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In this paper we introduce the Δ-Volterra lattice which is interpreted in terms of 
symmetric orthogonal polynomials. It is shown that the measure of orthogonality 
associated with these systems of orthogonal polynomials evolves in t like (1 +
x2)1−tμ(x) where μ is a given positive Borel measure. Moreover, the Δ-Volterra 
lattice is related to the Δ-Toda lattice from Miura or Bäcklund transformations. 
The main ingredients are orthogonal polynomials which satisfy an Appell condition 
with respect to the forward difference operator Δ and the characterization of the 
point spectrum of a Jacobian operator that satisfies a Δ-Volterra equation (Lax 
type theorem). We also provide an explicit example of solutions of Δ-Volterra and 
Δ-Toda lattices, and connect this example with the results presented in the paper.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Nonlinear evolution equations have been used as models to describe various physical phenomena as 
shallow water waves and ion-acoustic waves in plasmas. In 1967, M. Toda [28] introduced a model, that he 
named as exponential lattice, for a one-dimensional crystal in solid state physics with a nearest neighbor 
interaction, with potential

φ(r) = a

b
exp(−r) + ar + const. , a, b > 0 ,
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such that the particles are subject to

dpk(t)
dt

= exp(qk−1(t) − qk(t)) − exp(qk(t) − qk+1(t)),
dqk(t)
dt

= pk(t) ,

where qk(t) and pk(t) are the displacement of the k-th particle from its equilibrium position and its momen-
tum, respectively and the mass is assumed to be equal to the unity [5]. The latter Toda lattice equations 
describe the oscillations of an infinite system of points joined by spring masses, where the interaction is 
exponential in the distance between two spring masses [29]. Later on, Henón [13] and Flaschka [10] proved 
that the non-periodic Toda lattice is a completely Hamiltonian integrable system, with Hamiltonian function

H(q1, . . . , qm, p1, . . . , pm) = 1
2

m∑
n=1

p2
n +

m−1∑
n=1

exp
(
qn − qn+1

)
.

By using the Flaschka transformation

an(t) = exp
(
qn−1(t) − qn(t)

)
, bn(t) = dqn(t)

dt
,

the semi-infinite Toda lattice in one time variable is the system of ordinary differential equations

a−1(t) ≡ 0 , a0(t) ≡ 1 ,

⎧⎪⎪⎨
⎪⎪⎩

dan(t)
dt

= an(t)
(
bn−1(t) − bn(t)

)
,

dbn(t)
dt

= an(t) − an+1(t) ,
n ∈ N . (1)

The Toda lattice is integrable in the sense of Liouville and it is mainly a theoretical mathematical model 
due to the rich mathematical structure encoded in it.

There exists a closed relation between the Toda system (1) and orthogonal polynomials shown by Moser 
[22,23] and Kac and Moerbecke [15], that we briefly describe. Let t0 ∈ R and μ(x; t0) be a measure such 
that all the moments

un =
∫

R

xn dμ(x; t0) , n ∈ N , (2)

exist and are finite, and Pn(x) be the sequence of monic orthogonal polynomials with respect to μ(x; t0),
∫

R

Pn(x)Pm(x) dμ(x; t0) = h2
n δn,m ,

where δi,j denotes the Kronecker delta. As it is very well-known [7,14,27], the monic polynomials Pn(x; t0) ≡
Pn(x) satisfy a three-term recurrence relation

Pn+1(x) = (x− bn)Pn(x) − anPn−1(x) ,

with initial conditions P0(x) = 1 and P1(x) = x − b0.
The dynamic of the solutions of the Toda lattice (1) corresponds to the evolution of the spectral mea-

sure [23,24],

dμ(x; t) = exp(−xt)dμ(x, t0)∫ ,

exp(−xt)dμ(x, t0)
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of an operator J(t), defined in the standard basis of �2(0, ∞),

ek = (0, . . . , 0, 1, 0, . . . )T , k ∈ N ,

by a Jacobi matrix

J(t) =
(
Ji,j(t)

)
=

⎛
⎜⎜⎜⎝

b0(t) 1 0
a1(t) b1(t) 1 0

0 a2(t) b2(t) 1
. . .

. . . . . . . . . . . .

⎞
⎟⎟⎟⎠ , (3)

where the monic polynomials Pn(x; t) orthogonal with respect to the modified weight μ(x; t) satisfy

Pn+1(x; t) = (x− bn(t))Pn(x; t) − an(t)Pn−1(x; t) , n = 1, . . . , (4)

with initial conditions P0(x; t) = 1 and P1(x; t) = x − b0(t).
Let P be the column vector of monic orthogonal polynomials, i.e. P = (P0, P1, . . .)T , with respect to a 

linear functional u(t), defined in terms of its moments (2) by (cf. [19])

u(t) : P → R , with
〈
u(t), xn

〉
= un(t) , n ∈ N ,

and J(t) the corresponding Jacobi matrix (3). Then, the recurrence relation for the monic orthogonal 
polynomials can be written as

J(t)P = xP .

Next, we define the Stieltjes function [24,26],

S(z; t) = eT0 Rz(t) e0 ,

for the resolvent operator,

Rz(t) =
[
J(t) − z I

]−1
,

associated with the operator J(t) (cf. [1]). We shall assume that linear functional, u(t), is normalized, i.e.

u0(t) = 1 . (5)

By using (cf. [3])

〈
u(t), xn

〉
= Jn

1,1(t) , n ∈ N ,

the Stieltjes function reads as

S(z; t) = eT0 Rz(t) e0 = eT0
[
J(t) − z I

]−1
e0 = eT0

∞∑
n=0

J(t)n

zn+1 e0 =
∞∑

n=0

Jn
1,1(t)
zn+1

=
∞∑ un(t)

zn+1 =
〈
u(t), 1

z − x

〉
.

n=0
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A difference analogue of a Korteweg–de Vries equation,

a1(t) ≡ 0 , dan(t)
dt

= an(t)
(
an+1(t) − an−1(t)

)
, n = 2, 3, . . . ,

is called Langmuir lattice, due to its applications in modeling Langmuir oscillations in plasmas [12] or finite 
difference KDV equation [25], whose dynamic is given by

dμ(x; t) = exp(−x2t)dμ(x, t0)∫
exp(−x2t)dμ(x, t0)

. (6)

In [12] it was studied the construction of a solution of the Toda lattice

⎧⎪⎪⎨
⎪⎪⎩

dan(t)
dt

= an(t)
(
bn−1(t) − bn(t)

)
,

dbn(t)
dt

= an(t) − an+1(t) ,
n ∈ Z, (7)

from another given solution, considering sequences {an(t)}n∈Z, {bn(t)}n∈Z, of real functions. Both solutions 
of (7) were linked to each other by Bäcklund or Miura transformations

an(t) = γ2n(t)γ2n−1(t) , bn(t) = γ2n+1(t) + γ2n(t) + c , n ∈ Z,

ãn(t) = γ2n+1(t)γ2n(t) , b̃n(t) = γ2n+2(t) + γ2n+1(t) + c , n ∈ Z ,

with c an arbitrary complex constant independent of t and where {γn(t)}n∈Z is a solution of the Volterra 
lattice or Langmuir lattice (see [25, Theorem 1])

γ̇n+1(t) = γn+1(t)
(
γn+2(t) − γn(t)

)
, n ∈ Z . (8)

This Volterra system, also known as the KM system, was solved in [15] using a discrete version of the inverse 
scattering method. The Lax pair for (8) can be found in [23]. There exists a relation, first discovered by 
Hénon, between the Volterra system and the non-periodic Toda lattice (see [8,23] for more details).

In [6], this kind of analysis has been generalized to the full hierarchy of Toda and Volterra lattices studied 
in [2] and [1] (see also [9]).

Recently in [4], the following system of nonlinear difference equations, named Δ-Toda lattice:

⎧⎪⎨
⎪⎩

Δtan(t) = αn
1 (t)

(
bn−1(t) − bn(t + 1)

)
,

Δtbn(t) = αn
1 (t) − αn+1

1 (t) ,
n ∈ N , (9)

and its characterization have been presented, where

αn
1 (t) = gn(t)

b0(t + 1) + 1 ,

and

gn(t) =
n∏ ak(t + 1)

ak−1(t)
,

k=1
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assuming that b0(t + 1) + 1 �= 0 and a0(t) = 1, where the forward difference operator Δt is defined by

Δtg(t) = g(t + 1) − g(t) .

The Δ-Toda lattice (9) can be written in a Lax-type representation as a first-order linear difference 
system

ΔtJ(t) = A(t) J(t) − J(t + 1)A(t) ,

where

A(t) =

⎛
⎜⎜⎜⎝

b0(t + 1) 0
g1(t) b0(t + 1) 0

0 g2(t) b0(t + 1)
. . .

. . . . . . . . .

⎞
⎟⎟⎟⎠ ,

and J(t) was defined in (3). Let us now introduce the Δ-Volterra lattice (or Δ-Langmuir lattice) by means 
of a new Lax-type pair representation

ΔtΓ(t) = B(t) Γ(t) − Γ(t + 1)B(t) , (10)

where

Γ(t) =
(
Γi,j(t)

)
=

⎛
⎜⎜⎜⎝

0 1 0
γ1(t) 0 1 0

0 γ2(t) 0 1
. . .

. . . . . . . . . . . .

⎞
⎟⎟⎟⎠ , (11)

B(t) =

⎛
⎜⎜⎜⎜⎜⎜⎝

γ1(t + 1) 0
0 γ1(t + 1) 0

η1(t) 0 γ1(t + 1)
. . .

0 η2(t) 0
. . .

. . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎠

, (12)

and

η1(t) = γ1(t + 1)γ2(t + 1) , ηn(t) = γ1(t + 1) · · · γn+1(t + 1)
γ1(t) · · · γn−1(t)

, n = 2, . . . , (13)

with 1 + γ1(t + 1) �= 0 and γn(t) �= 0.
The main goal of this work is to obtain characterizations of the Δ-Volterra lattice (10). This will be 

done in terms of the moments for the associated linear functional, the Stieltjes function, and in terms of the 
Appell type equation that these families of symmetric orthogonal polynomials satisfy. Besides, it is shown 
that the solutions of Δ-Toda lattice (9) are connected to Δ-Volterra lattice (10) through Miura or Bäcklund 
transformations [12,18].

The structure of the paper is the following: In Section 2, we present the main theorem of the Δ-Volterra 
lattices. We give a representation of the symmetric orthogonality functional and a Lax-type theorem. In 
Section 3, we present the connection between the Bäcklund or Miura transformations in terms of the theory 
of orthogonal polynomials. Finally, in Section 4, an explicit example of solutions of Δ-Volterra and Δ-Toda 
lattices related to Jacobi polynomials is given, and connected with the results presented in this paper.
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2. Δ-Volterra system

Let us consider the following Δ-Volterra lattice (or Δ-Langmuir lattice) equivalent to (10):

⎧⎪⎪⎨
⎪⎪⎩

Δtγ1(t) = −γ1(t + 1)γ2(t + 1)
1 + γ1(t + 1) ,

Δtγn(t) = γn(t + 1) · · · γ1(t + 1)
(1 + γ1(t + 1))γn−1(t) · · · γ1(t)

(
γn−1(t) − γn+1(t + 1)

)
, n = 2, . . . ,

(14)

assuming that 1 + γ1(t + 1) �= 0 and γn(t) �= 0.
We shall also consider the backward difference operator, ∇t, defined by

∇tg(t) = g(t) − g(t− 1) .

Theorem 1. Let us assume that the sequence {γn(t)}n∈N is uniformly bounded. The following conditions are 
equivalent:

1. The Jacobi matrix Γ(t) defined in (11) satisfies the matrix difference equation (10).
2. The moments un(t) associated with a symmetric functional u(t), defined by (2), satisfy

Δtun(t) = −un+2(t + 1) + u2(t + 1)un(t) , when n is even , (15)

since u2n+1(t) = 0.
3. The Stieltjes function associated with Γ(t) satisfies

ΔtS(z; t) = −z2 S(z; t + 1) + u2(t + 1)S(z, t) + z . (16)

4. The linear functional u(t) associated with Γ(t) satisfies

Δtu(t) = −x2 u(t + 1) + u2(t + 1)u(t) . (17)

5. The sequence of monic symmetric polynomials, {Rn(x; t)}n∈N, orthogonal with respect to the functional 
u(t) associated with Γ(t) satisfies an Appell type property

ΔtRn(x; t) = αn
2 (t)Rn−2(x; t) , (18)

where

αn
2 (t) =

〈
u(t + 1), xnRn(x; t + 1)

〉
(1 + u2(t + 1))

〈
u(t), xn−2Rn−2(x; t)

〉 = ηn−1(t)
1 + γ1(t + 1) , (19)

for n = 2, . . . , and ηn(t) was defined in (13).

Proof. (1) ⇒ (2). By induction it can be proved that

ΔtΓn(t) = B(t) Γn(t) − Γn(t + 1)B(t) , (20)

where B(t) is defined in (12). By using (2)

eT0 ΔtΓn(t) e0 = Δt

(
eT0 Γn(t) e0

)
= Δtun(t) ,
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where eT0 = (1, 0, . . . ). Moreover, from (20) we have

eT0 ΔtΓn(t) e0 = γ1(t + 1) Γn
1,1(t) −

(
Γn

1,1(t + 1) γ1(t + 1) + Γn
1,3(t + 1) η1(t)

)
= u2(t + 1)un(t) − un+2(t + 1) ,

because γ1(t + 1) = Γ2
1,1(t + 1) = u2(t + 1) and as a consequence of the product of matrices η1(t) =

Γ2
3,1(t + 1) = γ1(t + 1)γ2(t + 1), which completes the proof.
Moreover, from (10) we obtain

ηn(t) = γn+1(t + 1)
γn−1(t)

ηn−1(t) , n = 2, . . . ,

and

(
1 + γ1(t + 1)

)
Δtγ1(t) = −η1(t) ,

(
1 + γ1(t + 1)

)
Δtγn(t) = ηn−1(t) − ηn(t) , (21)

for n = 2, . . . , what leads to the Δ-Volterra lattice (14).
(2) ⇒ (3). From (15), then

ΔtS(z; t) =
∞∑

n=0

Δtun(t)
zn+1 = −z2

∞∑
n=0

un+2(t + 1)
zn+3 + u2(t + 1)

∞∑
n=0

un(t)
zn+1

where we have used that u0(t + 1) = 1 and u1(t + 1) = 0. As a consequence, we obtain (16).
(3) ⇒ (4). By using

S(z; t) =
〈
u(t), 1

z − x

〉
,

and (5), if we apply the Δt operator, we have that the equation (16) reads as

ΔtS(z; t) :=
〈
Δtu(t), 1

z − x

〉
= −z2 〈u(t + 1), 1

z − x

〉
+ u2(t + 1)

〈
u(t), 1

z − x

〉
+ z

=
〈
u(t + 1), −z2

z − x
+ z + x

〉
+ u2(t + 1)

〈
u(t), 1

z − x

〉

=
〈
u(t + 1), −x2

z − x

〉
+ u2(t + 1)

〈
u(t), 1

z − x

〉
,

which implies

〈
Δtu(t) + x2 u(t + 1) − u2(t + 1)u(t), 1

z − x

〉
= 0 ,

and so, all the moments for the linear functional Δtu(t) + x2 u(t + 1) − u2(t + 1) u(t) are zero, and (17) is 
obtained.

Moreover, we have

(
1 + u2(t + 1)

)
Δtu(t) =

(
− x2 + u2(t + 1)

)
u(t + 1) .

(4) ⇒ (5). First of all, let us show that a symmetric regular linear functional u(t) satisfying (15), is such 
that 1 + u2(t + 1) = 1 + γ1(t + 1) �= 0. Let us assume that u2(t + 1) = −1. Then, from (15) for n = 2, we 
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obtain that u4(t + 1) = 1 which yields

det(H3(t + 1)) =

∣∣∣∣∣
u0(t + 1) u1(t + 1) u2(t + 1)
u1(t + 1) u2(t + 1) u3(t + 1)
u2(t + 1) u3(t + 1) u4(t + 1)

∣∣∣∣∣ =

∣∣∣∣∣
1 0 −1
0 −1 0
−1 0 1

∣∣∣∣∣ = 0 ,

in contradiction with being u(t) a regular linear functional (cf. for instance [7]).
Let {Rn(x; t)}n∈N be the sequence of monic symmetric orthogonal polynomials with respect to the linear 

functional u(t), i.e.

Rn(−x; t) = (−1)nRn(x; t) , n ∈ N .

Since {Rn(x; t)}n∈N is a basis in the space of polynomials of degree n, we have

∇tRn(x; t + 1) =
n∑

k=1

αn
k (t)Rn−k(x; t) . (22)

By convention we shall assume that α0
1 = 0. For n = 1, from (22) it is easy to check that α1

1(t) = 0 because 
R0(x; t) = 1. Now, if we suppose that we already have tested that

ΔtRn(x; t) = αn
1 (t)Rn−1(x; t) + αn

2 (t)Rn−2(x; t) ,

by comparison of the coefficients in x we have that αn
1 (t) = 0, using that Rn(x; t) is symmetric.

We shall prove for n = 1, . . . that αn
k = 0 for k = 3, . . . , n and αn

2 �= 0.
From (22) we can write

Rn(x; t + 1) = Rn(x; t) +
n∑

k=1

αn
k (t)Rn−k(x; t) , (23)

and by using the orthogonality of Rn(x; t) it holds
〈
u(t), Rn(x; t + 1)

〉
= αn

n(t)
〈
u(t), 1

〉
.

Moreover, since 
〈
u(t + 1), x2Rn(x; t + 1)

〉
= 0, for n = 3, . . . , we have

αn
n(t)

〈
u(t), 1

〉
= αn

n(t)
〈
u(t), R0(x; t)

〉
=

n∑
k=1

αn
k (t)

〈
u(t), Rn−k(x; t)

〉

=
〈
u(t + 1),∇tRn(x; t + 1)

〉
= −

〈
Δt(u(t)), Rn(x; t + 1)

〉
=

〈
u(t + 1), x2Rn(x; t + 1)

〉
− u2(t + 1)

〈
u(t), Rn(x; t + 1)

〉
= −u2(t + 1)

〈
u(t), Rn(x; t + 1)

〉
.

We now obtain (1 + u2(t + 1))αn
n(t) 

〈
u(t), 1

〉
= 0. Assuming that 1 + u2(t + 1) �= 0 and since 

〈
u(t), 1

〉
�= 0, 

we have αn
n(t) = 0.

In the next step we shall prove that αn
n−1(t) = 0. From

n−1∑
k=1

αn
k (t)

〈
u(t), xRn−k(x; t)

〉
= αn

n−1(t)
〈
u(t), xR1(x; t)

〉

=
〈
u(t), x∇tRn(x; t + 1)

〉
= −

〈
Δt(u(t)), xRn(x; t + 1)

〉
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=
〈
u(t + 1), x3Rn(x; t + 1)

〉
− u2(t + 1)

〈
u(t), xRn(x; t + 1)

〉
= −u2(t + 1)

〈
u(t), Rn(x; t + 1)

〉
= −u2(t + 1)αn

n−1(t)
〈
u(t), xR1(x; t)

〉
,

using that 
〈
u(t + 1), x3Rn(x; t + 1)

〉
= 0, for n = 4, . . . and (23), we obtain

(
1 + u2(t + 1)

)
αn
n−1(t)

〈
u(t), xR1(x; t)

〉
= 0 .

Since 1 + u2(t + 1) �= 0 and 
〈
u(t), xR1(x; t)

〉
�= 0 by orthogonality, we conclude that αn

n−1(t) = 0.
Repeating this process we obtain that αn

k(t) = 0 for k = 4, . . . , n. Let us prove in the last step that 
αn

3 (t) = 0. From

3∑
k=1

αn
k (t)

〈
u(t), xn−3Rn−k(x; t)

〉
= αn

3 (t)
〈
u(t), xn−3Rn−3(x; t)

〉

=
〈
u(t), xn−3∇tRn(x; t + 1)

〉
= −

〈
Δt(u(t)), xn−3Rn(x; t + 1)

〉
=

〈
u(t + 1), xn−1Rn(x; t + 1)

〉
− u2(t + 1)

〈
u(t), xRn(x; t + 1)

〉
= −u2(t + 1)

〈
u(t), xn−3Rn(x; t + 1)

〉
= −u2(t + 1)αn

3 (t)
〈
u(t), xn−3Rn−3(x; t)

〉
,

using that 
〈
u(t + 1), xn−1Rn(x; t + 1)

〉
= 0 and (23), we obtain

(1 + u2(t + 1))αn
3 (t)

〈
u(t), xn−3Rn−3(x; t)

〉
= 0 .

Since 1 + u2(t + 1) �= 0 and 
〈
u(t), xn−3Rn−3(x; t)

〉
�= 0 by orthogonality, we conclude that αn

3 (t) = 0.
Therefore, we have obtained that

∇tRn(x; t + 1) = αn
2 (t)Rn−2(x; t) .

Finally, we will determine αn
2 explicitly:

αn
2 (t)

〈
u(t), xn−2Rn−2(x; t)

〉
=

〈
u(t), xn−2∇t(Rn(x; t + 1))

〉
= −

〈
Δt(u(t)), xn−2Rn(x; t + 1)

〉
=

〈
u(t + 1), xnRn(x; t + 1)

〉
− u2(t + 1)

〈
u(t), xn−2Rn(x; t + 1)

〉
=

〈
u(t + 1), xnRn(x; t + 1)

〉
− u2(t + 1)

〈
u(t), xn−2(Rn(x; t) + αn

2 (t)Rn−2(x; t)
)〉

,

using (17). Hence

(
1 + u2(t + 1)

)
αn

2 (t)
〈
u(t), xn−2Rn−2(x; t)

〉
=

〈
u(t + 1), xnRn(x; t + 1)

〉
,

which gives the value of αn
2 (t) given in (19). Moreover, when n = 2, we can obtain easily that

α2
2(t) = −Δtγ1(t) ,

taking into account that R2(x; t) = x2 − γ1(t) and α2
2(t) = α2

2(t)R0(x; t) = ΔtR2(x; t).
(5) ⇒ (1). If we apply Δt to the recurrence relation

xRn(x; t) = Rn+1(x; t) + γn(t)Rn−1(x; t) , n = 1, . . . , (24)
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with R−1(x; t) = 0 and R0(x; t) = 1, we get

αn
2xRn−2(x; t) = ΔtRn+1(x; t) + Δtγn(t)Rn−1(x; t) + γn(t + 1) ΔtRn−1(x; t) . (25)

If we use again the recurrence relation to expand

xRn−2(x; t) = Rn−1(x; t) + γn−2(t)Rn−3(x; t) ,

and ΔtRn+1(x; t) = αn+1
2 Rn−1(x; t), by equating in (25) the coefficients in Rn−1(x, t) and Rn−3(x; t), we 

get the equations

αn+1
2 (t) γn−1(t) = αn

2 (t) γn+1(t + 1) , αn
2 (t) = αn+1

2 (t) + Δtγn(t) , n = 2, . . . .

As a consequence, using (19) we obtain (21) and

αn
2 (t) = 1

1 + γ1(t + 1)
γn(t + 1)γn−1(t + 1) · · · γ2(t + 1)γ1(t + 1)

γn−2(t)γn−3(t) · · · γ1(t)
.

Thus, we have

(
1 + γ1(t + 1)

)
Δtγn(t) = αn

2 (t) − αn+1
2 (t)

= γn(t + 1)γn−1(t + 1) · · · γ2(t + 1)γ1(t + 1)
γn−1(t)γn−2(t) · · · γ1(t)

(
γn−1(t) − γn+1(t + 1)

)
. �

Theorem 2. Assume that the normalized symmetric functional u(t) verifies

u(t) = κ
(
1 + x2)1−t

v ,

where κ is the normalizing constant and v is a positive definite linear functional. Then, the coefficients 
{γn(t)}n∈N of the Jacobi matrix Γ(t) associated with the functional u(t) are solutions of the Δ-Volterra 
lattice (14).

Proof. Let

f(x, t) =
(
1 + x2)1−t

, (26)

and the moments

〈
v, xn

〉
=

∫
xn d	(x) , n = 0, 1, . . . .

Let un(t) be the moments of the linear functional u(t),

un(t) =
∫
f(x, t)xn d	(x)∫
f(x, t) d	(x)

.

Since

Δt(f(t)/g(t)) = Δtf(t) g(t) − f(t) Δtg(t)
,

g(t)g(t + 1)
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then

Δtun(t) =
∫

Δtf(x, t)xn d	(x)∫
f(x, t + 1) d	(x)

−
( ∫

f(x, t)xn d	(x)
)( ∫

Δtf(x, t) d	(x)
)

( ∫
f(x, t) d	(x)

)( ∫
f(x, t + 1) d	(x)

) .

By using Δtf(x, t) = −x2 f(x, t + 1), we obtain

Δtun(t) = −un+2(t + 1) + u2(t + 1)un(t) ,

which completes the proof. �
Remark 1. Let us consider the difference operator

Δt,hf(x, t) = f(x, t + h) − f(x, t)
h

, lim
h→0

Δt,hf(x, t) = ∂

∂t
f(x, t) .

In this case, the function fh(x, t) to be considered analogue of (26) is

fh(x, t) =
(
1 + hx2)1−t/h

.

It yields,

lim
h→0

fh(x, t) = exp(−x2t) ,

which is the evolution (6) associated with the continuous case [25].

Next, we prove a Lax-type theorem [17, Theorem 3, p. 270].

Theorem 3. Let λ(t) be a spectral point of the Jacobi matrix Γ(t), i.e.

Γ(t)P(λ(t)) = λ(t)P(λ(t)); (27)

then, Γ(t) satisfies (10) if, and only if, Δtλ(t) = 0.

Proof. If we apply the Δt operator to (27) we obtain

ΔtΓ(t)P(λ(t)) + Γ(t + 1)ΔtP(λ(t)) = Δtλ(t)P(λ) + λ(t + 1)ΔtP(λ(t)).

Then,

B(t)λ(t)P(λ(t)) − Γ(t + 1)B(t)P(λ(t)) + (Γ(t + 1) − λ(t + 1) I)ΔtP(λ(t))

= (Δtλ(t))P(λ(t)),

and so,
(
Γ(t + 1) − λ(t + 1)

)(
ΔtP(λ(t)) −B(t)P(λ(t))

)
=

(
Δtλ(t) I − (λ(t + 1) − λ(t))B(t)

)
P(λ(t)),

with B(t) defined by (12), or equivalently,
(
Γ(t + 1) − λ(t + 1)

)(
ΔtP(λ(t)) −B(t)P(λ(t))

)
= Δtλ(t)(I −B(t))P(λ(t)).
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From this we get, as 1 + γ1(t + 1) �= 0, that Δtλ(t) = 0 if and only if

(
Γ(t + 1) − λ(t + 1)

)(
ΔtP(λ(t)) −B(t)P(λ(t))

)
= 0,

or, what is equivalent, there exists s ∈ R such that

ΔtP(λ(t)) = B(t)P(λ(t)) + sP(λ(t + 1)),

which is equation (18) in vector notation, as s = γ1(t + 1). �
3. Bäcklund or Miura transformations and sequences of polynomials

Bäcklund or Miura transformations are equations that relate different solutions of the same nonlinear 
evolution equation [11,18,21]. In this section we give a simple connection between Δ-Volterra and Δ-Toda 
lattices by using background knowledge of the theory of orthogonal polynomials [7].

Lemma 4. Let {γn(t)}n∈N be a solution of the Δ-Volterra lattice (14). Then {an(t)}n∈N and {bn(t)}n∈N

defined by a0(t) = 1 and

an(t) = γ2n(t)γ2n−1(t) , bn(t) = γ2n+1(t) + γ2n(t) + c , n = 1, . . . , (28)

are solutions of the Δ-Toda lattice (9). Moreover, the sequences {ãn(t)}n∈N and {b̃n(t)}n∈N defined by 
ã0(t) = 1 and

ãn(t) = γ2n+1(t)γ2n(t) , b̃n(t) = γ2n+2(t) + γ2n+1(t) + c , n = 1, . . . , (29)

are also solutions of the Δ-Toda lattice (9), assuming that γ0(t) = 1.

Proof. If we apply the Δt operator to the first equation of (28) we obtain

Δtan(t) = Δtγ2n(t) γ2n−1(t) + γ2n(t + 1) Δtγ2n−1(t) .

From (14) it yields

Δtan(t) = γ2n(t + 1) · · · γ1(t + 1)(
1 + γ1(t + 1)

)
γ2n−1(t) · · · γ1(t)

(
γ2n−1(t) − γ2n+1(t + 1)

)
γ2n−1(t)

+ γ2n(t + 1) γ2n−1(t + 1) · · · γ1(t + 1)(
1 + γ1(t + 1)

)
γ2n−2(t) · · · γ1(t)

(
γ2n−2(t) − γ2n(t + 1)

)

= γ2n(t + 1) · · · γ1(t + 1)(
1 + γ1(t + 1)

)
γ2n−2(t) · · · γ1(t)

(
γ2n−1(t) + γ2n−2(t) − γ2n+1(t + 1) − γ2n(t + 1)

)

where by using (28) we finally obtain

Δtan(t) = an(t + 1) · · · a1(t + 1)(
1 + γ1(t + 1)

)
an−1(t) · · · a1(t)

(
bn−1(t) − bn(t + 1)

)
.
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Moreover, if we apply the Δt operator to the second equation of (28) we obtain

Δtbn(t) = Δtγ2n+1(t) + Δtγ2n(t) ,

where by using (28) the result follows.
The results for {ãn(t)}n∈N and {b̃n(t)}n∈N follow in a similar way. �
Given a family of tridiagonal matrices {J(t), t ∈ R}, as in (3), we consider the sequence of polynomials 

{Pn(x; t)}n∈N defined in (4). It is well-known [7] that, if an(t) �= 0 for n = 1, 2, . . . , then the sequence 
{Pn(x; t)}n∈N is orthogonal with respect to some quasi-definite moment functional.

Lemma 5. Let {an(t)}n∈N and {bn(t)}n∈N be solutions of the Δ-Toda lattice (9), and {Pn(x; t)}n∈N be the 
sequence of orthogonal polynomials with Jacobi matrix (3). Let c ∈ C such that Pn(c; t) �= 0, for each n ∈ N

and for all t ∈ R. Then the sequence {γn(t)}n∈N defined in (28) is a solution of the Δ-Volterra lattice (14), 
assuming that γ0(t) = 1.

Proof. From [7, Exercise 9.6, p. 49] we have that the coefficients γn(t) have the following representation

γ2n+1(t) = −Pn+1(c; t)
Pn(c; t) , γ2n+2(t) = −an+1(t)

Pn(c; t)
Pn+1(c; t)

, n = 0, 1, . . . ,

for the odd and even cases.
If we apply the Δt operator to the first equation, we obtain

Δtγ2n+1(t) = −ΔtPn+1(c; t)
Pn(c; t) + Pn+1(c; t + 1) ΔtPn(c; t)

Pn(c; t)Pn(c; t + 1) .

In [4] we have proved that a necessary and sufficient condition for {an(t)}n∈N and {bn(t)}n∈N be solutions
of a Δ-Toda lattice (9) is that {Pn(x; t)}n∈N satisfy an Appell property

ΔtPn(x; t) = αn
1 (t)Pn−1(x; t) , αn

1 (t) = 1
1 + γ1(t + 1)

n∏
k=1

ak(t + 1)
ak−1(t)

,

assuming that 1 + γ1(t + 1) �= 0 and a0(t) = 1. Therefore,

Δtγ2n+1(t) = −αn+1
1 (t) − γ2n+1(t + 1)αn

1 (t)Pn−1(c; t)
Pn(c; t)

= −αn+1
1 (t) + γ2n+1(t + 1)γ2n(t)αn

1 (t)
an(t) = αn+1

1 (t)
(
− 1 + γ2n+1(t + 1)γ2n(t)

an+1(t + 1)

)

= αn+1
1 (t)

γ2n+2(t + 1)
(
− γ2n+2(t + 1) + γ2n(t)

)
,

which yields the odd part of (14). The even part can be proved in a similar way. �
As a consequence, if {an(t)}n∈N and {bn(t)}n∈N are solutions of the Δ-Toda lattice defined in (9), then 

from Lemma 5 we construct a solution of the Δ-Volterra lattice (14) denoted by {γn(t)}n∈N. Now, from 
Lemma 4 and these coefficients {γn(t)}n∈N we construct another solutions {ãn(t)}n∈N and {b̃n(t)}n∈N of 
the Δ-Toda lattice defined in (9).

Let us denote by Γn(t) the finite submatrix formed by the first n rows and columns of Γ(t). We may 
summarize these results as follows, which is a Δt-analogue of [6, Theorem 1.3], where the full Toda and 
Volterra hierarchy has been considered.
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Theorem 6. Let us consider the family {Γ(t), t ∈ R}, of tridiagonal infinite matrices defined in (11) and let 
c ∈ C be such that det(Γn(t) − c In) �= 0, for each n ∈ N and for all t ∈ R. Then there exists a sequence 
{γn(t)}n∈N, t ∈ R, solution of (14) and there exists a pair of two sequences {an(t)}n∈N, {bn(t)}n∈N, and 
{ãn(t)}n∈N, {b̃n(t)}n∈N, t ∈ R, solutions of (9) such that (28) and (29) hold.

Moreover, for each c ∈ C in the above conditions, the sequences {γn(t)}n∈N, {an(t)}n∈N, {bn(t)}n∈N, and 
{ãn(t)}n∈N, {b̃n(t)}n∈N are the unique sequences verifying (28) and (29).

Notice that the condition det(Γn(t) − c In) �= 0, is equivalent to Pn(c; t) �= 0 for the monic polynomials 
Pn(x; t) defined by (4) [7,24,27].

4. Example: modified Legendre functional

Let us consider

〈
v, p(x)

〉
= 1

2i

i∫

−i

p(x) dx ,

the Legendre linear functional on [−i, i] normalized to have first moment equal to one, and let us consider 
the functional

u(t) =
2 Γ

(5
2 − t

)
√
π Γ(2 − t)

(1 + x2)1−t v .

Then, the even moments are explicitly given by

u2n(t) =
(−1)n Γ

(
n + 1

2
)

Γ
( 5

2 − t
)

√
π Γ

(
n− t + 5

2
)

and u2n+1(t) = 0, n ∈ N due to the symmetry of u(t).
Let us consider the sequence {γn(t)}n∈N defined by

γn(t) = − n(n− 2t + 2)
(2n− 2t + 1)(2n− 2t + 3) , n = 1, . . . , γ0(t) = 1 , t �= 1 ,

which is solution of the Δ-Volterra equations (14).
The sequence of monic symmetric polynomials {Rn(x; t)}n∈N which satisfy the three term recurrence 

relation (24) is explicitly given, for n ∈ N, by

Rn(x; t) =
(
− i

2
)n

n!C
( 3
2−t

)
n (ix)( 3

2 − t
)
n

= xn
2F1

(1
2

(
(−1)n − 2

[n
2

])
,−

[n
2

]
; t + (−1)n

2 − 2
[n
2

]
− 1;− 1

x2

)
, t <

3
2 ,

where C(λ)
n (x) are the Gegenbauer (or ultraspherical) polynomials defined in [16, (9.8.19)] and 

[
x
]

gives the 
integer part of x.

These polynomials are orthogonal with respect to the normalized linear functional

u(t) = −
i
(
x2 + 1

)1−t Γ
( 5

2 − t
)

√ = κ̃
(
1 + x2)1−t

,

π Γ(2 − t)



I. Area et al. / J. Math. Anal. Appl. 433 (2016) 243–259 257
i.e., for all n, m ∈ N,

i∫

−i

κ̃
(
1 + x2)1−t

Rn(x; t)Rm(x; t) dx =
(
−1

4
)n Γ(n + 1)

(
3 − 2t

)
n( 3

2 − t
)
n

( 5
2 − t

)
n

δnm , t <
3
2 .

The sequence of orthogonal polynomials {Rn(x; t)}n∈N coincides with the monic orthogonal polynomials 
sequence defined in [20, (17)] for r = 4 − 2t, s = 0, p = 1 and q = 1 or with the polynomials defined in [20, 
(86)] with a = 0 and b = t − 1. It is shown that they are also finitely orthogonal with respect to the second 
kind of beta weight function x−2a(1 + x2)−b on (−∞, ∞).

Observe that the difference equation (18) can be written as

ΔtRn(x; t) = (n− 1)n
(−2n + 2t− 1)(−2n + 2t + 1) Rn−2(x; t) , n = 2, . . . .

Using the Miura transformations (28) we obtain explicitly the sequences

an(t) = 4n(2n− 1)(2n− 2t + 1)(n− t + 1)
(4n− 2t− 1)(4n− 2t + 1)2(4n− 2t + 3) , n = 1, . . . ,

bn(t) = −4n(2n− 2t + 3) + 2t− 1
(4n− 2t + 1)(4n− 2t + 5) , n ∈ N , t �= 1 ,

which are solutions of the Δ-Toda lattice defined in (9).
The sequence of monic polynomials {Pn(x; t)}n∈N defined by the three term recurrence relation (4) can 

be identified in terms of monic shifted Jacobi polynomials

G(α,β)
n (x) = (−1)n(β + 1)n

(α + β + n + 1)n 2F1(−n, α + β + n + 1;β + 1;x) , α, β > −1 , (30)

as

Pn(x; t) = (−1)n G(1−t,−1/2)
n (−x) , n ∈ N ,

and moreover y(x) = Pn(x; t) obey the following second order differential equation

x(1 + x)y′′(x) + 1
2((5 − 2t)x + 1)y′(x) − 1

2n(2n− 2t + 3)y(x) = 0 .

Thus, the following orthogonality relation holds,

0∫

−1

(1 + x)1−t

√
−x

Pn(x; t)Pm(x; t) dx =
√
π 4−2n+t−1Γ(2n + 1)Γ

( 5
2 − t

)
Γ(2n− 2t + 3)

Γ(2 − t)Γ
(
2n− t + 3

2
)
Γ
(
2n− t + 5

2
) δn,m ,

n, m ∈ N, for t < 3
2 . It is easy to verify that in this case

R2n(x; t) = Pn(x2; t), R2n+1(x; t) = xQn(x2; t) , n ∈ N ,

where the polynomials Qn(x; t) are obtained from the polynomials Pn(x; t) by the Christoffel transforma-
tion, [7]:

Qn(x; t) = Pn+1(x; t) − ψn(t)Pn(x; t)
, (31)
x



258 I. Area et al. / J. Math. Anal. Appl. 433 (2016) 243–259
where

ψn(t) = Pn+1(0; t)
Pn(0; t) = − (2n + 1)(2t− 2n− 3)

(2t− 4n− 3)(2t− 4n− 5) , n ∈ N .

In a similar way, using the transformations (29) we obtain the new recurrence coefficients

ãn(t) = 4n(2n + 1)(2n− 2t + 3)(n− t + 1)
(4n− 2t + 1)(4n− 2t + 3)2(4n− 2t + 5) , n = 1, . . . ,

b̃n(t) = −4n(2n− 2t + 5) + 6t− 9
(4n− 2t + 3)(4n− 2t + 7) , n ∈ N , t �= 1 ,

which also satisfy the chain of difference equations (9) for the Δ-Toda lattice.
The monic polynomials {P̃n(x; t)}n∈N generated by

P̃−1(x; t) = 0, P̃0(x; t) = 1 , P̃n(x; t) = (x− b̃n−1(t))P̃n−1(x; t) − ãn−1(t)P̃n−2(x; t) ,

n = 1, . . . , can be identified in terms of monic shifted Jacobi polynomials (30) as

P̃n(x; t) = (−1)n G(1−t,1/2)
n (−x) , n ∈ N .

Thus, y(x) = P̃n(x; t) is a solution of the equation of hypergeometric type

x(1 + x) y′′(x) + 1
2((7 − 2t)x + 3) y′(x) − 1

2n(2n− 2t + 5) y(x) = 0 ,

and their polynomial solutions have the orthogonality property

0∫

−1

(1 + x)1−t
√
−x P̃n(x; t) P̃m(x; t) dx

=
√
π 2−4n+2t−3Γ(2n + 2)Γ

(7
2 − t

)
Γ(2n− 2t + 4)

Γ(2 − t)Γ
(
2n− t + 5

2
)
Γ
(
2n− t + 7

2
) δn,m ,

n, m ∈ N, for t < 3
2 . It is easy to verify that in this case the new solution P̃n(x; t) coincides with the monic 

kernel polynomials corresponding to {Pn(x; t)}n∈N defined in (31), i.e.

P̃n(x; t) = Qn(x; t), n ∈ N .
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