J. Math. Anal. Appl. 451 (2017) 14-33

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Hypersurfaces in E?*! satisfying Aﬁ = )\ﬁ with at most two @ Cosshark
distinct principal curvatures

Jiancheng Liu*, Chao Yang

College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, PR China

ARTICLE INFO ABSTRACT

Article history: A. Arvanitoyeorgos and G. Kaimakamis proposed in [1] the conjecture that: any
Received 7 November 2016
Available online 2 February 2017
Submitted by R. Gornet

hypersurface satisfying Aﬁ = )\ﬁ in pseudo-Euclidean space E*t! of index s has
constant mean curvature. In this paper, we prove that the conjecture is true when
the hypersurfaces have at most two distinct principal curvatures. Then, we estimate

Keywords: that constant mean curvature, and give its explicit expression for some special cases.
Pseudo-Euclidean space As a result, for that of Lorentzian type hypersurfaces which are not minimal, we
Hypersurface prove that it must be isoparametric and give classification results.

Shape operator © 2017 Elsevier Inc. All rights reserved.

Mean curvature
Isoparametric

1. Introduction

Let z : M — E?*! be an isometric immersion of a pseudo-Riemannian hypersurface M into a pseudo-
Euclidean space E?T!. Denote by ﬁ and A the mean curvature vector field and the Laplace operator of
M with respect to the induced metric. The equation Aﬁ = )\37 for some real constant A, is a natural
generalization of the biharmonic equation AH = 0.

In 1992, Ferrdndez and Lucas originate in [6] the study of hypersurfaces in E**! satisfying Aﬁ = )\ﬁ,
where they proved that the hypersurfaces in E$ have constant mean curvatures and classified such hy-
persurfaces. Naturally, A. Arvanitoyeorgos and G. Kaimakamis made a conjecture in [1] saying that any
hypersurface satisfying AH = \H in pseudo-Euclidean space E"*1 has constant mean curvature.

A. Arvanitoyeorgos et al. proved in [2] that this conjecture is true for hypersurface M? of E whose shape
operator is diagonalizable. More general, we obtained the same conclusion in [8] for M in EMT! with at
most three distinct principal curvatures.

Without the restriction that the shape operator is diagonalizable, there are also some papers to prove this
conjecture. However, most of them are for hypersurfaces with » = 1 and s = 1, such as [3] is for hypersurface
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M3 in Ef and [9] is for M}* in E}™! with at most three distinct principal curvatures. As well as the situation
for r =2 and s = 2 is also proved in [1].

As a matter of course, it is interesting to study this conjecture for general indexes r and s without the
restriction that the shape operator is diagonalizable. In this paper, we will show that hypersurface M
satisfying AH = AH in E**! with at most two distinct principal curvatures has constant mean curvature
in section 3.

Once we know the mean curvature of that class of hypersurfaces is a constant, we continue in section 4
to estimate or give an explicit expression for that constant, according to the principal curvatures are all
real or imaginary. In section 5, applying the results of section 4 to the special case r = s = 1, we classify
the non-minimal Lorentzian hypersurfaces in E?H satisfying AH = AH with non-diagonalizable shape
operators and at most two distinct principal curvatures. For the case of diagonalizable shape operator, the

=

problem has been studied by L. Du in [5].
2. Preliminaries
2.1. Notions and formulas of hypersurfaces in E?+1

_>
Let M be a nondegenerate hypersurface in E**1, ¢ denote a unit normal vector field to M, then
- = =
e= (&, &) =+£1. Denote by V and V the Levi-Civita connections of M and E?*!, respectively. For any

vector fields X, Y tangent to M, the Gauss formula is given by

VY = VxY +h(X,Y)E

)

whge h is the scalar-valued second fundamental form. If we denote by A the shape operator of M;" associated
to &, then the Weingarten formula is given by

Vx € = —A(X),

where (A(X),Y) = ¢h(X,Y). The mean curvature vector field H= H? with mean curvature H = 1etr4,
determines a well defined normal vector field to M in E?*!. The Codazzi and Gauss equations are given
by (cf. [12])

(VxA)Y = (VyA)X,
R(X,Y)Z = (A(Y), 2)A(X) — (A(X), Z)A(Y),

where R(X,Y)Z =VxVyZ - VyVxZ - Vixy|Z.

A non-zero vector X in E7T! is called time-like, space-like or light-like, according to whether (X, X) is
negative, positive or zero.

According to [4], the equation Aﬁ = /\ﬁ is equivalent to the following two equations:

A(VH) = —ggH(VH), (1)
AH +eHtrA* = \H, (2)

where the Laplace operator A acting on scalar-valued function f is given by
n
Af == eileiei = Vee)f,
i=1

with {e;}?_; a local orthonormal frame on M such that (e;,e;) =¢; = £1.
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A hypersurface is called isoparametric if the characteristic polynominal of the shape operator is a constant
(cf. [7]). Tt is equivalent to the principal curvatures and their multiplicities being constants. In this paper,
without special statement, multiplicity refers to algebraic multiplicity.

For simplicity, we call hypersurface M is a proper hypersurface if it is not minimal.

2.2. The shape operator of M in Ent!

According to [12, exercise 18, pp. 260-261], the tangent space T, M at * € M can be expressed as
a direct sum of subspaces Vi, 1 < k < m, that are mutually orthogonal and invariant under the shape
operator A, and each Aly, (the restriction of A on V4) has form (a) or (b) as following.

(a) Aly, has the form

Ak
1 M
1
1 A
with respect to a basis By = {ug,, Ug,, - ,ukak} of Vi. The inner products of the basis elements in 2By, are

all zero except
(uk“ukd) =¢e,==x1, b+d=ar+1.
(b) Aly, has the form

Ve Tk
Tk Tk
I 0 v ™%
0 1 -1
Aly, = L0 w7 Tk # 0,
0 1 -7 %

10 m 7
1 -7

with respect to a basis By = {TUy,,7,,- - ,Ekﬂk,ﬁkﬂk} of V. The inner products of the basis elements in

B, are all zero except
<ﬂkb7akd> =1= _<5kbaikd>7 b+d= G +1.

We denote by ¢ the number of terms A|y, having form (a). Adjusting the order of Vi, 1 < k < m, such
that Aly, have form (a) for 1 < k < ¢, and Ay, have form (b) for t + 1 < k < m. Denote A; = Aly,,
1<i<tand Zj = Aly,, t +1 < j < m. Collecting all the vectors in By, - B¢, B41, -+ ,B,, in order,
we get a basis B of T, M. With respect to this basis 98, the shape operator A of the hypersurface M, in
E?*! can be expressed as an almost diagonal matrix

A - diag{Ala e aAtvzt-‘rl? e ?Zm}7
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and the inner products of the elements in 2B are all zero except

(wi us) =i ==%1, a+b=0o;+1, 1<i<t,
(W, 0j,) =1=—(0;.,05,), c+d=p;+1, t+1<j<m,
where
ar +ag+ -+ + 2By + Beya + o+ B) =1
Observe the forms (a) and (b), we see that 4;,1 <4 < ¢, has only a simple eigenvalue \;, and 4;,t+1 <

j <'m, has eigenvalues v; + 7;4/—1, 7; — 751/ —1. It follows from the form of the shape operator A that M
has principal curvatures

)\1,"' ,)\t; A/t+1 :l:Tt+1\/—1,"' ,’Ym:tTm\/ —].

So, under the assumption that M," has at most two distinct principal curvatures, the shape operator A has
the following two possible forms:

() ¢t = m, ie. A = diag{A;,As,---, A}, and there are at most two distinct values among
{)‘17)\27"'a)\m}~ o o
(]I) t:(), ie. A:diag{Al,A2,~-~ 7Am} and/yl == =Y, =, T1 :T2:"':Tm:7—77—7é0'

3. A partial affirmative answer to the conjecture

Theorem 3.1. Let M be a nondegenerate hypersurface of EM Tt satisfying Aﬁ = )\ﬁ for a real constant .
Suppose that M" has at most two distinct principal curvatures, then M has constant mean curvature.

Proof. From section 2, the shape operator A has the form (I) or (I). If A has the form (II), then its
eigenvalues are not real. It follows from (1) that VH = 0, which tells us H is a constant.

For form (I), assume that H is not a constant, then (1) implies that —%cH is an eigenvalue of the
shape operator A. When \; = --- = A,;,, then trd = —geH. On the other hand, trA = neH. These two
expressions imply H = 0, a contradiction.

So, in the following, we need only to discuss the situation that there are two distinct values among
{A1,--- 5 Am}. (1) also tells us that VH is an eigenvector of A with corresponding eigenvalue —$eH, it
may be a light-like vector or not. We will following a long discussion that each of the cases will lead to a
contradiction, and complete the proof of Theorem 3.1.

First of all, we give some equations which are important and will be used frequently. In view of the form
(I) and the form of A;, 1 < i < m in section 2, we have

A(Uia) = )\iuia + Uiy, A(u,a7) = )\luz%, 1<i<m, 1<a<aq;—1. (3)

Observe the inner products of the elements in basis B given in section 2, we can express
m
VH = ZZEiuiaiiaJA (H)uia. (4)

i=1a=1

Let Vy, wj, = > ey 295, rka 4, . Applying compatibility condition to calculate

tajb

VUD <uia ) uia>7 qu <uia ) uib>7 VUD <uia ) ujd)a
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respectively, we conclude
la;—a+l
Ip;, " =0, (5)
and
la;—b+1 _ mlaj—atl Jaj—d+1 o plaj—at1
I'pi, = FDib s I'pi, = 525JFDjd ) (6)

for De{ke,1<k<m,1<e<o},1<i,j<m,1<ab<aoandl<d<q;.
In view of (3), VH is one of the directions ;.1 < i < m. Without loss of generality, we suppose VH
is in the direction of uy, , it may be a light-like vector or not.

Case 1: VH is not light-like.

In this case, we will concentrate our attention to prove Lemmas 3.3 and 3.4, the two lemmas imply that
H is a constant, a contradiction.

At the beginning, we give the range of indices 7, j such that 2 <i,j < m, and i # j.

As uy,, is not a light-like vector, we have (u1, ,u1, ) # 0, which means 2aq = a; + 1, ie. a; = 1. It
follows from (3) that A(u1,) = Au1,. Note that A\; = —%eH, (5) implies that

FBll =0, (7)
and (4) can be rewritten as
m o
VH = Z Z Eillia, at1 (H)uwi, +eruy, (H)uy, .
1=2 a=1

Since VH is in the direction of u;,, the above equation implies that
u, (H)#0, wu;,(H)=0,2<i<m,1<a<aq. (8)

From the expression (Vy,uc — Vyoup)(H) = [up,uc](H), B,C € {kg,1 <k <m,1 <d < ax} and (8),
we easily get

Tpo=Tdg, B,C#1;. (9)
Lemma 3.2. We have Ao = -+ = \,, = Q%Zihl').

Proof. Calculating the equation ((Vu,, A)us,,u1,) = (Vu,, A)ui,,u1,) for a = a;; 1 < b < a; — 1 and
1<a,b<a;—1, and combining (9), we obtain

1 1
imyivsr = Lipgria, =0 1 <0< ai—1, (10)
and
rl - =rh 1<ab<o—1
falb+1 Gblat1’ =Y = )

which together with (6) and (9), implies that
e, =T%" .  1<ab<a—1.

iql1 fa+111?

Because of (6) and (10), it follows from the above equation that
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. A o,
F;ill = F;zll == Fiai117
and
i i tay—1
iy, =T, = =T, =0,
Similarly, from the relation ((Vy, A)u1,,uiy, 1) = (Vuy, Ay, iy, ,py) fora=1,2,---

(12), we get

(—%eH — )iy, = ug, (A) + T

n

2 1yd22

n T2 . 2 _ i
(_EEH - )"L)FiQh = u1, (\i) + F11i3 1—‘117:27

(—ZeH — AL =y, () + Di0 Tl

1_%-—111 ) lita, - 11da; -1
(=eH — ATy, =u, (N) = T3
As (11), the above equations imply that
FZ12113 = 2F1111i2’ Fll?’liz; = 3r1111i2’ o Flliail = (ai B 1)F111112
On the other hand, Fia’fl =-T%, . So,
1la; 182
i i la;—1
szm = Flﬁig == Flliai =0,
and
n i
ull(/\i) = (—§<€H - /\i)riah’ 1<a<ay.

If \j = —5eH, then uy, (H) = 0, which contradicts to (8). So, we conclude that \; # —5eH

are two distinct values among {A1, -+, A\, } and trA = neH, we have \; = Q%ZE_I{). O

From Lemma 3.2 and (14), we easily find that

ta 37"‘11(H)

i T gy 2SI Ises e

Denote W = Fﬁzh, we have the following Lemmas.

Lemma 3.3. Suppose that H is not a constant. Then we have

381n2H2

’LLll(W) +W2 = m

19

(1)

(12)

,a; — 1 and

(13)

(14)

. Since there

(15)

(16)

Proof. Calculate ((Vy, A)ui,,ui, ) = (Vi A, ui, ), 2 < a < a; —1, and combine the results with (6),

(9) and (10), we obtain

From (6), (13) and the above equations, we find that
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e, =0,1<b<aq;—1. (17)

liia,

Considering \; = ;EZ—% (see Lemma 3.2) and (8), the relation ((Vu,, A)u1,, u1,) = (Vu,, A)ui,,u1,) for

a=1,2,---,«a;, implies that

(n+2)eH -1 1 _
nzT(Ln—1) il + 10, =0,

n(n+2)eH Fll

1
=) L 1yia, 1 T L1yia, =05
n(n+2)eH 1 _
2(n—1€) Fliiai =0,
which tells us
Fﬁil = Fhiz == Fhia. =0. (18)

Note that \; = \; = 2322—57}{) (see Lemma 3.2), using ((Vuiai Auj,,ury) = (Vay, A, ur,), 1 <b<a;—1
and (9), we have

ri  —rh

la;Jd Jdtay

=0,2<d<a;. (19)

We know from ((Vy,,  A)ui,,uj,) = (Vi A, uz,), 1 <b < aj —1 that

n(n/+-2)€f{ Joj—b+1 Joj—b Jaj—b
_mriaill = Fia'ill - Flli(,i :
Applying (6) and (19) to the above equation, we get
M, =0, 1<e<a; -2 (20)

Using Gauss equation for (R(u1,,ui, )ui, ,u1,), combining (6), (7), (10), (17), (18), (19) and (20), we have

on(@i)+ 3 Thplin+ 2 Thalin = 2 Thali,
i=2 37 §=2, j#i j=2, j#i (21)
- i i 3e1n?H?
+ Z Fgllllrjllll + (Fi111)2 ="
; oy 4(n—1)
J=2, j#i
Caleulate ((Vu,, A)us,, ui, ) = (Vay, A)ujy,ui, ), we get
i n(n+2)eH
111j2 = _mrjllll (22)

The relations

(Vu,, Aujy,ut,) = (Vu, Aug,,u,), 1<a<o;—1, 1<b<aj -1,

u]-b
and (9) give that

1 _1h
Fiajb+1_ Jbtat1’
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which together with (6) and (9), implies

L, =T, 1<a<a;—1, 1<b<a; — 1. (23)

Gg4111°
Combining (6), (19) and (23), we find

Jb _ 11
ipr1ls T Pizh

=0, 1 <b<min{a; — 1,0;}. (24)

If aj < oy, it follows from (6), (19) and (23) that Fé-llll = F;Z{h = 0. If o;j = o, from the relation

(Vauy, Durys iy yr) = (Vg Ay, i,y ), and (24), we have

_n(n+2)eH iy _ i
2(n—1) “gi1li T T lige?
_n(n+2)8H Qo _ T2 I g2
2(n—1) Fj211 - Flljs Flljz’
_ n(n+2)eH pia;—1 _Fiai—l a2
2(n—1) “Jaj—1l1 T " lijay T1jay—17
_ n(n+2)eH piay _ pleg-1
20D Ldag i = L1
which together with (23), tells us that
M —pi2 —..._7l1 _
1172 1173 1ija, )
and
i1
Fj111 =0.
So, if a; < a;, then
i1
i, =0. (25)

If a; > ay, calculate ((Vy,, A)ull,ujaj_a) = <(vu11A)Uiaanaj_a>7 1 <a < a;, combining (23) and (25),
we get

n(n+2)eH —j j j
- (2(n7)16) F‘Zfll = Fjlim o F]1111'1’
_n(n+2)€H Jo, _ oy o Jo;—1 (26)
2(n—1) ta;—111 = T lida, 1yta, -1
_ n(n+2)eH rja;+1 _]-—\jai
2(n—1) fa; 11 11ia; "
If aj > o; + 1, then (19) and (23) give us that
2 == rﬁg;ﬁ =0. (27)
As (27), it follows from (26) that if a;; > o; + 1, then
e, =0. (28)

If a;j = o + 1, then combining (6) and (9), we get from (23) and (26) that
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jo  _ pday i
Ity =T, =eelng,
2
; Je, nn+2eH (29)
M=ol =eej—— ;I
lyig = 70 1yig, = ST 2(”—1) gl

Therefore, from (22), (25), (27), (28) and (29), (21) can be simplified to

n(n+2)eH - 4 - ;
—2(n — ei{ Z sjaj(l“gllllf - Z gjlou + 1)(Fj1111)2}
7=2, aj=a;—1 7=2, aj=a;+1 (30)
i i 3€1n2H2
7 7 2 _
+ur, (Ti)y,) + (Ti,)” = Tn=1)
Choosing {cvy,,- -+ ,y, } in {ag, -, am}, such that o, = min{ag, - ,am}, oy, =, +1,1 <k < h—1,

ay, +1 # o, 2 < 1 < m. Without loss of generality, we suppose ap+1 = ay,,1 < k < h. Taking
i=2,3,--- ,h+1in (30), we have

—(042 + 1)@2 = Pa
@2Q2 — (a3 +1)Q3 = P,
: (31)
ap—1Qnr—1 — (ap +1)Qp = P,
ath = Pa
where,
3€1TL2H2
P=- W) —-W? 4+ ——
(W) LPTORY
and
n(n+2)eH B 9
=5y erewn o) p=k+ 1.
From (31), we can get Qx =0, 2 < k < h and (16) holds. O
Lemma 3.4. We have
n + 8)n?H?3
(n—1)Wuy,(H) + uy,ur, (H) — Elsﬁ +e1AH =0. (32)
Proof. Based upon the basis By = {u,, uk,, " ,ukak} of Vi, 1 < k < m, we can construct an orthonormal
basis €, = {ek,, €k, ,ekak} of V}, as follows.
If ay is an even number, then we let
R, S _ W Moo gy O (33)
Ck, = \/5 ) kak,a+1 — \/5 ) = =9 )
and have
(€kas€ha) = —€ky (€ka, at1sChay _ar1) = k-

If o is an odd number, then we give
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Uk, — Uk, _ Uk, + Uk, _
a ajp—atl a ap—atl
Chy = — =y Gy e = T, ka1 = Uk, (34)
\/i ) —a+1 \/§ 3 k2+1 k2+17
with 1 <a < ”"“T‘H, and have
<eka’ eka> = —¢k, <ekak7a+17€kak7a+l> = €k, <€kak+1 ) Chay +1 > = Ek-
2 2

Thus, € = {eg,,1 <k <m,1 <a < ax} is an orthonormal basis. Note that ey, = uy,, it follows from (8)
that

e,(H)#0, ¢,(H)=0,2<i<m, 1<a<aq.
In fact, trA? is independent of the choice of basis. By calculating, we get

(n+8)n?H?

2 _
trdA® = 0 —1)

When ay, is an even number, then from (8) and (33), we easily obtain for 1 <a < S,

Lo 1 1 1
Ve eha () = S0k A T0 ke i~ kb e — Dk k) (),
v H)= b, +rb T T H
ek&k—a+1ekak—a,+1( )_ 5( kaka + Koy —at1kag —a+1 + kakay, —at1 + kak,fai»lka)ull( )
Similarly, as ay is an odd number, then from (8) and (34), we easily obtain for 1 <a < —O"“;l,
Lo 1 1 1
Ve, eh, (H) = §(Fk}1ka T3 iy oss ™ Phb, ars = Db it (H),
Hy=@h, 41 T T H
O ek}ak—aﬁ»l( ) = 5( kuka =+ Koy, —at+1kay—at1 + kakay—a+1 + kak7a+1ka)u11( )7
1
ek"‘k+1 ek(x! +1 (H) = FklakJrl kak+1 Ull(H).
2 2 e
It follows from (2), (6) and the above that
m «
~ i n+8)n?H3
erizllull(H>+ullu11(H)_glgﬁ 4+ e1AH = 0. (35)

=2 a=1
Combining (7) and W = Fizll ,2 <4 < 'm, then (35) can be simplified to (32) and Lemma 3.4 follows. O

Now, we continue the proof of Theorem 3.1 for case 1.
Calculating w1, u1, (H), using (15) and (16), we get

- (n+2)(n+5)H__, (n+2)n’e H?
ur,uy, (H) = 9 w -1
By (15) and the above equation, (32) becomes

2(n—4)(n+2) o, (n+2+e(n+8))n%e H?
{ 9 we An—1) :

— e \JH =0. (36)

Applying u1, to both sides of (36) and using (15) and (16), we obtain
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2(n —4)(n+2) (n+2+¢e(n+8))n%e; H?

{ 9 W2+ An—1) —ElA}ull(H)
—2(n+ 2){2(n9_ Dz, (n=10 _126((Z+f))>n2€1H2}HW —0.

Further, using (15) and (36), the above equation implies that

2(n —4) (n—10 — e(n + 8))n?e1 H? ~0
9 12(n—1) -

which together with (36) gives that H must be a constant, and this is a contradiction.

Case 2: VH is light-like.

In this case, we will focus on proving Lemmas 3.5 and 3.7. The two lemmas imply that H is a constant,
a contradiction.

Notice that VH is in the direction of u, , A1 = —5eH, and wuy, is light-like means oy # 1. Since
trA = neH, we can suppose A\; = --» =\, = —geH and A\py1 = -+ = Ay, = %—+ﬁg[ It follows

from (4) that
u, (H)#0, up(H)=0, B#14, (37)
where B € {h,,1 <h <m,1 <a< ap}. Certainly,
up, (Ag) #0, up(Ax) =0, B# 11, 1 <k <m. (38)

Observe (Vy,uc — Vyoup)(H) = [ug,uc](H), B,C € {he,1 <h <m,1 <a<a}, using (37), we have

Tgo=Tdg, B,C#1;. (39)
Lemma 3.5. We have
P .
—e1 Y il i, (H) +eHirA* = \H, (40)
=2
where
a2 LD £+ ap) +4n”H?

il (a1 + -+ ay)

Proof. We construct an orthonormal basis € the same as that in the proof of Lemma 3.4. With this
orthonormal basis € and (37), we have

ey, er, (H) = (ui,u, (H) —uy, w1, (H))/2,
€1y, €la, (H) = (uy,u1, (H) + ulalull(H))/27
er,e1,(H)=0, 2<b<a;—1,

erer,(H) =0, 2<k<m, 1<a<a.

Similar to the proof of Lemma 3.4, according to the orthonormal basis ¢ and (37), we obtain the expres-
sions of Ve, ex,(H), 1 <k <m, 1< a < ag. Substitute the expressions and (41) into (2), we get
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m Qg

—eruy, uy, (H) — €1 Z Z I‘izlal uy, (H) + eHtrA? = \H. (42)
k=1la=1

Calculating ((Vu,, Auk,,u1,,) = (Vuy, Auk, w1, ), 2 <k <m, fora =ay, 1 <b < ap—1and
1<a,b<ag—1, and combining (39), we obtain

Dk = Dt =0, 2<k<m, 2<d < oy,

and

1 _ ol
kikul _szkaﬂ’ 2<k<m, 1<a,b<a;—1.

By using (6) and (39), it follows from the above equations that

Thy =T, == r,’iz:lal, 2<k<m, (43)
and
k1 ko ko, —
Do, =T, = =Tt =0, 2<k<m (44)

From the relations
<(vﬂka A)u1a17ukak—a+1> = <(V'U«1a1 A)ukaaukak_a+1>a 2<k< m,

as well as (38) and (44), we know

k k
(—5eH — Ak)rkhal = Flllkgﬂ
k k k
(—5eH - )\k)rkilal =102 ok = T00 ko
n kay -1 _ pkag-1 ko) —2
(=gl = A0, = Dk, — T ke
ko ko -1
(=BeH — \)Ty, =Tyt
which together with (43), implies that
k k Koy —1
Lf o, =T = =T =0, 2<k<m,
and
T, =T = =T =0, p+1<h< 15
hilay, =~ hala, - = haypla; — 20 p+lsh<m. ( )

The relations ((Vu,, A)u1,, u1,,) = (Vu,, Aur,,u1,, ), 1 <a<ar—1,2<b<ar — 1, and (38) give that

1 1
F1i1b+1 = F11171a+1 :
Applying (5), (6) and (39), we get from the above equation that

lag—1 _ _ 1l2 _1h _
Ly, = =g, =T, =0 (46)

Since [u1,,u1, |(H) = Vy, u1,, (H) - Vi, u1, (H), combining (5) and (37), we have
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1
Uy, U1, (H) = F1;1 1, U1, (H).

Notice that a1 + - - - + i, = n. By calculating, we easily obtain

n+4) (o1 + -+ +ap) + 4n?H?

.
R P CYE )

Combining (45), (46), (47) and (48), (42) can be simplified to (40). O

In the proofs of Lemmas 3.6 and 3.7, we give the range of indices i,j: 2 <4,j < p and i # j.

Lemma 3.6. We have

i _ mla tay i 2 ] i
Ui, (anzlal)_rlailalriailal (anﬂal) —Z(thalrzﬁxljl

Fﬁlalrjﬂxlu +T0, T )
for2 <i<p, where c; means 2 < j <p, j#1i, aj = .
Proof. It follows from (5), (6) and (39) that

ky _ 1 —_ _ 1
F logla; = Ekalr lajkayg—b+1 Ekglrkakfwﬂal

=0, kp # la,.

Evaluating (B, C, D) in the set

{(iaiu 1(17 1a1)u (1a7 1(11;'5'(1.;); (iaia ’L'b, 1(11)7 (ib, 1a17io¢i)}

(48)

(50)

with 1 <a <a;—1,1 <b < a;—1, then the equation (V,,A)uc,up) = (Vue A)up, up), combining (38),

implies that

1 _ i _rh _ i1 _
fo;lat1 Flal lat1 = Tdagib+1r — T lagibrr 0
As (6), the above is equivalent to
lg 1, — T — T R
Fla1101 —Fallal Fiailal I Loy i, =0, 1<a<a;—-1,1<b<a; —1.

From the expressions ((Va,, A)uk,, u1,,) = (Vu,, A, w1, ), 2 <k <m, k # i, we get

(A + geH)rg =

(A + gsH)rll + rll s =0, IS0 — 1,

(A + )T, = Fll ey 1<a<ai -1,

(A + 2eH)D; + Fjlkb+1 =T, o 1<a<a—1,1<b<a;—1,

which together with (39), tells us that
I, =0, ie. Ff;lal — Ffihal —0, p+1<h<m.

The relations

(51)
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<(VuiaiA)ujb7u1a1> <(V A)uiai7ulal>7

uj,

(Vuy, Aur, s wig,) = (Vs Aty s i),

give that
11 _ il —
la;Jo+1  © lagje4r 0,
i.e.
szmzla1 - F]bcq'bm - 07 1 S b S @5 1 (53)

Using Gauss equation for (R(u1,,ui, )u1,, Ui, ), combining (50), (51), (52) and (53), we have

P
oy _ pleg oy Z zal
ulal(riailal) _Flallalriailal ( zal o Loy Joy
J=2, j#i
iay Ja ia;
Lot L Ly e +F o et ay)-

It follows from (6) and (39) that FZ:flal = Eigjrj‘lllal' So, we can rewrite the above equation as

iai — 1011 iai J1 11
ulal(riailal) = Flallalrz‘ailal ( zal o § , Fnlal Loy d1
_Th Fjl 4 Fjl i )
J1la; " lagta i1lay = J1lay /°
We know from the equation

(Vs Aty g, ) = ((Vay, Ay, ), 1<a<a;—1, 1<b<a; -1,

that ', =Tl which implies that

taJb+1 Jbtat1”
Fjb _ Fjb+1

7fa1a1 ia+11a1. (55)

If a; > v, then from (53) and (55), we find

Iy, == rj:;lal =0. (56)

And from <(vUibA>ulal7ujaj—h> = ((Vuy,, A)uib,ujaj_b>7 1 <b < oy, we get that

R J2 _ T
F’Lllal - Flaliz 1ali17
o Ja;—1 Jog _ Ja;—1
D mitay = 1o i, T ial a0
Jog Jag
Flallal - lajia;?

which together with (56), gives that if a;; > «;, then

Ty L, =0. (57)
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Similarly, if o; > «;, then

i

1
Jilay — F1a1j1

=0. (58)
Combining (56), (57) and (58), we conclude from (54) that (49) holds. O

Lemma 3.7. We have

Proof. Differentiating (40) along the direction u;, , combining (6), (37), (47) and (49), we obtain

. i"i J1 Z1 _ 1Tt J1 J1 i1 _
> ol i1, ) Z ai(Thy, T1, =T, TL o + T, T, ) =0,
=2

where ¢ means 2 <i4,j <p, i #j, a; = ay, ie.

P

X io‘1 J1 7«1 —
Zai(ri + ZOQ lelal ]11a1) =0.
i=2

i,

i e i1 _ i a1 . .
In fact, if a; =, then T3, = Fjajlal = €ig;1%,,, > the above equation can be rewritten as
P
Z% 2 _
ai za.l + Q€4 EJ 7,11 ) =0. (59)
i=2

For o; = o, we know from <(vﬂibA)ulal7ujaj—h> = ((Vuy,, A)ui,ﬂujaj_b>7 1<b<a;—1,that

_1“]1 _ 1J2 J1

i1lay = T lagi2 laqi1?

Joj—1 Joj—1
_Fl 1 - F ’L - Fl [ ’

a;—11lay lagia, arla;—1

which together with (6) and (55), tells us that if a; = «; and €,6; = —1, then

J1 i1

J1 _ laq i1 layJ1
itlay o; — 1
Putting the above equation into (59), we obtain
ia, L2 24 Za F]l 2 _ Z @ (Fjl _1h )2 -0
Za,lal ? 111(11 (aZ _ 1)2 lalil 1a1j1 -
=2 cq
where c3 means 2 < 4,5 <p, i #J, oy = o, €565 =1l and ¢y means 2 < 4,5 < p, 1 # j, oy = o, €565 = —1.
It follows from the above equation that
P
Za7 2
Dol +ZO‘% 7,7 =0,
=2

which implies Lemma 3.7. O
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Coming back to the proof of Theorem 3.1 for case 2, we have from Lemmas 3.5 and 3.7 that

[(n+4) (a1 + -+ ap) + 4]en?H?
4n — (a1 + -+ ap)]

= \H,

which implies H is a constant. It is a contradiction.
In view of the two cases, we complete the proof of Theorem 3.1. O

Remark. Recall the method or ideas in the proof of Theorem 3.1, we find that the principal curvatures of
the hypersurfaces considered in Theorem 3.1 are all real or all imaginary. When the hypersurfaces have more
than two distinct principal curvatures, the principal curvatures are possibly all real or not all real. For the
later case, the shape operator can have a complicated form. For the former case, the principal curvatures
are not all terms about H and it is difficult to get an algebraic equation about H.

4. Estimation of the constant mean curvature H

Based upon Theorem 3.1, we know that the hypersurface M, satisfying Aﬁ = )\ﬁ with at most two
distinct principal curvatures has constant mean curvature. In this section, we will estimate that constant
according to the two possible cases: M has at most two distinct real principal curvatures or a pair of
adjoint imaginary principal curvatures. As before, ¢ is the inner product of the normal vector field £ with
itself.

4.1. M has at most two distinct real principal curvatures

Proposition 4.1. Let M be a nondegenerate hypersurface of EMTL satisfying Aﬁ = )\ﬁ. Suppose that M
has at most two distinct principal curvatures, which are all real numbers.

(1) IfeX <0, then M is minimal.
(2) If e\ > 0, then we have
(i) When the principal curvatures are the same, says p, then p =0, H =0, or u =4/ %, H= \/%,

or |t = —¢ %,H:f\/%.

(ii) When M has two distinct principal curvatures p and v, then —\/% < H < % Specially, if

algebraic and geometric multiplicities of p or v coincide, saysl, then M is minimal or H = —Vlne’\,
,u:m/%, v=_0 O’I“H:——vif)\, W= —c %, v=0.
Proof. We know from Theorem 3.1 that H is a constant, it follows from (2) that
HtrA? = e\H. (60)

(1) When X < 0, it is easy to see from (60) that H = 0. When e\ = 0, then (60) implies H = 0, or
trA? = 0. Since trA? is equal to the sum of the squares of all principal curvatures and trA is equal to the
sum of all principal curvatures, so tr4% = 0 tells us trA = 0. Combining trA = neH, we have H = 0, i.e.
M is minimal.

(2) When e\ > 0, it follows from (60) that H = 0 or trA? = e\. For the case that the principal curvatures
are the same, says pu, if H = 0, together with trA = neH, we easily find p = 0. If trA% = e, then nu? = ).

Notice that u = eH, we obtain H = /2, p=¢e,/22 or H = —/2, = —e,/£2.
n n n n
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For the case that M has two distinct principal curvatures p and v, with multiplicities [ and n — I,
respectively, if trA%? = e\, by investigating trA and trA?, we have

lu+ (n—1)v =neH, (61)
2+ (n— 2 = e,

which implies that nlu? — 2nle Hp +n?H? — (n — [)eX = 0. Note that p # v, this equation has real roots if
and only if

4n?IPH? — dnl(n®H? — (n — 1)eX) > 0,

which tells us that —\/% < H< \/%.

Finally, we consider the special case that algebraic and geometric multiplicities of u or v coincide. If
trA% = &), then (61) holds, which implies that M is isoparametric. Using a basic identity of Cartan in
[7, Theorem 2.9], we know that llf‘T”y =0 or % = 0, i.e. uv = 0. Suppose p # 0 and v = 0, the
Proposition 4.1 follows from (61). O

4.2. M has a pair of adjoint imaginary principal curvatures

Proposition 4.2. Let M?2" be a nondegenerate hypersurface of E2"T1 satisfying Aﬁ = )\ﬁ with e\ > 0.

Suppose that M?"™ has a pair of adjoint imaginary principal curvatures, then H = 0, or H < — % or

H > % H =0 if and only if the real parts of principal curvatures are zero.

Proof. From Theorem 3.1, we know H is a constant. It follows from (2) that H = 0 or trA? = e)\.

Denote v + 7¢/—1 and v — 7¢/—1 the two imaginary principal curvatures of M?2" with multiplicity n,
then v =¢eH, and H = 0 if and only if v = 0.

Following from the form (II) of the shape operator A, we get tr4% = 2n(y? — 72). So, when we consider
the possible case of trA? = e, the two equations together with v = e H imply that -, 7 are constants and

H? > % So, H < — % or H > % We complete the proof of Proposition 4.2. O

5. Classification for proper Lorentzian hypersurfaces

In this section, we will classify proper Lorentzian hypersurfaces (i.e. r = s = 1) in E?H satisfying
AH = /\ﬁ with at most two distinct principal curvatures. In this case, € = (£,&) = 1.

Recall from [10] or [11] that, for Lorentz hypersurface Mj* in E*, the shape operator A has four possible
forms with respect to a frame at 1, M7

(I) A= dlag{/\lv a)‘n}a G= dla‘g{L 71a_1}7
A1 0 1

(I[) A= 1 )\1 5 G = 1 0 )

Dn_g In—2

A1 1
1 X\ 1

m A= =

(m) . Coa=|, ,
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Dn—2 I
V) A= v o7, G=<"_1 _1>,T#0,
—7

where D,,_o = diag{Aa, -+, A\n_1}, Dn_3 = diag{Aa, -, A\p_2} and I the identity matrix.
Our first result asserts the following non-existence property.

Proposition 5.1. There is no proper Lorentzian hypersurface of ]E;H'1 with at most two distinct principal
curvatures, and satisfying AH = )\ﬁ for A <0.

Proof. Assume that M7 is such a proper Lorentzian hypersurface, then Proposition 4.1 implies that M7
has a pair of imaginary principal curvatures v+ 74/—1 and v — 7¢/—1.

From Theorem 3.1, H is a non-zero constant (since we consider the proper ones). Moreover, it follows from
(2) that trA%2 = X. On the other hand, v = H and tr4? = 2n(y? — 72). Those equations imply that v and
7 are all constant, and M7 is isoparametric. However, Magid showed in [11] that the principal curvatures
of Lorentzian isoparametric hypersurface M7 in ]E?Jr1 are all real, a contradiction, and Proposition 5.1
follows. O

In view of Proposition 5.1, we need only to consider the classification problem for the case of A > 0. When
the shape operator is diagonalizable, the classification results have been obtained by L. Du in [5]. So our
Theorem 5.2 only classifies such proper Lorentzian hypersurfaces with non-diagonalizable shape operators,
and the results in Theorem 5.2 for n = 2 just coincide with that in [6].

Theorem 5.2. Let M]* (n > 3) be a nondegenerate proper Lorentzian hypersurface of ]E’f"'l satisfying
Aﬁ = )\ﬁ with A > 0. Suppose that M{" has non-diagonalizable shape operator and at most two distinct
principal curvatures, then one of the following holds:

(1) When all the principal curvatures are the same, then it must be \/% or f\/%, in this case, M{* is
locally congruent to a generalized umbilical hypersurface.

(2) When M7 has two distinct principal curvatures p (with multiplicity 1) and v, then (u,v) = (\/g, 0) or

(—\/g, 0), in this case, M7 is locally congruent to a generalized cylinder.

Before proving Theorem 5.2, we remark that the generalized umbilical hypersurfaces and generalized
cylinders are proper ones satisfying Aﬁ = AH with at most two distinct principal curvatures. Indeed,
those are certain parametrized hypersurfaces in IE?H, given by M. A. Magid in [11] for studying the
isoparametric ones. We recall from [11] that there are two types of generalized umbilical hypersurfaces
whose shape operators take the following two possible forms:

and there are four types of generalized cylinders whose shape operators take the following four possible
forms:
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0 %
10 1 u
Dr—1-2(0) 7 Dy—o(p) 7
Dl(:u) Dn—l(o)
0 %
10 1 u
10 , 1 u :
Diy—1-3(0) Di—3(p)
Di(p) Dy, -1(0)

where p is a nonzero constant and Dy (z) = diag{z, -+ ,z} is a k-order matrix.

Using those forms, we can get the values of tr4 and trA2. Since trA = nH, we also can obtain the value
of H and find H is a nonzero constant, which implies VH = 0 and AH = 0. Then we can check that the
equations (1) and (2) hold, equivalently, Aﬁ = )\ﬁ holds. Therefore, generalized umbilical hypersurfaces
and generalized cylinders are proper Lorentzian hypersurfaces in IE?H satisfying AH = MH with at most
two distinct principal curvatures.

Proof of Theorem 5.2. In fact, the principal curvatures of M{* are all real. If not, then M7" has two adjoint
imaginary principal curvatures, it follows from the proof of Proposition 4.2 that M7 is isoparametric and
its principal curvatures are all real, a contradiction. So the non-diagonalizable shape operator takes only
forms (II) or (II).

If all the principal curvatures of M{* are the same, says p, using the forms (I) and (II), it is not hard
to check that the minimal polynomial of the shape operator is (z — u)? or (z — )3, where p = :l:\/% (see
Proposition 4.1). According to [11, Theorems 4.5 and 4.8], M7 is locally congruent to a generalized umbilical
hypersurface.

If M} has two distinct principal curvatures p and v, then by observing the forms (I) and (1) of A,
we know that the algebraic and geometric multiplicity of p or v coincide. So, from Proposition 4.1, two
principal curvatures are p = :I:\/g (with multiplicity {) and 0. Again by means of the forms () and (1),
the minimal polynomial of the shape operator is (z — p)x2, (x — )%z, (x — p)a® or (z — p)3x. Finally, we
conclude from [11, Theorems 4.4, 4.6, 4.7 and 4.9] M7 is locally congruent to a generalized cylinder. We
compete the proof of Theorem 5.2. 0O
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