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We obtain closed-form expressions for the values of joint Laplace transforms of the 
running maximum and minimum of a diffusion-type process stopped at the first 
time at which the associated drawdown and drawup processes hit constant levels. 
It is assumed that the coefficients of the diffusion-type process are regular functions 
of the running values of the process itself, its maximum and minimum, as well 
as its maximum drawdown and maximum drawup processes. The proof is based 
on the solution to the equivalent boundary-value problems and application of the 
normal-reflection conditions for the value functions at the edges of the state space 
of the resulting five-dimensional Markov process. We show that the joint Laplace 
transforms represent linear combinations of solutions to the systems of first-order 
partial differential equations arising from the application of the normal-reflection 
conditions.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The main aim of this paper is to derive closed-form expressions for the Laplace transform (2.5) of the first 
time to a given drawdown occurring before a fixed drawup of the diffusion-type process X and its running 
maximum and minimum S and Q, defined in (2.1)–(2.3), stopped at that time. The running maximum 
drawdown process Y is defined as the maximum of the difference between the running maximum and the 
current value of the initial process (this difference is sometimes called reflected process), while the running 
maximum drawup process Z is defined as the maximum of the difference between the current value and the 
running minimum of the process (this difference is sometimes called rally process). Such extremum processes 
have been intensively studied in the recent literature and found subsequent applications in queueing theory, 
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risk and option pricing theory, change-point detection and many others (see, e.g. Asmussen [1], Peskir and 
Shiryaev [36], and Poor and Hadjiliadis [37] for extensive overviews and further references).

The Laplace transform of the first time to a given drawdown of a Brownian motion with linear drift 
and the running maximum stopped at that time was computed by Taylor [42], and the joint law of those 
variables was obtained by Lehoczky [27]. Some explicit expressions for other related characteristics such 
as the expectation and the density of the maximum drawdown of the Brownian motion with linear drift 
were derived by Douady, Shiryaev, and Yor [8] and Magdon-Ismail et al. [29], respectively. More recently, 
Pospisil, Vecer, and Hadjiliadis [38] computed the probability of a drawdown of a given size occurring before 
a drawup of a fixed size in several one-dimensional diffusion models. Mijatović and Pistorius [30] obtained 
the laws of the first-passage times of spectrally positive and negative Lévy processes over constant levels as 
well as analytically explicit identities for a number of characteristics of drawdowns and drawups in those 
models.

In the present paper, closed-form expressions are derived for the joint Laplace transforms of the first time 
to a given drawdown or drawup and the maximum and minimum values at that time of a diffusion-type 
process with coefficients depending on the running values of the process itself, its maximum and minimum, 
as well as its maximum drawdown and maximum drawup. Such diffusion-type processes can be considered 
as immediate generalisations of diffusion processes particularly arising in the so-called local volatility models 
introduced by Dupire [10], where the local drift and diffusion coefficients depend only on the running value 
of the initial process. Other extensions with diffusion coefficients depending on the running values of the 
initial processes and their running minima were constructed by Forde [12] for given joint laws of the terminal 
level and supremum at an independent exponential time (see also Forde, Pogudin, and Zhang [14] and 
Zhang [43] for other important probability characteristics of processes of such type). Cont and Fournié [6]
and Fournié [15] obtained the valuation functional equations for general functional path-dependent volatility 
models and considered the sensitivity analysis of path-dependent financial derivative securities.

The dependence of the local drift and diffusion coefficients on the past dynamics of the observable process 
through certain sufficient statistics is often used in financial practice as well as well studied in the related 
literature. For instance, an increase of the maximum drawdown or drawup of a risky asset price normally 
causes a structural change in the local drift representing its expected return and dividend policy. It also 
triggers changes in the diffusion coefficient representing the volatility rate of an asset price with a higher 
impact under a maximum drawdown increase rather than a maximum drawup increase. Such sufficient 
statistics transparently exhibit the risk levels of the assets and therefore usually influence the decisions 
taken by the market participants. The demand for option pricing in models with stochastic interest rates 
and volatility initiated the development and subsequent calibration of these models, based on diffusion-type 
processes with tractable path-dependent coefficients, which were realised by Henry-Labordère [23] and Ren, 
Madan, and Qian [39] among others.

The problem of finding the Markovian projections of continuous semimartingales in order to mimic their 
marginal distributions was studied by Gyöngy [21] and then generalised by Bentata and Cont [2] for the 
discontinuous case. The resulting Markov processes were given as weak solutions of stochastic differential 
equations with coefficients depending on the running value of the initial process. These arguments were 
further developed by Brunick and Shreve [5] and Forde [13] by extending the projections conditioned on 
path-dependent functionals of the initial process along with its running value. The purpose of the resulting 
mimicking processes was to give the opportunity to apply Markovian techniques and tackle both analytical 
and computational aspects of the initial processes with path-dependent distributional characteristics. Such 
processes were efficiently used by Dupire [10] and Klebaner [26] for solving option pricing problems in 
models in which the dynamics of the risky assets are described by general continuous semimartingales and 
by Bentata and Cont [3] for the discontinuous case. Guyon [20] showed that diffusion-type processes with 
path-dependent coefficients are conveniently helpful in order to replicate the spot volatility dynamics of the 
financial market, particularly through the extremum processes such as the running maximum. In this respect, 
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the coefficients of the diffusion-type model considered in this paper can be interpreted as the Markovian 
projection of a continuous semimartingale conditioned on the current state of the associated five-dimensional 
Markov process with four path-dependent components. Other similar Markovian projections were studied 
by Bremaud [4] for queues and by Cont and Minca [7] for marked point processes with path-dependent 
intensities. Calibrational aspects of such models with path-dependent distributional characteristics were 
recently studied by Hambly, Mariapragassam, and Reisinger [22] among others. We provide closed-form 
solutions to the boundary-value problems associated with the values of joint Laplace transforms as stopping 
problems for the five-dimensional continuous Markov process.

Optimal stopping problems for running maxima of some diffusion processes were studied by Jacka [24], 
Dubins, Shepp, and Shiryaev [9], and Peskir [32] among others. Discounted optimal stopping problems for 
certain payoff functions depending on the running maxima of geometric Brownian motions were initiated by 
Shepp and Shiryaev [41] and then taken further by Pedersen [31], Guo and Shepp [18], Guo and Zervos [19], 
Glover, Hulley, and Peskir [17], and [16] among others. The main feature of the resulting optimal stopping 
problems and their equivalent free-boundary problems was the application of the normal-reflection condition 
for the value functions at the diagonal of the two-dimensional state space to derive first-order ordinary 
differential equations for the optimal stopping boundaries depending on the current value of the running 
maximum process. These properties follow directly from the definition of the infinitesimal operator of the 
two-dimensional continuous Markov process having the initial process and the running maximum as its state 
space components. More recently, Peskir [34,35] studied optimal stopping problems for three-dimensional 
Markov processes having the initial diffusion process as well as its maximum and minimum as state space 
components.

The paper is organised as follows. In Section 2, we first introduce the setting and notation of the model 
with a five-dimensional continuous Markov process, whose state space components are the initial process, 
the running values of its maximum, minimum, maximum drawdown and maximum drawup. We define the 
value function of the joint Laplace transform of the first time to a given drawdown occurring before the 
first time of a fixed drawup together with the running maximum and minimum stopped at that time. In 
Section 3, we obtain a closed-form solution to the associated boundary-value problem and show that the 
value function represents a linear combination of the solutions to the systems of first-order partial differential 
equations which arise from the application of the normal-reflection conditions for this function at the edges 
of the five-dimensional state space. In Section 4, we verify that the resulting solution to the boundary-value 
problem provides the joint Laplace transform. The main result of the paper is stated in Theorem 4.1.

2. Preliminaries

In this section, we give a precise probabilistic formulation of the model and the five-dimensional stopping 
problem as well as its equivalent boundary-value problem.

2.1. Formulation of the problem

Let us consider a probability space (Ω, F , P ) with a standard Brownian motion B = (Bt)t≥0. Assume 
that there exists a diffusion-type process X = (Xt)t≥0 solving the stochastic differential equation

dXt = μ(Xt, St, Qt, Yt, Zt) dt + σ(Xt, St, Qt, Yt, Zt) dBt (X0 = x) (2.1)

where x ∈ R is fixed, and μ(x, s, q, y, z) and σ(x, s, q, y, z) > 0 are continuously differentiable functions on 
[−∞, ∞]5 which are of at most linear growth in x and uniformly bounded in all other variables. Here, the 
associated with X running maximum process S = (St)t≥0 and the running minimum process Q = (Qt)t≥0
are defined by
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St = s ∨ max
0≤u≤t

Xu and Qt = q ∧ min
0≤u≤t

Xu (2.2)

as well as the running maximum drawdown process Y = (Yt)t≥0 and the running maximum drawup process 
Z = (Zt)t≥0 are given by

Yt = y ∨ max
0≤u≤t

(Su −Xu) and Zt = z ∨ max
0≤u≤t

(Xu −Qu) (2.3)

for arbitrary (s − y) ∨ q ≤ x ≤ s ∧ (q + z). It follows from the result of [28, Chapter IV, Theorem 4.8] that 
the equation in (2.1) admits a pathwise unique (strong) solution. We also define the associated first hitting 
(stopping) times

τa = inf{t ≥ 0 | y ∨ (St −Xt) ≥ a} and ζb = inf{t ≥ 0 | z ∨ (Xt −Qt) ≥ b} (2.4)

for some a, b > 0 fixed.
The main purpose of the present paper is to derive closed-form expressions for the joint Laplace transform 

of the random variables τa ∧ ζb, Sτa∧ζb , and Qτa∧ζb . We therefore need to compute the value function 
of the following stopping problem for the time-homogeneous (strong) Markov process (X, S, Q, Y, Z) =
(Xt, St, Qt, Yt, Zt)t≥0 given by

V ∗(x, s, q, y, z) = Ex,s,q,y,z

[
e−λ(τa∧ζb)−θSτa∧ζb

−κQτa∧ζb I(τa < ζb)
]

(2.5)

for any (x, s, q, y, z) ∈ E5 and some λ, θ, κ > 0 fixed, where I(·) denotes the indicator function. Here, 
Ex,s,q,y,z denotes the expectation under the assumption that the five-dimensional time-homogeneous (strong) 
Markov process (X, S, Q, Y, Z) defined in (2.1)–(2.3) starts at (x, s, q, y, z) ∈ E5, where we assume that the 
state space of (X, S, Q, Y, Z) is essentially E5 = {(x, s, q, y, z) ∈ R

5 | (s − y) ∨ q ≤ x ≤ s ∧ (q + z)}.

2.2. The boundary-value problem

By means of standard arguments based on the application of Itô’s formula, it is shown that the infinites-
imal operator L of the process (X, S, Q, Y, Z) acts on a function F (x, s, q, y, z) from the class C2,1,1,1,1 on 
the interior of E5 according to the rule

(LF )(x, s, q, y, z) = μ(x, s, q, y, z) ∂xF (x, s, q, y, z) + σ2(x, s, q, y, z) ∂2
xxF (x, s, q, y, z)/2 (2.6)

for all (s − y) ∨ q < x < s ∧ (q + z). In order to find analytic expressions for the unknown value function 
V ∗(x, s, q, y, z) in (2.5), let us build on the results of general theory of Markov processes (see, e.g. [11, 
Chapter V]). The value V ∗(x, s, q, y, z) from (2.5) solves the equivalent boundary-value problem

(LV )(x, s, q, y, z) = λV (x, s, q, y, z) for s− a < (s− y) ∨ q < x < s ∧ (q + z) < q + b (2.7)

V (x, s, q, y, z)
∣∣
x=(s−a)+, y=a− = e−θs−κq for s− q ≥ a and 0 < z < b (2.8)

V (x, s, q, y, z)
∣∣
x=(q+b)−, z=b− = 0 for s− q ≥ b and 0 < y < a (2.9)

∂qV (x, s, q, y, z)
∣∣
x=q+ = 0 for 0 < s− q < y < a (2.10)

∂sV (x, s, q, y, z)
∣∣
x=s− = 0 for 0 < s− q < z < b (2.11)

∂yV (x, s, q, y, z)
∣∣
x=(s−y)+ = 0 for 0 < y < (s− q) ∧ a (2.12)

∂zV (x, s, q, y, z)
∣∣
x=(q+z)− = 0 for 0 < z < (s− q) ∧ b (2.13)

for a, b > 0 fixed.
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3. Solutions to the boundary-value problem

In this section, we obtain closed-form solutions to the boundary-value problem in (2.7)–(2.13) under 
various relations of the parameters of the model.

3.1. The general solution of the ordinary differential equation

We first observe that the general solution of the equation in (2.7) has the form

V (x, s, q, y, z) = C1(s, q, y, z) Ψ1(x, s, q, y, z) + C2(s, q, y, z) Ψ2(x, s, q, y, z) (3.1)

where Ci(s, q, y, z), i = 1, 2, are some arbitrary continuously differentiable functions and Ψi(x, s, q, y, z), 
i = 1, 2, are the two fundamental positive solutions (i.e. nontrivial linearly independent particular solutions) 
of the second-order ordinary differential equation in (2.7). Without loss of generality, we may assume 
that Ψ1(x, s, q, y, z) and Ψ2(x, s, q, y, z) are the (strictly) increasing and decreasing (convex) functions, 
respectively. Note that these solutions should satisfy the properties Ψ1(r, r, r, ε, ε) ↑ ∞ and Ψ2(r, r, r, ε, ε) ↓ 0
as r ↑ ∞ and Ψ1(r, r, r, ε, ε) ↓ 0 and Ψ2(r, r, r, ε, ε) ↑ ∞ as r ↓ −∞, for any sufficiently small ε > 0, on the 
state space E5 of the process (X, S, Q, Y, Z). These functions can be represented as the functionals

Ψ1(x, s, q, y, z) =
{
Ex,s,q,y,z[e−λξ′I(ξ′ < ∞)], if x ≤ x′

1/Ex′,s,q,y,z[e−λξI(ξ < ∞)], if x ≥ x′
(3.2)

and

Ψ2(x, s, q, y, z) =
{

1/Ex′,s,q,y,z[e−λξI(ξ < ∞)], if x ≤ x′

Ex,s,q,y,z[e−λξ′I(ξ′ < ∞)], if x ≥ x′
(3.3)

of the first hitting times ξ = inf{t ≥ 0 | Xt = x} and ξ′ = inf{t ≥ 0 | Xt = x′} of the process X solving the 
stochastic differential equation in (2.1) and started at x and x′ such that (x, s, q, y, z), (x′, s, q, y, z) ∈ E5, 
respectively (see, e.g. [40, Chapter V, Section 50] for further details).

Then, by applying the conditions of (2.8)–(2.13) to the function in (3.1), we obtain the equalities

C1(s, q, a, z) Ψ1(s− a, s, q, a, z) + C2(s, q, a, z) Ψ2(s− a, s, q, a, z) = e−θs−κq (3.4)

for s − q ≥ a and 0 < z < b,

C1(s, q, y, b) Ψ1(q + b, s, q, a, z) + C2(s, q, y, b) Ψ2(q + b, s, q, a, z) = 0 (3.5)

for s − q ≥ b and 0 < y < a,

2∑
i=1

(
∂qCi(s, q, y, z) Ψi(q, s, q, y, z) + Ci(s, q, y, z) ∂qΨi(x, s, q, y, z)

∣∣
x=q

)
= 0 (3.6)

for 0 < s − q < y < a,

2∑
i=1

(
∂sCi(s, q, y, z) Ψi(s, s, q, y, z) + Ci(s, q, y, z) ∂sΨi(x, s, q, y, z)

∣∣
x=s

)
= 0 (3.7)

for 0 < s − q < z < b,
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2∑
i=1

(
∂yCi(s, q, y, z) Ψi(s− y, s, q, y, z) + Ci(s, q, y, z) ∂yΨi(x, s, q, y, z)

∣∣
x=s−y

)
= 0 (3.8)

for 0 < y < (s − q) ∧ a, and

2∑
i=1

(
∂zCi(s, q, y, z) Ψi(q + z, s, q, y, z) + Ci(s, q, y, z) ∂zΨi(x, s, q, y, z)

∣∣
x=q+z

)
= 0 (3.9)

for 0 < z < (s − q) ∧ b.

3.2. The solution to the boundary-value problem in the (X, S, Q)-setting

We begin with the case in which μ(x, s, q, y, z) = μ(x, s, q) and σ(x, s, q, y, z) = σ(x, s, q) in (2.1) and 
put y = s − x and z = x − q into (2.4). Then, the general solution V (x, s, q, y, z) = U(x, s, q) of the 
equation in (2.7) has the form of (3.1) with Ci(s, q, y, z) = Di(s, q) and Ψi(x, s, q, y, z) = Φi(x, s, q), i = 1, 2, 
in (3.1). We further denote the state space of the three-dimensional (strong) Markov process (X, S, Q) by 
E3 = {(x, s, q) ∈ R

3 | q ≤ x ≤ s} and its border planes by d3
1 = {(x, s, q) ∈ R

3 | x = s} and d3
2 = {(x, s, q) ∈

R
3 | x = q}. We also recall that the second and third components of the process (X, S, Q) can increase and 

decrease only at the planes d3
1 and d3

2, that is, when Xt = St and Xt = Qt for t ≥ 0, respectively.
(i) Let us first consider the domain a ∨ b ≤ s − q ≤ a + b. In this case, solving the system of equations 

in (3.4) and (3.5), we conclude that the candidate value function admits the representation

U(x, s, q;∞) = D1(s, q;∞) Φ1(x, s, q) + D2(s, q;∞) Φ2(x, s, q) (3.10)

in the region R3(∞) = {(x, s, q) ∈ E3 | q ≤ s − a ≤ x ≤ q + b ≤ s}, with

D1(s, q;∞) = e−θs−κqΦ2(q + b, s, q)
Φ1(s− a, s, q)Φ2(q + b, s, q) − Φ1(q + b, s, q)Φ2(s− a, s, q) (3.11)

and

D2(s, q;∞) = e−θs−κqΦ1(q + b, s, q)
Φ1(s− a, s, q)Φ2(q + b, s, q) − Φ1(q + b, s, q)Φ2(s− a, s, q) (3.12)

for all q + a ∨ b ≤ s ≤ q + a + b (see Figs. 1 and 2).
(ii) Let us now consider the domain a ≤ s − q < b. In this case, it follows from the equations in (3.4)

and (3.7) that the candidate value function admits the representation

U(x, s, q; a) = D1(s, q; a) Φ1(x, s, q) + D2(s, q; a) Φ2(x, s, q) (3.13)

in the region R3(a) = {(x, s, q) ∈ E3 | q ≤ s − a ≤ x ≤ s < q + b}, with

D2(s, q; a) =
(
e−θs−κq −D1(s, q; a) Φ1(s− a, s, q)

)
/Φ2(s− a, s, q) (3.14)

for q + a ≤ s < q + b, where D1(s, q; a) solves the first-order linear ordinary differential equation

∂sD1(s, q; a)H1,2(s, q; a) + D1(s, q; a)H1,1(s, q; a) = H1,0(s, q; a) (3.15)

with
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Fig. 1. A computer drawing of the state space of the process (X,S,Q), for some q ∈ R fixed and a < b.

Fig. 2. A computer drawing of the state space of the process (X,S,Q), for some q ∈ R fixed and b ≤ a.

H1,2(s, q; a) = Φ1(s, s, q) − Φ1(s− a, s, q) Φ2(s, s, q)/Φ2(s− a, s, q) (3.16)

H1,1(s, q; a) = ∂s
(
Φ1(x, s, q) − Φ1(s− a, s, q) Φ2(x, s, q)/Φ2(s− a, s, q)

)∣∣
x=s

(3.17)

H1,0(s, q; a) = e−θs−κq

(
θ

Φ2(s, s, q)
Φ2(s− a, s, q) − ∂s

(
Φ2(x, s, q)

Φ2(s− a, s, q)

)∣∣∣∣
x=s

)
(3.18)

for all q + a ≤ s < q + b. Observe that the process (X, S, Q) can exit the region R3(a) by passing to the 
region R3(∞) in part (i) of this subsection only through the point x = s = q + b, by hitting the plane d3

1
so that increasing its second component S. Thus, the candidate function U(x, s, q) should be continuous at 
the point (q + b, q + b, q), that is expressed by the equality

D1(q + b, q; a) Φ1(q + b, q + b, q) + D2(q + b, q; a) Φ2(q + b, q + b, q) = 0 (3.19)

for all q ∈ R (see Fig. 1). Hence, solving the differential equation in (3.15) together with the system of 
equations in (3.14) with s = q + b and (3.19), we obtain

D1(s, q; a) = D1(q + b, q; a) exp
( q+b∫

s

H1,1(u, q; a)
H1,2(u, q; a)

du

)

−
q+b∫

H1,0(u, q; a)
H1,2(u, q; a)

exp
( u∫

H1,1(v, q; a)
H1,2(v, q; a)

dv

)
du (3.20)
s s
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for all q + a ≤ s < q + b, where D1(q + b, q; a) is given by

D1(q + b, q; a)

= e−θ(q+b)−κqΦ2(q + b, q + b, q)
Φ1(q + b− a, q + b, q)Φ2(q + b, q + b, q) − Φ1(q + b, q + b, q)Φ2(q + b− a, q + b, q) (3.21)

for all q ∈ R.
(iii) Let us now consider the domain b ≤ s − q < a. In this case, it follows from the equations in (3.5)

and (3.6) that the candidate value function admits the representation

U(x, s, q; b) = D1(s, q; b) Φ1(x, s, q) + D2(s, q; b) Φ2(x, s, q) (3.22)

in the region R3(b) = {(x, s, q) ∈ E3 | s − a < q ≤ x ≤ q + b ≤ s}, with

D2(s, q; b) = −D1(s, q; b) Φ1(q + b, s, q)/Φ2(q + b, s, q) (3.23)

for q + b ≤ s < q + a, where D1(s, q; b) solves the first-order linear ordinary differential equation

∂qD1(s, q; b)H2,2(s, q; b) + D1(s, q; b)H2,1(s, q; b) = 0 (3.24)

with

H2,2(s, q; b) = Φ1(q, s, q) − Φ1(q + b, s, q) Φ2(q, s, q)/Φ2(q + b, s, q) (3.25)

H2,1(s, q; b) = ∂q
(
Φ1(x, s, q) − Φ1(q + b, s, q) Φ2(x, s, q)/Φ2(q + b, s, q)

)∣∣
x=q

(3.26)

for all q + b ≤ s < q + a. Observe that the process (X, S, Q) can exit R3(b) by passing to the region R3(∞)
in part (i) of this subsection only through the point x = q = s −a, by hitting the plane d3

2 so that decreasing 
its third component Q. Then, the candidate value function should be continuous at the point (s −a, s, s −a), 
that is expressed by the equality

D1(s, s− a; b) Φ1(s− a, s, s− a) + D2(s, s− a; b) Φ2(s− a, s, s− a) = e−θs−κ(s−a) (3.27)

for all s ∈ R (see Fig. 2). Hence, solving the differential equation in (3.24) together with the system of 
equations in (3.23) with q = s − a and (3.27), we obtain

D1(s, q; b) = D1(s, s− a; b) exp
(
−

q∫
s−a

H2,1(s, u; b)
H2,2(s, u; b) du

)
(3.28)

for all q + b ≤ s < q + a, where D1(s, s − a; b) is given by

D1(s, s− a; b)

= e−θs−κ(s−a)Φ2(s− a + b, s, s− a)
Φ1(s− a, s, s− a)Φ2(s− a + b, s, s− a) − Φ1(s− a + b, s, s− a)Φ2(s− a, s, s− a) (3.29)

for s ∈ R.
(iv) Let us now consider the domain 0 ≤ s − q < a ∧ b. In this case, it follows that the candidate value 

function admits the representation

U(x, s, q; 0) = D1(s, q; 0) Φ1(x, s, q) + D2(s, q; 0) Φ2(x, s, q) (3.30)
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in the region R3(0) = {(x, s, q) ∈ E3 | s − a < q ≤ x ≤ s < q + b}, where Di(s, q; 0), i = 1, 2, solve the 
first-order linear partial differential equations in (3.6) and (3.7), for all 0 < s − q < a ∧ b. Observe that, 
the process (X, S, Q) can exit R3(0) by passing to the region R3(a ∧ b) in part (ii) or (iii) of this subsection 
only through the points x = s = q + a ∧ b and x = q = s − a ∧ b, by hitting the plane d3

1 or d3
2, so that 

increasing its second or third components, S or Q, respectively. Then, the candidate value function should 
be continuous at the points (q + a ∧ b, q + a ∧ b, q) and (s − a ∧ b, s, s − a ∧ b), that is expressed by the 
equalities

D1(q + a ∧ b, q; 0) Φ1(q + a ∧ b, q + a ∧ b, q)

+ D2(q + a ∧ b, q; 0) Φ2(q + a ∧ b, q + a ∧ b, q)

= D1(q + a ∧ b, q; a ∧ b) Φ1(q + a ∧ b, q + a ∧ b, q)

+ D2(q + a ∧ b, q; a ∧ b) Φ2(q + a ∧ b, q + a ∧ b, q) (3.31)

for all q ∈ R and

D1(s, s− a ∧ b; 0) Φ1(s− a ∧ b, s, s− a ∧ b)

+ D2(s, s− a ∧ b; 0) Φ2(s− a ∧ b, s, s− a ∧ b)

= D1(s, s− a ∧ b; a ∧ b) Φ1(s− a ∧ b, s, s− a ∧ b)

+ D2(s, s− a ∧ b; a ∧ b) Φ2(s− a ∧ b, s, s− a ∧ b) (3.32)

for all s ∈ R, where Di(q + a ∧ b, q; a ∧ b) and Di(s, s − a ∧ b; a ∧ b), i = 1, 2, are found in (3.14)+(3.20)
or (3.23)+(3.28). Moreover, we have the property D2(r, r; 0) → 0 as r ↓ −∞, since otherwise U(r, r, r; 0) →
±∞, that must be excluded by virtue of the obvious fact that the value function in (2.5) is bounded (see 
Figs. 1 and 2). We may therefore conclude that the candidate value function admits the representation 
of (3.30) in the region R3(0) above, where Di(s, q; 0), i = 1, 2, provide a unique solution of the two-
dimensional system of first-order linear partial differential equations in (2.10) and (2.11) with the boundary 
conditions of (3.31)–(3.32) and D2(r, r; 0) → 0 as r ↓ −∞. Hereafter, the existence and uniqueness of 
solutions to such special kinds of systems of equations follow from the classical existence and uniqueness 
results of solutions to appropriate boundary-value problems for first-order linear partial differential equa-
tions.

3.3. The solution to the boundary-value problem in the (X, S, Q, Y )-setting

We now continue with the case in which μ(x, s, q, y, z) = μ(x, s, q, y) and σ(x, s, q, y, z) = σ(x, s, q, y)
in (2.1) and put z = x −q into (2.4). Then, the general solution V (x, s, q, y, z) = W1(x, s, q, y) of the equation 
in (2.7) has the form of (3.1) with Ci(s, q, y, z) = A1,i(s, q, y) and Ψi(x, s, q, y, z) = Υ1,i(x, s, q, y), i = 1, 2, 
in (3.1). We further denote the state space of the four-dimensional (strong) Markov process (X, S, Q, Y ) by 
E4

1 = {(x, s, q, y) ∈ R
4 | (s − y) ∨ q ≤ x ≤ s} and its border hyperplanes by d4

1,1 = {(x, s, q, y) ∈ R
4 | x = s}, 

d4
1,2 = {(x, s, q, y) ∈ R

4 | x = q}, and d4
1,3 = {(x, s, q, y) ∈ R

4 | x = s − y}. We also recall that the second, 
third, and fourth components of the process (X, S, Q, Y ) can increase or decrease only at the planes d4

1,1, 
d4
1,2, and d4

1,3, that is, when Xt = St, Xt = Qt, and Xt = St−Yt for t ≥ 0, respectively. Finally, we introduce 
the stopping time νa = inf{t ≥ 0 | St − Yt = Qt} and observe that Yt = St −Qt holds for all t ≥ νa.

(i) Let us first consider the domain b ∨ y ≤ s − q ≤ y + b. In this case, it follows from the equations 
in (3.5) and (3.8) that the candidate value function admits the representation

W1(x, s, q, y;∞) = A1,1(s, q, y;∞) Υ1,1(x, s, q, y) + A1,2(s, q, y;∞) Υ1,2(x, s, q, y) (3.33)
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in the region R4
1(∞) = {(x, s, q, y) ∈ E4

1 | (s − a) ∨ q < s − y ≤ x ≤ q + b ≤ s}, with

A1,2(s, q, y;∞) = −A1,1(s, q, y;∞) Υ1,1(q + b, s, q, y)/Υ1,2(q + b, s, q, y) (3.34)

for q + b ≤ s ≤ q + y + b < q + a + b, where A1,1(s, q, y; ∞) solves the first-order linear ordinary differential 
equation

∂yA1,1(s, q, y;∞)G1,2(s, q, y;∞) + A1,1(s, q, y;∞)G1,1(s, q, y;∞) = 0 (3.35)

with

G1,2(s, q, y;∞) = Υ1,1(s− y, s, q, y) − Υ1,1(q + b, s, q, y)
Υ1,2(q + b, s, q, y) Υ1,2(s− y, s, q, y) (3.36)

G1,1(s, q, y;∞) = ∂y

(
Υ1,1(x, s, q, y) −

Υ1,1(q + b, s, q, y)
Υ1,2(q + b, s, q, y) Υ1,2(x, s, q, y)

)∣∣∣∣
x=s−y

(3.37)

for all q + b ≤ s ≤ q + y + b < q + a + b. Observe that the process (X, S, Q, Y ) can reach the edge of 
the region R4

1(∞) only through the point x = s − y = (s − a) ∨ q, by hitting the hyperplane d4
1,3, so that 

increasing its fourth component Y . Then, the component Y becomes either equal to the value a or is set to 
S−Q and the region R4

1(∞) is identified with R3(b) in part (iii) of Subsection 3.2. Thus, the candidate value 
function should be continuous at the point ((s − a) ∨ q, s, q, (s − q) ∧ a), that is expressed by the equality

A1,1(s, q, (s− q) ∧ a;∞) Υ1,1((s− a) ∨ q, s, q, (s− q) ∧ a)

+ A1,2(s, q, (s− q) ∧ a;∞) Υ1,2((s− a) ∨ q, s, q, (s− q) ∧ a)

= U(q, s, q; b) I(q > s− a) + e−θs−κq I(q ≤ s− a) (3.38)

for all q + b ≤ s ≤ q + y + b < q + a + b, where U(q, s, q; b) is determined in part (iii) of Subsection 3.2 (see 
Figs. 3 and 4). Hence, solving the differential equation in (3.35) together with the system of equations in 
(3.34) and (3.38), we obtain

A1,1(s, q, y;∞) = A1,1(s, q, (s− q) ∧ a;∞) exp
( (s−q)∧a∫

y

G1,1(s, q, u;∞)
G1,2(s, q, u;∞) du

)
(3.39)

for all q + b ≤ s ≤ q + y + b < q + a + b, where A1,1(s, q, (s − q) ∧ a; ∞) is given by

A1,1(s, q, (s− q) ∧ a;∞)

= (U(q, s, q; b)I(q > s− a) + e−θs−κqI(q ≤ s− a))/Υ1,2((s− a) ∨ q, s, q, (s− q) ∧ a)
(Υ1,1/Υ1,2)((s− a) ∨ q, s, q, (s− q) ∧ a) − (Υ1,1/Υ1,2)(q + b, s, q, (s− q) ∧ a) (3.40)

for q ≤ s.
(ii) Let us now consider the domain 0 < y < s − q < b. In this case, it follows that the candidate value 

function admits the representation

W1(x, s, q, y; a) = A1,1(s, q, y; a) Υ1,1(x, s, q, y) + A1,2(s, q, y; a) Υ1,2(x, s, q, y) (3.41)

in the region R4
1(a) = {(x, s, q, y) ∈ E4

1 | (s − a) ∨ q < s − y ≤ x ≤ s < q + b}, where A1,i(s, q, y; a), i = 1, 2, 
solve the system of first-order linear ordinary differential equations (3.7) and (3.8), for all q+ y < s < q+ b. 
Observe that on one hand, the process (X, S, Q, Y ) can exit the region R4

1(a) by passing to the region R4
1(∞)



P.V. Gapeev, N. Rodosthenous / J. Math. Anal. Appl. 434 (2016) 413–431 423
Fig. 3. A computer drawing of the state space of the process (X,S,Q, Y ), for some q, y ∈ R fixed and y < b.

Fig. 4. A computer drawing of the state space of the process (X,S,Q, Y ), for some q, y ∈ R fixed and b ≤ y.

in part (i) of this subsection, only through the point x = s = q + b, by hitting the hyperplane d4
1,1 so that 

increasing its second component S. On the other hand, the process (X, S, Q, Y ) can reach the edge of the 
region R4

1(a) through the point x = s − y = (s − a) ∨ q, by hitting the hyperplane d4
1,3 so that increasing its 

fourth component Y . Then, the component Y becomes either equal to the value a or is set to S − Q and 
the region R4

1(a) is identified with R3(0) in part (iv) of Subsection 3.2. Thus, the candidate value function 
should be continuous at the points (q + b, q + b, q, y) and ((s − a) ∨ q, s, q, (s − q) ∧ a), that is expressed by 
the equalities

A1,1(q + b, q, y; a) Υ1,1(q + b, q + b, q, y) + A1,2(q + b, q, y; a) Υ1,2(q + b, q + b, q, y) = 0 (3.42)

for all q ∈ R and 0 < y < b, and

A1,1(s, q, (s− q) ∧ a; a) Υ1,1((s− a) ∨ q, s, q, (s− q) ∧ a)

+ A1,2(s, q, (s− q) ∧ a; a) Υ1,2((s− a) ∨ q, s, q, (s− q) ∧ a)

= U(q, s, q; 0) I(q > s− a) + e−θs−κq I(q ≤ s− a) (3.43)

for all q < s < q+b, where U(q, s, q; 0) is found in part (iv) of Subsection 3.2. Moreover, we have the property 
A1,2(r, r, ε; a) → 0 as r ↓ −∞, since otherwise W1(r, r, r, ε; a) → ±∞, for any sufficiently small ε > 0, that 
must be excluded by virtue of the obvious fact that the value function in (2.5) is bounded (see Fig. 3). We 
may therefore conclude that the candidate value function admits the representation of (3.41) in the region 
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R4
1(a), where A1,i(s, q, y; a), i = 1, 2, provide a unique solution of the two-dimensional system of first-order 

linear partial differential equations in (3.7) and (3.8) with the boundary conditions of (3.42)–(3.43) and 
A1,2(r, r, ε; a) → 0 as r ↓ −∞, for any sufficiently small ε > 0.

(iii) Let us finally consider the domain 0 ≤ s − q ≤ y. Observe that since the fourth component Y is 
set to S − Q after the process (X, S, Q, Y ) hits both hyperplanes d4

1,2 and d4
1,3, we may conclude that the 

candidate value function takes the form

W1(x, s, q, y; b) = W1(x, s, q, s− q; b) = U(x, s, q; b) (3.44)

in the region R4
1(b) = {(x, s, q, y) ∈ E4

1 | s − a < s − y ≤ q ≤ x ≤ q + b ≤ s} (see Fig. 4) and

W1(x, s, q, y; 0) = W1(x, s, q, s− q; 0) = U(x, s, q; 0) (3.45)

in the region R4
1(0) = {(x, s, q, y) ∈ E4

1 | s − a < s − y ≤ q ≤ x ≤ s < q + b} (see Figs. 3 and 4), where the 
functions U(x, s, q; b) and U(x, s, q; 0) are determined in parts (iii) and (iv) of Subsection 3.2, respectively.

3.4. The solution to the boundary-value problem in the (X, S, Q, Z)-setting

We now continue with the case in which μ(x, s, q, y, z) = μ(x, s, q, z) and σ(x, s, q, y, z) = σ(x, s, q, z)
in (2.1) and put y = s −x into (2.4). Then, the general solution V (x, s, q, y, z) = W2(x, s, q, z) of the equation 
in (2.7) has the form of (3.1) with Ci(s, q, y, z) = A2,i(s, q, z) and Ψi(x, s, q, y, z) = Υ2,i(x, s, q, z), i = 1, 2, 
in (3.1). We further denote the state space of the four-dimensional (strong) Markov process (X, S, Q, Z) by 
E4

2 = {(x, s, q, z) ∈ R
4 | q ≤ x ≤ s ∧ (q + z)} and its border hyperplanes by d4

2,1 = {(x, s, q, z) ∈ R
4 | x = s}, 

d4
2,2 = {(x, s, q, z) ∈ R

4 | x = q}, and d4
2,3 = {(x, s, q, z) ∈ R

4 | x = q + z}. We also recall that the second, 
third, and fourth components of the process (X, S, Q, Z) can increase or decrease only at the hyperplanes 
d4
2,1, d4

2,2, and d4
2,3, that is, when Xt = St, Xt = Qt, and Xt = Qt + Zt for t ≥ 0, respectively. Finally, we 

introduce the stopping time ηb = inf{t ≥ 0 | Qt + Zt = St} and observe that Zt = St − Qt holds for all 
t ≥ ηb.

(i) Let us first consider the domain a ∨ z ≤ s − q ≤ a + z. In this case, it follows from the equations in 
(3.4) and (3.9) that the candidate value function admits the representation

W2(x, s, q, z;∞) = A2,1(s, q, z;∞) Υ2,1(x, s, q, z) + A2,2(s, q, z;∞) Υ2,2(x, s, q, z) (3.46)

in the region R4
2(∞) = {(x, s, q, z) ∈ E4

2 | q ≤ s − a ≤ x ≤ q + z < s ∧ (q + b)}, with

A2,2(s, q, z;∞) =
(
e−θs−κq −A2,1(s, q, z;∞) Υ2,1(s− a, s, q, z)

)
/Υ2,2(s− a, s, q, z) (3.47)

for q + a ≤ s ≤ q + a + z < q + a + b, where A2,1(s, q, z; ∞) solves the first-order linear ordinary differential 
equation

∂zA2,1(s, q, z;∞)G2,2(s, q, z;∞) + A2,1(s, q, z;∞)G2,1(s, q, z;∞) = G2,0(s, q, z;∞) (3.48)

with

G2,2(s, q, z;∞) = Υ2,1(q + z, s, q, z) − Υ2,1(s− a, s, q, z)
Υ2,2(s− a, s, q, z) Υ2,2(q + z, s, q, z) (3.49)

G2,1(s, q, z;∞) = ∂z

(
Υ2,1(x, s, q, z) −

Υ2,1(s− a, s, q, z)
Υ2,2(s− a, s, q, z) Υ2,2(x, s, q, z)

)∣∣∣∣
x=q+z

(3.50)

G2,0(s, q, z;∞) = e−θs−κq

(
θ

Υ2,2(q + z, s, q, z)
Υ (s− a, s, q, z) − ∂z

(
Υ2,2(x, s, q, z)

Υ (s− a, s, q, z)

)∣∣∣∣
)

(3.51)

2,2 2,2 x=q+z
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Fig. 5. A computer drawing of the state space of the process (X,S,Q,Z), for some q, z ∈ R fixed and z ≤ a.

Fig. 6. A computer drawing of the state space of the process (X,S,Q,Z), for some q, z ∈ R fixed and a < z.

for q + a ≤ s ≤ q + a + z < q + a + b. Observe that the process (X, S, Q, Z) can reach the edge of the 
region R4

2(∞), only through the point x = q + z = (q + b) ∧ s, by hitting the hyperplane d4
2,3, so that 

increasing its fourth component Z. Then, the component Z becomes either equal to the value b or is set to 
S−Q and the region R4

2(∞) is identified with R3(a) in part (ii) of Subsection 3.2. Thus, the candidate value 
function should be continuous at the point (s ∧ (q + b), s, q, (s − q) ∧ b), that is expressed by the equality

A2,1(s, q, (s− q) ∧ b;∞) Υ2,1(s ∧ (q + b), s, q, (s− q) ∧ b)

+ A2,2(s, q, (s− q) ∧ b;∞) Υ2,2(s ∧ (q + b), s, q, (s− q) ∧ b) = U(s, s, q; a) I(s < q + b) (3.52)

for all q + a ≤ s ≤ q + a + z < q + a + b, where U(s, s, q; a) is determined in part (ii) of Subsection 3.2 (see 
Figs. 5 and 6). Hence, solving the differential equation in (3.48) together with the system of equations in 
(3.47) with z = (s − q) ∧ b and (3.52), we obtain

A2,1(s, q, z;∞) = A2,1(s, q, (s− q) ∧ b;∞) exp
( (s−q)∧b∫

z

G2,1(s, q, u;∞)
G2,2(s, q, u;∞) du

)

−
(s−q)∧b∫

z

G2,0(s, q, u;∞)
G2,2(s, q, u;∞) exp

( u∫
z

G2,1(s, q, v;∞)
G2,2(s, q, v;∞) dv

)
du (3.53)

for all q + a ≤ s ≤ q + a + z < q + a + b, where A2,1(s, q, (s − q) ∧ b; ∞) is given by
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A2,1(s, q, (s− q) ∧ b;∞)

= e−θs−κq/Υ2,2(s− a, s, q, (s− q) ∧ b) − U(s, s, q; a)I(s < q + b)/Υ2,2(s ∧ (q + b), s, q, (s− q) ∧ b)
(Υ2,1/Υ2,2)(s− a, s, q, (s− q) ∧ b) − (Υ2,1/Υ2,2)(s ∧ (q + b), s, q, (s− q) ∧ b)

(3.54)

for all q ≤ s.
(ii) Let us now consider the domain 0 < z < s − q < a. In this case, it follows that the candidate value 

function admits the representation

W2(x, s, q, z; b) = A2,1(s, q, z; b) Υ2,1(x, s, q, z) + A2,2(s, q, z; b) Υ2,2(x, s, q, z) (3.55)

in the region R4
2(b) = {(x, s, q, z) ∈ E4

2 | s − a < q ≤ x ≤ q + z < s ∧ (q + b)}, where A2,i(s, q, z; b), i = 1, 2, 
solve the system of first-order linear partial differential equations in (3.6) and (3.9), for all q+z < s < q+a. 
Observe that on one hand, the process (X, S, Q, Z) can exit the region R4

2(b) by passing to the region R4
2(∞)

in part (i) of this subsection, only through the point x = q = s − a, by hitting the hyperplane d4
2,2 so that 

decreasing its third component Q. On the other hand, the process (X, S, Q, Z) can reach the edge of the 
region R4

2(b) through the point x = q + z = (q + b) ∧ s, by hitting the hyperplane d4
2,3, so that increasing 

its fourth component Z. Then, the component Z becomes either equal to the value b or is set to S −Q and 
the region R4

2(b) is identified with R3(0) in part (iv) of Subsection 3.2. Thus, the candidate value function 
should be continuous at the points (s − a, s, s − a, z) and (s ∧ (q + b), s, q, (s − q) ∧ b), that is expressed by 
the equalities

A2,1(s, s− a, z; b) Υ2,1(s− a, s, s− a, z)

+ A2,2(s, s− a, z; b) Υ2,2(s− a, s, s− a, z) = e−θs−κ(s−a) (3.56)

for all s ∈ R and 0 < z < a, and

A2,1(s, q, (s− q) ∧ b; b) Υ2,1(s ∧ (q + b), s, q, (s− q) ∧ b)

+ A2,2(s, q, (s− q) ∧ b; b) Υ2,2(s ∧ (q + b), s, q, (s− q) ∧ b) = U(s, s, q; 0) I(s < q + b) (3.57)

for all q < s < q + a, where U(s, s, q; 0) is determined in part (iv) of Subsection 3.2. Moreover, we have 
the property A2,2(r, r, ε; b) → 0 as r ↓ −∞, since otherwise W2(r, r, r, ε; b) → ±∞, for any sufficiently small 
ε > 0, which must be excluded by virtue of the obvious fact that the value function in (2.5) is bounded (see 
Fig. 5). We may therefore conclude that the candidate value function admits the representation of (3.41) in 
the region R4

2(b), where A2,i(s, q, z; b), i = 1, 2, provide a unique solution of the two-dimensional system of 
first-order linear partial differential equations in (3.6) and (3.9) with the boundary conditions of (3.56)–(3.57)
and A2,2(r, r, ε; b) → 0 as r ↓ −∞, for any sufficiently small ε > 0.

(iii) Let us finally consider the domain 0 ≤ s − q ≤ z. Observe that since the fourth component Z is 
set to S − Q after the process (X, S, Q, Z) hits both hyperplanes d4

2,1 and d4
2,3, we may conclude that the 

candidate value function has the form

W2(x, s, q, z; a) = W2(x, s, q, s− q; a) = U(x, s, q; a) (3.58)

in the region R4
2(a) = {(x, s, q, z) ∈ E4

2 | q ≤ s − a ≤ x ≤ s ≤ q + z < q + b} (see Fig. 6) and

W2(x, s, q, z; 0) = W2(x, s, q, s− q; 0) = U(x, s, q; 0) (3.59)
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in the region R4
2(0) = {(x, s, q, z) ∈ E4

2 | s − a < q ≤ x ≤ s ≤ q + z < q + b} (see Figs. 5 and 6), 
where the functions U(x, s, q; a) and U(x, s, q; 0) are determined in parts (ii) and (iv) of Subsection 3.2, 
respectively.

3.5. The solution to the boundary-value problem in the (X, S, Q, Y, Z)-setting

We finally consider the general form of the coefficients μ(x, s, q, y, z) and σ(x, s, q, y, z) in (2.1), and thus, 
of the functions Ψi(x, s, q, y, z), i = 1, 2, in (3.1). We denote the border hyperplanes of the state space E5

by d5
1 = {(x, s, q, y, z) ∈ R

5 | x = s}, d5
2 = {(x, s, q, y, z) ∈ R

5 | x = q}, d5
3 = {(x, s, q, y, z) ∈ R

5 | x = s − y}, 
and d5

4 = {(x, s, q, y, z) ∈ R
5 | x = q+ z}. We also recall that the second, third, fourth, and fifth components 

of the process (X, S, Q, Y, Z) can increase or decrease only at the hyperplanes d5
1, d5

2, d5
3, and d5

4, that is, 
when Xt = St, Xt = Qt, Xt = St − Yt, and Xt = Qt + Zt for t ≥ 0, respectively.

(i) Let is now consider the domain 0 < y ∨ z < s − q ≤ y + z. In this case, it follows that the candidate 
value function admits the representation

V (x, s, q, y, z;∞) = C1(s, q, y, z;∞) Ψ1(x, s, q, y, z) + C2(s, q, y, z;∞) Ψ2(x, s, q, y, z) (3.60)

in the region R5(∞) = {(x, s, q, y, z) ∈ E5 | (s − a) < q ≤ s − y ≤ x ≤ q + z < s ∧ (q + b)}, where 
Ci(s, q, y, z; ∞), i = 1, 2, solve the first-order linear ordinary differential equations (3.8) and (3.9) for all 
q < q + y ∨ z < s < q + y + z. Observe that, on one hand, the process (X, S, Q, Y, Z) can reach the edge of 
the region R5(∞) through the point x = q+ z = (q + b) ∧ s, by hitting the hyperplane d5

4 so that increasing 
its fifth component Z. Then, the component Z becomes either equal to the value b or is set to S −Q and 
the region R5(∞) is identified with R4

1(a) in part (ii) of Subsection 3.3. On the other hand, the process 
(X, S, Q, Y, Z) can reach the edge of the region R5(∞) through the point x = s − y = (s − a) ∨ q, by hitting 
the hyperplane d5

3 so that increasing its fourth component Y . Then, the component Y becomes either equal 
to the value a or is set to S−Q and the region R5(∞) is identified with R4

2(b) in part (ii) of Subsection 3.4. 
Thus, the candidate value function should be continuous at the points (s ∧ (q + b), s, q, y, (s − q) ∧ b) and 
((s − a) ∨ q, s, q, (s − q) ∧ a, z), that is expressed by the equalities

C1(s, q, y, (s− q) ∧ b;∞) Ψ1(s ∧ (q + b), s, q, y, (s− q) ∧ b)

+ C2(s, q, y, (s− q) ∧ b;∞) Ψ2(s ∧ (q + b), s, q, y, (s− q) ∧ b)

= W1(s, s, q, y; a) I(s < q + b) (3.61)

for all q ≤ s and 0 < y < a, and

C1(s, q, (s− q) ∧ a, z;∞) Ψ1((s− a) ∨ q, s, q, (s− q) ∧ a, z)

+ C2(s, q, (s− q) ∧ a, z;∞) Ψ2((s− a) ∨ q, s, q, (s− q) ∧ a, z)

= W2(q, s, q, z; b) I(q > s− a) + e−θs−κq I(q ≤ s− a) (3.62)

for all q ≤ s and 0 < z < b, where W1(s, s, q, y; a) and W2(q, s, q, z; b) are determined in parts (ii) of 
Subsections 3.3 and 3.4. Moreover, we have the property C2(r, r, ε, ε; ∞) → 0 as r ↓ −∞, since otherwise 
V (r, r, r, ε, ε; ∞) → ±∞, for any sufficiently small ε > 0, that must be excluded by virtue of the obvious 
fact that the value function in (2.5) is bounded (see Figs. 7 and 8). We may therefore conclude that the 
candidate value function admits the representation of (3.60) in the region R5(∞), where Ci(s, q, y, z; ∞), 
i = 1, 2, provide a unique solution of the two-dimensional system of first-order linear partial differential 
equations in (3.8) and (3.9) with the boundary conditions of (3.61)–(3.62) and C2(r, r, ε, ε; ∞) → 0 as 
r ↓ −∞, for any sufficiently small ε > 0.
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Fig. 7. A computer drawing of the state space of the process (X,S,Q, Y, Z), for some q, y, z ∈ R fixed and y < z.

Fig. 8. A computer drawing of the state space of the process (X,S,Q, Y, Z), for some q, y, z ∈ R fixed and z ≤ y.

(ii) Let us finally consider the domain 0 ≤ s −q ≤ y∨z. Observe that since the fourth or fifth component, 
Y or Z, is set to S − Q after the process (X, S, Q, Y, Z) hits both hyperplanes d5

2 and d5
3, or d5

1 and d5
4, 

respectively, we may conclude that the candidate value function takes the form

V (x, s, q, y, z; a) = V (x, s, q, y, s− q; a) = W1(x, s, q, y; a) (3.63)

in the region R5(a) = {(x, s, q, y, z) ∈ E5 | (s − a) ∨ q < s − y ≤ x ≤ s ≤ q + z < q + b} (see Fig. 7),

V (x, s, q, y, z; b) = V (x, s, q, s− q, z; b) = W2(x, s, q, z; b) (3.64)

in the region R5(b) = {(x, s, q, y, z) ∈ E5 | s − a < s − y ≤ q ≤ x ≤ q + z < s ∧ (q + b)} (see Fig. 8), 
and

V (x, s, q, y, z; 0) = V (x, s, q, s− q, s− q; 0) = U(x, s, q; 0) (3.65)

in the region R5(0) = {(x, s, q, y, z) ∈ E5 | s − a < s − y ≤ q ≤ x ≤ s ≤ q + z < q + b} (see Figs. 7 and 
8), where the functions W1(x, s, q, y; a) and W2(x, s, q, z; b) are determined in parts (ii) of Subsections 3.3
and 3.4, and the function U(x, s, q; 0) is determined in part (iv) of Subsection 3.2.
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4. The main result and proof

In this section, taking into account the facts proved above, we formulate and prove the main result of 
the paper.

Theorem 4.1. Suppose that the coefficients μ(x, s, q, y, z) and σ(x, s, q, y, z) of the diffusion-type process X
given by (2.1)–(2.3) are of their general form. Then the joint Laplace transform V ∗(x, s, q, y, z) from (2.5)
of the associated with X random variables τa, Sτa , and Qτa such that τa < ζb from (2.4), admits the 
representation

V ∗(x, s, q, y, z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

V (x, s, q, y, z;∞), if (s− a) ∨ q < s− y ≤ x ≤ q + z < s ∧ (q + b)
V (x, s, q, y, z; a), if s− a < s− y ≤ q ≤ x ≤ q + z < s ∧ (q + b)
V (x, s, q, y, z; b), if (s− a) ∨ q < s− y ≤ x ≤ s ≤ q + z < q + b

V (x, s, q, y, z; 0), if s− a < s− y ≤ q ≤ x ≤ s ≤ q + z < q + b

(4.1)

for any a, b > 0 fixed. Here, the function V (x, s, q, y, z; ∞) takes the form of (3.60) with Ci(s, q, y, z; ∞), 
i = 1, 2, being a unique solution of the two-dimensional system of first-order partial differential equations 
in (3.8)+(3.9) and satisfying the conditions of (3.61)–(3.62) together with the property C2(r, r, ε, ε; ∞) → 0
as r ↓ −∞, for any sufficiently small ε > 0, and the functions V (x, s, q, y, z; a), V (x, s, q, y, z; b), and 
V (x, s, q, y, z; 0) are given by (3.63), (3.64), and (3.65), respectively.

Proof. In order to verify the assertion stated above, it remains to show that the function defined in (4.1)
coincides with the value function in (2.5). For this, let us denote by V (x, s, q, y, z) the right-hand side of the 
expression in (4.1). Then, taking into account the fact that the function V (x, s, q, y, z) is C2,1,1,1,1 on E5, 
by applying the change-of-variable formula from [33, Theorem 3.1] to e−λt V (Xt, St, Qt, Yt, Zt), we obtain 
that the expression

e−λ(τa∧ζb∧t) V (Xτa∧ζb∧t, Sτa∧ζb∧t, Qτa∧ζb∧t, Yτa∧ζb∧t, Zτa∧ζb∧t)

= V (x, s, q, y, z) + Mτa∧ζb∧t

+
τa∧ζb∧t∫

0

e−λu (LV − λV )(Xu, Su, Qu, Yu, Zu)

× I(Xu �= Su, Xu �= Qu, Xu �= Su − Yu, Xu �= Qu + Zu) du

+
τa∧ζb∧t∫

0

e−λu ∂sV (Xu, Su, Qu, Yu, Zu) I(Xu = Su) dSu

+
τa∧ζb∧t∫

0

e−λu ∂qV (Xu, Su, Qu, Yu, Zu) I(Xu = Qu) dQu

+
τa∧ζb∧t∫

0

e−λu ∂yV (Xu, Su, Qu, Yu, Zu) I(Xu = Su − Yu) dYu

+
τa∧ζb∧t∫

e−λu ∂zV (Xu, Su, Qu, Yu, Zu) I(Xu = Qu + Zu) dZu (4.2)

0
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holds for all t ≥ 0 and the stopping times τa and ζb given by (2.4). Here, the process M = (Mt)t≥0 defined 
by

Mt =
t∫

0

e−λu ∂xV (Xu, Su, Qu, Yu, Zu)

× I(Xu �= Su, Xu �= Qu, Xu �= Su − Yu, Xu �= Qu + Zu)σ(Xu, Su, Qu, Yu, Zu) dBu (4.3)

is a continuous local martingale under Px,s,q,y,z. Note that, since the time spent by the process X at the 
hyperplanes d5

k, k = 1, 2, 3, 4, is of Lebesgue measure zero, the indicators in the fourth line of formula (4.2)
and in formula (4.3) can be ignored. Moreover, since the processes S, Q, Y , and Z change their values only 
on the hyperplanes d5

1, d5
2, d5

3, and d5
4, respectively, the indicators appearing in the fifth to eighth lines of 

(4.2) can be set equal to one.
By virtue of straightforward calculations and the arguments of the previous section, it is verified that the 

function V (x, s, q, y, z) solves the ordinary differential equation in (2.7) and satisfies the normal-reflection 
conditions in (2.10)–(2.13). Observe that the process (Mτa∧ζb∧t)t≥0 is a uniformly integrable martingale, 
since the derivative and the coefficient in (4.3) are bounded functions on the compact set {(x, s, q, y, z) ∈
R

5 | a ∨ (s − y) ∨ q ≤ x ≤ s ∧ (q + z) ∧ b}. Then, using the properties of the indicators mentioned above and 
taking the expectation with respect to Px,s,q,y,z in (4.2), by means of the optional sampling theorem (see, 
e.g. [28, Chapter III, Theorem 3.6] or [25, Chapter I, Theorem 3.22]), we get

Ex,s,q,y,z

[
e−λ(τa∧ζb∧t) V (Xτa∧ζb∧t, Sτa∧ζb∧t, Qτa∧ζb∧t, Yτa∧ζb∧t, Zτa∧ζb∧t)

]
= V (x, s, q, y, z) + Ex,s,q,y,z

[
Mτa∧ζb∧t

]
= V (x, s, q, y, z) (4.4)

for all (x, s, q, y, z) ∈ E5. Therefore, letting t go to infinity and using the instantaneous-stopping conditions 
in (2.8)–(2.9) as well as the fact that e−λ(τa∧ζb) V (Xτa∧ζb , Sτa∧ζb , Qτa∧ζb , Yτa∧ζb , Zτa∧ζb) = 0 on {τa∧ζb = ∞}
(Px,s,q,y,z-a.s.), we can apply the Lebesgue dominated convergence theorem for (4.4) to obtain the equalities

Ex,s,q,y,z

[
e−λ(τa∧ζb)−θSτa∧ζb

−κQτa∧ζb I(τa < ζb)
]

= Ex,s,q,y,z

[
e−λ(τa∧ζb) V (Xτa∧ζb , Sτa∧ζb , Qτa∧ζb , Yτa∧ζb , Zτa∧ζb)

]
= V (x, s, q, y, z) (4.5)

for all (x, s, q, y, z) ∈ E5, which directly implies the desired assertion. �
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