α, β > −1 and γ > 0. Then Gγ
α,β(θ, ϕ) satisfies (13) and (16) with B = L2(t2γ−1dt).

On the other hand, L2-boundedness of Gγ
α,β follows readily from the same property of gγα,β (notice 

that an analogue of (9) holds for gγ ). Moreover, the fact that Gγ is indeed associated with the kernel 
α,β α,β
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Gγ
α,β(θ, ϕ) can be verified with the aid of quite standard arguments, following for instance the strategy in 

the proof of [10, Proposition 2.5]. The tools needed to adapt the reasoning are the estimates (11) and (12), 
L2-boundedness of Gγ

α,β and the growth condition (13) for the kernel Gγ
α,β(θ, ϕ).

Thus Theorem 6.4, hence also Theorem 6.3, will be justified once we prove Lemma 6.5.

6.3. Proof of Lemma 6.5

We will make use of the machinery elaborated in [14,16]. Therefore we need to invoke some technical 
results from [16] to make the proof of Lemma 6.5 essentially self-contained. However, we try to be as concise 
as possible and so for any unexplained symbols or notation we refer to [16]. Let

q(θ, ϕ, u, v) = 1 − u sin θ

2 sin ϕ

2 − v cos θ2 cos ϕ2 , θ, ϕ ∈ (0, π), u, v ∈ [−1, 1].

We will often omit the arguments and write simply q instead of q(θ, ϕ, u, v). Note that 0 ≤ q ≤ 2 and 
q � |θ − ϕ|2.

Lemma 6.6. (See [16, Corollary 3.5].) Let M, N ∈ N and L ∈ {0, 1} be fixed. The following estimates hold 
uniformly in t ∈ (0, 1] and θ, ϕ ∈ (0, π).

(i) If α, β ≥ −1/2, then

∣∣∂L
ϕ∂

N
θ ∂M

t Hα,β
t (θ, ϕ)

∣∣ �
¨

dΠα(u) dΠβ(v)
(t2 + q)α+β+3/2+(L+N+M)/2 .

(ii) If −1 < α < −1/2 ≤ β, then

∣∣∂L
ϕ∂

N
θ ∂M

t Hα,β
t (θ, ϕ)

∣∣ � 1 +
∑

K=0,1

∑
k=0,1,2

(
sin θ

2 + sin ϕ

2

)Kk

×
¨

dΠα,K(u) dΠβ(v)
(t2 + q)α+β+3/2+(L+N+M+Kk)/2 .

(iii) If −1 < β < −1/2 ≤ α, then

∣∣∂L
ϕ∂

N
θ ∂M

t Hα,β
t (θ, ϕ)

∣∣ � 1 +
∑

R=0,1

∑
r=0,1,2

(
cos θ2 + cos ϕ2

)Rr

×
¨

dΠα(u) dΠβ,R(v)
(t2 + q)α+β+3/2+(L+N+M+Rr)/2 .

(iv) If −1 < α, β < −1/2, then

∣∣∂L
ϕ∂

N
θ ∂M

t Hα,β
t (θ, ϕ)

∣∣ � 1 +
∑

K,R=0,1

∑
k,r=0,1,2

(
sin θ

2 + sin ϕ

2

)Kk(
cos θ2 + cos ϕ2

)Rr

×
¨

dΠα,K(u) dΠβ,R(v)
(t2 + q)α+β+3/2+(L+N+M+Kk+Rr)/2 .

Lemma 6.7. (See [16, Lemma 3.8].) Assume that M, N ∈ N and L ∈ {0, 1} are fixed. Given α, β > −1, there 
exists an ε = ε(α, β) > 0 such that
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∣∣∂L
ϕ∂

N
θ ∂M

t Hα,β
t (θ, ϕ)

∣∣
� e

−t
(∣∣∣α+β+1

2

∣∣∣+ε
)

+ χ{N=L=0, α+β+1�=0}e
−t

∣∣∣α+β+1
2

∣∣∣ + χ{M=N=L=0, α+β+1=0},

uniformly in t ≥ 1 and θ, ϕ ∈ (0, π).

The next lemma gives control of certain expressions in terms of the right-hand sides of the growth and 
gradient conditions. Note that the second estimate is an immediate consequence of the first one and the 
bound q � |θ − ϕ|2.

Lemma 6.8. (See [16, Lemma 3.1].) Let α, β > −1. Assume that ξ1, ξ2, κ1, κ2 ≥ 0 are fixed and such that 
α + ξ1 + κ1, β + ξ2 + κ2 ≥ −1/2. Then, uniformly in θ, ϕ ∈ (0, π), θ �= ϕ,

(
sin θ

2 + sin ϕ

2

)2ξ1(
cos θ2 + cos ϕ2

)2ξ2 ¨ dΠα+ξ1+κ1(u) dΠβ+ξ2+κ2(v)
q(θ, ϕ, u, v)α+β+ξ1+ξ2+3/2

� 1
μα,β(B(θ, |θ − ϕ|)) ,(

sin θ

2 + sin ϕ

2

)2ξ1(
cos θ2 + cos ϕ2

)2ξ2 ¨ dΠα+ξ1+κ1(u) dΠβ+ξ2+κ2(v)
q(θ, ϕ, u, v)α+β+ξ1+ξ2+2

� 1
|θ − ϕ|μα,β(B(θ, |θ − ϕ|)) .

Finally, we will also need an estimate stated in the next lemma, which does not seem to appear elsewhere.

Lemma 6.9. Let η ∈ R, ξ > −1 and γ > 0. Then

1ˆ

0

( 1ˆ

0

t2γ−1 dt(
(t + s)2 + q

)η)1/2

sξ ds �
{
q−(η−ξ−γ−1)/2, η − ξ − γ > 1,
log(4/q), η − ξ − γ ≤ 1,

uniformly in q.

Proof. Denote by I the expression we need to estimate. Splitting the inner integral and using the elementary 
relation 

√
A + B �

√
A +

√
B, A, B ≥ 0, we get

I �
1ˆ

0

( sˆ

0

t2γ−1 dt(
(t + s)2 + q

)η)1/2

sξ ds +
1ˆ

0

( 1ˆ

s

t2γ−1 dt(
(t + s)2 + q

)η)1/2

sξ ds

≡ I1 + I2.

We will treat I1 and I2 separately.
Observe that in the region of integration in I1 we have t + s � s, so

I1 �
1ˆ

0

( sˆ

0

t2γ−1 dt

)1/2
sξ ds

(s2 + q)η/2
�

1ˆ

0

sξ+γ ds

(s2 + q)η/2
= q−(η−ξ−γ−1)/2

1/√qˆ

0

vξ+γ dv

(1 + v2)η/2
,

where the last equality is obtained by the change of variable s = √
qv. Since
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1/√qˆ

0

vξ+γ dv

(1 + v2)η/2
�

⎧⎪⎨⎪⎩
1, η − ξ − γ > 1,
log(4/q), η − ξ − γ = 1,
q(η−ξ−γ−1)/2, η − ξ − γ < 1,

and clearly 1 � log(4/q), the desired bound for I1 follows.
To deal with I2 we consider two main cases. If q ≥ 1, then (t + s)2 + q � 1 and it is easy to see that 

I2 � 1. This is even stronger estimate than needed. When q < 1, we split the integral in a similar manner 
as in case of I1 and get

I2 �

√
qˆ

0

( √
qˆ

s

t2γ−1 dt(
(t + s)2 + q

)η)1/2

sξ ds +

√
qˆ

0

( 1ˆ
√
q

t2γ−1 dt(
(t + s)2 + q

)η)1/2

sξ ds

+
1ˆ

√
q

( 1ˆ

s

t2γ−1 dt(
(t + s)2 + q

)η)1/2

sξ ds ≡ J1 + J2 + J3.

Notice that s < t <
√
q in J1, s <

√
q < t in J2 and 

√
q < s < t in J3. Consequently, we have

J1 � q−η/2

√
qˆ

0

( √
qˆ

s

t2γ−1 dt

)1/2

sξ ds � q−(η−ξ−γ−1)/2.

In case of J2 we can write

J2 �

√
qˆ

0

( 1ˆ
√
q

t−2η+2γ−1 dt

)1/2

sξ ds.

Then, assuming that η �= γ, we get

J2 � |1 − q−η+γ |1/2q(ξ+1)/2 ≤ q(ξ+1)/2 + q−(η−ξ−γ−1)/2 � 1 + q−(η−ξ−γ−1)/2,

while for η = γ we obtain

J2 � (− log q)1/2q(ξ+1)/2 � 1.

Finally, considering J3, we have

J3 �
1ˆ

√
q

( 1ˆ

s

t−2η+2γ−1 dt

)1/2

sξ ds.

Assuming first that η �= γ, we see that

J3 � 1 + q(ξ+1)/2 +
1ˆ

√
q

s−η+ξ+γ ds � 1 +
1ˆ

√
q

s−η+ξ+γ ds,

which easily leads to the bound

J3 � q−(η−ξ−γ−1)/2 + log(4/q).
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In the remaining case η = γ we have

J3 � (− log q)1/2
1ˆ

√
q

sξ ds � log(4/q).

Combining the above estimates of J1, J2 and J3 we get

I2 � q−(η−ξ−γ−1)/2 + log(4/q).

Since log(4/q) � q−(η−ξ−γ−1)/2 if η− ξ−γ > 1 and q−(η−ξ−γ−1)/2 < log(4/q) if η− ξ−γ ≤ 1, the necessary 
bound for I2 follows. �

Now we are in a position to prove Lemma 6.5.

Proof of Lemma 6.5. Let m = �γ� +1. In view of the estimates from Lemma 6.6, it is natural and convenient 
to consider separately the four cases: α, β ≥ −1/2, −1 < α < −1/2 ≤ β, −1 < β < −1/2 ≤ α and 
−1 < α, β < −1/2. The treatment of each of them relies on similar arguments, thus we shall present the 
details only for the most involved case −1 < α, β < −1/2. Analysis in the other cases is left to the reader.

To show the growth condition (13) we split the kernel

∂γ
t Hα,β

t (θ, ϕ) = 1
Γ(m− γ)

∞̂

0

χ{t+s<1}
∂m

∂tm
Hα,β

t+s(θ, ϕ) sm−γ−1 ds

+ 1
Γ(m− γ)

∞̂

0

χ{t+s≥1}
∂m

∂tm
Hα,β

t+s(θ, ϕ) sm−γ−1 ds ≡ A1 + A2.

We will estimate A1 and A2 separately.
Using Minkowski’s integral inequality and then Lemma 6.6 (applied with L = N = 0 and M = m) and 

Lemma 6.9 (with η = 2α + 2β + 3 + m + Kk + Rr and ξ = m − γ − 1) we get

‖A1‖L2(t2γ−1 dt)

� 1 +
∑

K,R=0,1

∑
k,r=0,1,2

(
sin θ

2 + sin ϕ

2

)Kk(
cos θ2 + cos ϕ2

)Rr

×
¨ ( 1ˆ

0

( 1ˆ

0

t2γ−1 dt(
(t + s)2 + q

)2α+2β+3+m+Kk+Rr

)1/2

sm−γ−1 ds

)
dΠα,K(u) dΠβ,R(v)

� 1 +
∑

K,R=0,1

∑
k,r=0,1,2

(
sin θ

2 + sin ϕ

2

)Kk(
cos θ2 + cos ϕ2

)Rr

×
¨ [(1

q

)α+β+3/2+Kk/2+Rr/2
+ log 4

q

]
dΠα,K(u) dΠβ,R(v).

The term 1 above satisfies the growth bound, because μα,β((0, π)) < ∞. The desired estimate for the 
expression that emerges from considering the first term in the last double integral follows directly by an 
application of Lemma 6.8 (specified to ξ1 = Kk/2, κ1 = −α − 1/2 if K = 0 and κ1 = 1 − k/2 if K = 1, 
ξ2 = Rr/2, κ2 = −β − 1/2 if R = 0 and κ2 = 1 − r/2 if R = 1). To bound the remaining expression, first 
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recall that q � |θ − ϕ|2 and observe that log(4/q) � log(4/|θ − ϕ|). On the other hand, we have (see [14, 
Lemma 4.2])

μα,β

(
B(θ, |θ − ϕ|)

)
� |θ − ϕ|(θ + ϕ)2α+1(π − θ + π − ϕ)2β+1, θ, ϕ ∈ (0, π),

so there exists an ε = ε(α, β) > 0 such that

μα,β

(
B(θ, |θ − ϕ|)

)
� |θ − ϕ|ε, θ, ϕ ∈ (0, π).

Thus log(4/q) is controlled by the right-hand side in (13) and the conclusion follows by finiteness (cf. [16, 
Section 2]) of the measures appearing in the last double integral.

Considering A2, notice that Lemma 6.7 implies that there is δ = δ(α, β) > 0 such that

χ{t+s≥1}

∣∣∣ ∂m

∂tm
Hα,β

t+s(θ, ϕ)
∣∣∣ � e−(t+s) δ, θ, ϕ ∈ (0, π).

Then using Minkowski’s integral inequality we get

‖A2‖L2(t2γ−1 dt) �
∞̂

0

( ∞̂

0

e−2(t+s)δt2γ−1 dt

)1/2

sm−γ−1 ds < ∞,

which implies the desired bound for A2.
Now we turn to proving the gradient estimate. For symmetry reasons, it is enough to consider the partial 

derivative with respect to θ. Let us first ensure that the weak derivative ∂θ of Gγ
α,β(θ, ϕ) exists in the 

sense of (17) and is equal to {∂θ∂γ
t Hα,β

t (θ, ϕ)}t>0. It suffices to check that, for each θ, ϕ ∈ (0, π), θ �= ϕ, 
∂θ∂

γ
t Hα,β

t (θ, ϕ) ∈ L2(t2γ−1 dt) and

∞̂

0

h(t) ∂θ∂γ
t Hα,β

t (θ, ϕ) t2γ−1 dt = ∂θ

∞̂

0

h(t) ∂γ
t Hα,β

t (θ, ϕ) t2γ−1 dt, h ∈ L2(t2γ−1 dt). (18)

The first of these facts is justified by the bounds on B1 and B2 obtained below. To verify (18) we use Fubini’s 
theorem (its application is legitimate, in view of Schwarz’ inequality and the bound for {∂θ∂γ

t Hα,β
t (θ, ϕ)}t>0

proved in a moment). Take θ1, θ2 ∈ (0, π) such that ϕ /∈ [θ1, θ2]. Then

θ2ˆ

θ1

∞̂

0

h(t) ∂θ∂γ
t Hα,β

t (θ, ϕ) t2γ−1 dtdθ =
∞̂

0

h(t) ∂γ
t Hα,β

t (θ2, ϕ) t2γ−1 dt

−
∞̂

0

h(t) ∂γ
t Hα,β

t (θ1, ϕ) t2γ−1 dt.

Dividing both sides of the above equality by θ2 − θ1 and taking the limit as θ1 → θ2 we get (18).
It remains to show that ‖∂θ∂γ

t Hα,β
t (θ, ϕ)‖L2(t2γ−1dt) is controlled by the right-hand side of (16). To 

proceed, we decompose the kernel in the same way as we did when dealing with the growth condition,

∂θ∂
γ
t Hα,β

t (θ, ϕ) = 1
Γ(m− γ)

∞̂

0

χ{t+s<1}∂θ
∂m

∂tm
Hα,β

t+s(θ, ϕ) sm−γ−1 ds

+ 1
Γ(m− γ)

∞̂

χ{t+s≥1}∂θ
∂m

∂tm
Hα,β

t+s(θ, ϕ) sm−γ−1 ds ≡ B1 + B2.
0
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Using Minkowski’s integral inequality together with Lemma 6.6, and then Lemma 6.9 (specified to η =
2α + 2β + 4 + m + Kk + Rr and ξ = m − γ − 1) we obtain

‖B1‖L2(t2γ−1 dt)

� 1 +
∑

K,R=0,1

∑
k,r=0,1,2

(
sin θ

2 + sin ϕ

2

)Kk(
cos θ2 + cos ϕ2

)Rr

×
¨ ( 1ˆ

0

( 1ˆ

0

t2γ−1 dt(
(t + s)2 + q

)2α+2β+4+m+Kk+Rr

)1/2

sm−γ−1 ds

)
dΠα,K(u) dΠβ,R(v)

� 1 +
∑

K,R=0,1

∑
k,r=0,1,2

(
sin θ

2 + sin ϕ

2

)Kk(
cos θ2 + cos ϕ2

)Rr

×
¨ [(1

q

)α+β+2+Kk/2+Rr/2
+ log 4

q

]
dΠα,K(u) dΠβ,R(v).

Now the same arguments as in the case of A1 give the desired estimate.
As for B2, just notice that by Lemma 6.7 there exists δ = δ(α, β) > 0 such that

χ{t+s≥1}

∣∣∣∂θ ∂m

∂tm
Hα,β

t+s(θ, ϕ)
∣∣∣ � e−(t+s) δ, θ, ϕ ∈ (0, π).

From here the required bound for B2 follows as in the case of A2. This completes the proof of Lemma 6.5. �
Note added in proof

A recent paper by Almeida, Betancor, Castro, Sanabria and Scotto, see arXiv:1410.3642, contains inter-
esting results that are related to our research.
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