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A. Arvanitoyeorgos and G. Kaimakamis proposed in [1] the conjecture that: any 
hypersurface satisfying Δ−→

H = λ
−→
H in pseudo-Euclidean space En+1

s of index s has 
constant mean curvature. In this paper, we prove that the conjecture is true when 
the hypersurfaces have at most two distinct principal curvatures. Then, we estimate 
that constant mean curvature, and give its explicit expression for some special cases. 
As a result, for that of Lorentzian type hypersurfaces which are not minimal, we 
prove that it must be isoparametric and give classification results.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let x : Mn
r → E

n+1
s be an isometric immersion of a pseudo-Riemannian hypersurface Mn

r into a pseudo-
Euclidean space En+1

s . Denote by 
−→
H and Δ the mean curvature vector field and the Laplace operator of 

Mn
r with respect to the induced metric. The equation Δ−→

H = λ
−→
H , for some real constant λ, is a natural 

generalization of the biharmonic equation Δ−→
H = 0.

In 1992, Ferrández and Lucas originate in [6] the study of hypersurfaces in En+1
s satisfying Δ−→

H = λ
−→
H , 

where they proved that the hypersurfaces in E3
1 have constant mean curvatures and classified such hy-

persurfaces. Naturally, A. Arvanitoyeorgos and G. Kaimakamis made a conjecture in [1] saying that any 
hypersurface satisfying Δ−→

H = λ
−→
H in pseudo-Euclidean space En+1

s has constant mean curvature.
A. Arvanitoyeorgos et al. proved in [2] that this conjecture is true for hypersurface M3

r of E4
s whose shape 

operator is diagonalizable. More general, we obtained the same conclusion in [8] for Mn
r in En+1

s with at 
most three distinct principal curvatures.

Without the restriction that the shape operator is diagonalizable, there are also some papers to prove this 
conjecture. However, most of them are for hypersurfaces with r = 1 and s = 1, such as [3] is for hypersurface 
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M3
1 in E4

1 and [9] is for Mn
1 in En+1

1 with at most three distinct principal curvatures. As well as the situation 
for r = 2 and s = 2 is also proved in [1].

As a matter of course, it is interesting to study this conjecture for general indexes r and s without the 
restriction that the shape operator is diagonalizable. In this paper, we will show that hypersurface Mn

r

satisfying Δ−→
H = λ

−→
H in En+1

s with at most two distinct principal curvatures has constant mean curvature 
in section 3.

Once we know the mean curvature of that class of hypersurfaces is a constant, we continue in section 4
to estimate or give an explicit expression for that constant, according to the principal curvatures are all 
real or imaginary. In section 5, applying the results of section 4 to the special case r = s = 1, we classify 
the non-minimal Lorentzian hypersurfaces in En+1

1 satisfying Δ−→
H = λ

−→
H with non-diagonalizable shape 

operators and at most two distinct principal curvatures. For the case of diagonalizable shape operator, the 
problem has been studied by L. Du in [5].

2. Preliminaries

2.1. Notions and formulas of hypersurfaces in En+1
s

Let Mn
r be a nondegenerate hypersurface in En+1

s , 
−→
ξ denote a unit normal vector field to Mn

r , then 

ε = 〈−→ξ , −→ξ 〉 = ±1. Denote by ∇ and ∇̃ the Levi-Civita connections of Mn
r and En+1

s , respectively. For any 
vector fields X, Y tangent to Mn

r , the Gauss formula is given by

∇̃XY = ∇XY + h(X,Y )
−→
ξ ,

where h is the scalar-valued second fundamental form. If we denote by A the shape operator of Mn
r associated 

to 
−→
ξ , then the Weingarten formula is given by

∇̃X
−→
ξ = −A(X),

where 〈A(X), Y 〉 = εh(X, Y ). The mean curvature vector field 
−→
H = H

−→
ξ with mean curvature H = 1

nεtrA, 
determines a well defined normal vector field to Mn

r in En+1
s . The Codazzi and Gauss equations are given 

by (cf. [12])

(∇XA)Y = (∇Y A)X,

R(X,Y )Z = 〈A(Y ), Z〉A(X) − 〈A(X), Z〉A(Y ),

where R(X, Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z.
A non-zero vector X in En+1

s is called time-like, space-like or light-like, according to whether 〈X, X〉 is 
negative, positive or zero.

According to [4], the equation Δ−→
H = λ

−→
H is equivalent to the following two equations:

A(∇H) = −n

2 εH(∇H), (1)

ΔH + εHtrA2 = λH, (2)

where the Laplace operator Δ acting on scalar-valued function f is given by

Δf = −
n∑

i=1
εi(eiei −∇eiei)f,

with {ei}ni=1 a local orthonormal frame on Mn
r such that 〈ei, ei〉 = εi = ±1.
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A hypersurface is called isoparametric if the characteristic polynominal of the shape operator is a constant 
(cf. [7]). It is equivalent to the principal curvatures and their multiplicities being constants. In this paper, 
without special statement, multiplicity refers to algebraic multiplicity.

For simplicity, we call hypersurface Mn
r is a proper hypersurface if it is not minimal.

2.2. The shape operator of Mn
r in En+1

s

According to [12, exercise 18, pp. 260–261], the tangent space TxM
n
r at x ∈ Mn

r can be expressed as 
a direct sum of subspaces Vk, 1 ≤ k ≤ m, that are mutually orthogonal and invariant under the shape 
operator A, and each A|Vk

(the restriction of A on Vk) has form (a) or (b) as following.
(a) A|Vk

has the form

A|Vk
=

⎛⎜⎜⎜⎜⎜⎜⎝
λk

1 λk

. . . . . .
1 λk

1 λk

⎞⎟⎟⎟⎟⎟⎟⎠ ,

with respect to a basis Bk = {uk1 , uk2 , · · · , ukαk
} of Vk. The inner products of the basis elements in Bk are 

all zero except

〈ukb
, ukd

〉 = εk = ±1, b + d = αk + 1.

(b) A|Vk
has the form

A|Vk
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γk τk
−τk γk
1 0 γk τk
0 1 −τk γk

1 0 γk τk
0 1 −τk γk

. . .
1 0 γk τk
0 1 −τk γk

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, τk �= 0,

with respect to a basis Bk = {u11 , v11 , · · · , ukβk
, vkβk

} of Vk. The inner products of the basis elements in 
Bk are all zero except

〈ukb
, ukd

〉 = 1 = −〈vkb
, vkd

〉, b + d = βk + 1.

We denote by t the number of terms A|Vk
having form (a). Adjusting the order of Vk, 1 ≤ k ≤ m, such 

that A|Vk
have form (a) for 1 ≤ k ≤ t, and A|Vk

have form (b) for t + 1 ≤ k ≤ m. Denote Ai = A|Vi
, 

1 ≤ i ≤ t and Aj = A|Vj
, t + 1 ≤ j ≤ m. Collecting all the vectors in B1, · · · , Bt, Bt+1, · · · , Bm in order, 

we get a basis B of TxM
n
r . With respect to this basis B, the shape operator A of the hypersurface Mn

r in 
E
n+1
s can be expressed as an almost diagonal matrix

A = diag{A1, · · · , At, At+1, · · · , Am},
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and the inner products of the elements in B are all zero except

〈uia , uib〉 = εi = ±1, a + b = αi + 1, 1 ≤ i ≤ t,

〈ujc , ujd〉 = 1 = −〈vjc , vjd〉, c + d = βj + 1, t + 1 ≤ j ≤ m,

where

α1 + α2 + · · · + αt + 2(βt+1 + βt+2 + · · · + βm) = n.

Observe the forms (a) and (b), we see that Ai, 1 ≤ i ≤ t, has only a simple eigenvalue λi, and Aj , t +1 ≤
j ≤ m, has eigenvalues γj + τj

√
−1, γj − τj

√
−1. It follows from the form of the shape operator A that Mn

r

has principal curvatures

λ1, · · · , λt; γt+1 ± τt+1
√
−1, · · · , γm ± τm

√
−1.

So, under the assumption that Mn
r has at most two distinct principal curvatures, the shape operator A has 

the following two possible forms:
(I) t = m, i.e. A = diag{A1, A2, · · · , Am}, and there are at most two distinct values among 

{λ1, λ2, · · · , λm}.
(II) t = 0, i.e. A = diag{A1, A2, · · · , Am} and γ1 = γ2 = · · · = γm = γ, τ1 = τ2 = · · · = τm = τ , τ �= 0.

3. A partial affirmative answer to the conjecture

Theorem 3.1. Let Mn
r be a nondegenerate hypersurface of En+1

s satisfying Δ−→
H = λ

−→
H for a real constant λ. 

Suppose that Mn
r has at most two distinct principal curvatures, then Mn

r has constant mean curvature.

Proof. From section 2, the shape operator A has the form (I) or (II). If A has the form (II), then its 
eigenvalues are not real. It follows from (1) that ∇H = 0, which tells us H is a constant.

For form (I), assume that H is not a constant, then (1) implies that −n
2 εH is an eigenvalue of the 

shape operator A. When λ1 = · · · = λm, then trA = −n2

2 εH. On the other hand, trA = nεH. These two 
expressions imply H = 0, a contradiction.

So, in the following, we need only to discuss the situation that there are two distinct values among 
{λ1, · · · , λm}. (1) also tells us that ∇H is an eigenvector of A with corresponding eigenvalue −n

2 εH, it 
may be a light-like vector or not. We will following a long discussion that each of the cases will lead to a 
contradiction, and complete the proof of Theorem 3.1.

First of all, we give some equations which are important and will be used frequently. In view of the form 
(I) and the form of Ai, 1 ≤ i ≤ m in section 2, we have

A(uia) = λiuia + uia+1 , A(uiαi
) = λiuiαi

, 1 ≤ i ≤ m, 1 ≤ a ≤ αi − 1. (3)

Observe the inner products of the elements in basis B given in section 2, we can express

∇H =
m∑
i=1

αi∑
a=1

εiuiαi−a+1(H)uia . (4)

Let ∇uia
ujb =

∑m
k=1

∑αk

d=1 Γkd
iajb

ukd
. Applying compatibility condition to calculate

∇uD
〈uia , uia〉,∇uD

〈uia , uib〉,∇uD
〈uia , ujd〉,
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respectively, we conclude

Γiαi−a+1
Dia

= 0, (5)

and

Γiαi−b+1
Dia

= −Γiαi−a+1
Dib

, Γ
jαj−d+1

Dia
= −εiεjΓ

iαi−a+1
Djd

, (6)

for D ∈ {ke, 1 ≤ k ≤ m, 1 ≤ e ≤ αk}, 1 ≤ i, j ≤ m, 1 ≤ a, b ≤ αi and 1 ≤ d ≤ αj .
In view of (3), ∇H is one of the directions uiαi

, 1 ≤ i ≤ m. Without loss of generality, we suppose ∇H

is in the direction of u1α1
, it may be a light-like vector or not.

Case 1: ∇H is not light-like.
In this case, we will concentrate our attention to prove Lemmas 3.3 and 3.4, the two lemmas imply that 

H is a constant, a contradiction.
At the beginning, we give the range of indices i, j such that 2 ≤ i, j ≤ m, and i �= j.
As u1α1

is not a light-like vector, we have 〈u1α1
, u1α1

〉 �= 0, which means 2α1 = α1 + 1, i.e. α1 = 1. It 
follows from (3) that A(u11) = λ1u11 . Note that λ1 = −n

2 εH, (5) implies that

Γ11
D11

= 0, (7)

and (4) can be rewritten as

∇H =
m∑
i=2

αi∑
a=1

εiuiαi−a+1(H)uia + ε1u11(H)u11 .

Since ∇H is in the direction of u11 , the above equation implies that

u11(H) �= 0, uia(H) = 0, 2 ≤ i ≤ m, 1 ≤ a ≤ αi. (8)

From the expression (∇uB
uC − ∇uC

uB)(H) = [uB , uC ](H), B, C ∈ {kd, 1 ≤ k ≤ m, 1 ≤ d ≤ αk} and (8), 
we easily get

Γ11
BC = Γ11

CB , B,C �= 11. (9)

Lemma 3.2. We have λ2 = · · · = λm = 3nεH
2(n−1) .

Proof. Calculating the equation 〈(∇uia
A)uib , u11〉 = 〈(∇uib

A)uia , u11〉 for a = αi, 1 ≤ b ≤ αi − 1 and 
1 ≤ a, b ≤ αi − 1, and combining (9), we obtain

Γ11
iαi

ib+1
= Γ11

ib+1iαi
= 0, 1 ≤ b ≤ αi − 1, (10)

and

Γ11
iaib+1

= Γ11
ibia+1

, 1 ≤ a, b ≤ αi − 1,

which together with (6) and (9), implies that

Γib
ia11

= Γib+1
ia+111

, 1 ≤ a, b ≤ αi − 1.

Because of (6) and (10), it follows from the above equation that
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Γi1
i111

= Γi2
i211

= · · · = Γiαi
iαi

11
, (11)

and

Γi1
i211

= Γi2
i311

= · · · = Γiαi−1
iαi

11
= 0. (12)

Similarly, from the relation 〈(∇uia
A)u11 , uiαi−a+1〉 = 〈(∇u11

A)uia , uiαi−a+1〉 for a = 1, 2, · · · , αi − 1 and 
(12), we get ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−n
2 εH − λi)Γi1

i111
= u11(λi) + Γi1

11i2
,

(−n
2 εH − λi)Γi2

i211
= u11(λi) + Γi2

11i3
− Γi1

11i2
,

...
(−n

2 εH − λi)Γ
iαi−1
iαi−111

= u11(λi) + Γiαi−1
11iαi

− Γiαi−2
11iαi−1

,

(−n
2 εH − λi)Γ

iαi
iαi

11
= u11(λi) − Γiαi−1

11iαi
.

As (11), the above equations imply that

Γi2
11i3

= 2Γi1
11i2

, Γi3
11i4

= 3Γi1
11i2

, · · · , Γiαi−1
11iαi

= (αi − 1)Γi1
11i2

.

On the other hand, Γiαi−1
11iαi

= −Γi1
11i2

. So,

Γi1
11i2

= Γi2
11i3

= · · · = Γiαi−1
11iαi

= 0, (13)

and

u11(λi) = (−n

2 εH − λi)Γia
ia11

, 1 ≤ a ≤ αi. (14)

If λi = −n
2 εH, then u11(H) = 0, which contradicts to (8). So, we conclude that λi �= −n

2 εH. Since there 
are two distinct values among {λ1, · · · , λm} and trA = nεH, we have λi = 3nεH

2(n−1) . �
From Lemma 3.2 and (14), we easily find that

Γia
ia11

= − 3u11(H)
(n + 2)H , 2 ≤ i ≤ m, 1 ≤ a ≤ αi. (15)

Denote W = Γia
ia11

, we have the following Lemmas.

Lemma 3.3. Suppose that H is not a constant. Then we have

u11(W ) + W 2 = 3ε1n
2H2

4(n− 1) . (16)

Proof. Calculate 〈(∇uia
A)u11 , uiαi

〉 = 〈(∇u11
A)uia , uiαi

〉, 2 ≤ a ≤ αi−1, and combine the results with (6), 
(9) and (10), we obtain

Γi1
11ib

= 0, 3 ≤ b ≤ αi.

From (6), (13) and the above equations, we find that
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Γib
11iαi

= 0, 1 ≤ b ≤ αi − 1. (17)

Considering λi = 3nεH
2(n−1) (see Lemma 3.2) and (8), the relation 〈(∇uia

A)u11 , u11〉 = 〈(∇u11
A)uia , u11〉 for 

a = 1, 2, · · · , αi, implies that ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

n(n+2)εH
2(n−1) Γ11

11i1
+ Γ11

11i2
= 0,

...
n(n+2)εH

2(n−1) Γ11
11iαi−1

+ Γ11
11iαi

= 0,
n(n+2)εH

2(n−1) Γ11
11iαi

= 0,

which tells us

Γ11
11i1

= Γ11
11i2

= · · · = Γ11
11iαi

= 0. (18)

Note that λi = λj = 3nεH
2(n−1) (see Lemma 3.2), using 〈(∇uiαi

A)ujb , u11〉 = 〈(∇ujb
A)uiαi

, u11〉, 1 ≤ b ≤ αj − 1
and (9), we have

Γ11
iαi

jd
= Γ11

jdiαi
= 0, 2 ≤ d ≤ αj . (19)

We know from 〈(∇uiαi
A)u11 , ujb〉 = 〈(∇u11

A)uiαi
, ujb〉, 1 ≤ b ≤ αj − 1 that

−n(n + 2)εH
2(n− 1) Γ

jαj−b+1

iαi
11

= Γ
jαj−b

iαi
11

− Γ
jαj−b

11iαi
.

Applying (6) and (19) to the above equation, we get

Γje
11iαi

= 0, 1 ≤ e ≤ αj − 2. (20)

Using Gauss equation for 〈R(u11 , ui1)uiαi
, u11〉, combining (6), (7), (10), (17), (18), (19) and (20), we have

u11(Γ
i1
i111

) +
m∑

j=2, j �=i

Γi1
11j2

Γj2
i111

+
m∑

j=2, j �=i

Γi1
11j1

Γj1
i111

−
m∑

j=2, j �=i

Γj1
11i1

Γi1
j111

+
m∑

j=2, j �=i

Γj1
i111

Γi1
j111

+ (Γi1
i111

)2 = 3ε1n
2H2

4(n− 1) .
(21)

Calculate 〈(∇uj1
A)u11 , uiαi

〉 = 〈(∇u11
A)uj1 , uiαi

〉, we get

Γi1
11j2

= −n(n + 2)εH
2(n− 1) Γi1

j111
. (22)

The relations

〈(∇uia
A)ujb , u11〉 = 〈(∇ujb

A)uia , u11〉, 1 ≤ a ≤ αi − 1, 1 ≤ b ≤ αj − 1,

and (9) give that

Γ11
i j = Γ11

j i ,

a b+1 b a+1
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which together with (6) and (9), implies

Γjb
ia11

= Γjb+1
ia+111

, 1 ≤ a ≤ αi − 1, 1 ≤ b ≤ αj − 1. (23)

Combining (6), (19) and (23), we find

Γjb
ib+111

= Γj1
i211

= 0, 1 ≤ b ≤ min{αi − 1, αj}. (24)

If αj < αi, it follows from (6), (19) and (23) that Γi1
j111

= Γ
iαj

jαj
11

= 0. If αj = αi, from the relation 

〈(∇ujb
A)u11 , uiαi−b+1〉 = 〈(∇u11

A)ujb , uiαi−b+1〉, and (24), we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−n(n+2)εH
2(n−1) Γi1

j111
= Γi1

11j2
,

−n(n+2)εH
2(n−1) Γi2

j211
= Γi2

11j3
− Γi1

11j2
,

...
−n(n+2)εH

2(n−1) Γiαi−1
jαj−111

= Γiαi−1
11jαj

− Γiαi−2
11jαj−1

,

−n(n+2)εH
2(n−1) Γiαi

jαj
11

= −Γiαi−1
11jαj

,

which together with (23), tells us that

Γi1
11j2

= Γi2
11j3

= · · · = Γiαi−1
11jαj

= 0,

and

Γi1
j111

= 0.

So, if αj ≤ αi, then

Γi1
j111

= 0. (25)

If αj > αi, calculate 〈(∇uia
A)u11 , ujαj−a

〉 = 〈(∇u11
A)uia , ujαj−a

〉, 1 ≤ a ≤ αi, combining (23) and (25), 
we get ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−n(n+2)εH
2(n−1) Γj2

i111
= Γj2

11i2
− Γj1

11i1
,

...
−n(n+2)εH

2(n−1) Γjαi
iαi−111

= Γjαi
11iαi

− Γjαi−1
11iαi−1

,

−n(n+2)εH
2(n−1) Γjαi+1

iαi
11

= −Γjαi
11iαi

.

(26)

If αj > αi + 1, then (19) and (23) give us that

Γj2
i111

= · · · = Γjαi+1
iαi

11
= 0. (27)

As (27), it follows from (26) that if αj > αi + 1, then

Γj1
11i1

= 0. (28)

If αj = αi + 1, then combining (6) and (9), we get from (23) and (26) that
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Γj2
i111

= Γ
jαj

iαi
11

= εiεjΓi1
j111

,

Γj1
11i1

= αiΓ
jαi
11iαi

= εiεj
n(n + 2)εH

2(n− 1) αiΓi1
j111

.
(29)

Therefore, from (22), (25), (27), (28) and (29), (21) can be simplified to

n(n + 2)εH
2(n− 1) εi{

m∑
j=2, αj=αi−1

εjαj(Γj1
i111

)2 −
m∑

j=2, αj=αi+1
εj(αi + 1)(Γi1

j111
)2}

+ u11(Γ
i1
i111

) + (Γi1
i111

)2 = 3ε1n
2H2

4(n− 1) .

(30)

Choosing {αγ1 , · · · , αγh
} in {α2, · · · , αm}, such that αγ1 = min{α2, · · · , αm}, αγk+1 = αγk

+1, 1 ≤ k ≤ h −1, 
αγh

+ 1 �= αl, 2 ≤ l ≤ m. Without loss of generality, we suppose αk+1 = αγk
, 1 ≤ k ≤ h. Taking 

i = 2, 3, · · · , h + 1 in (30), we have ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(α2 + 1)Q2 = P,

α2Q2 − (α3 + 1)Q3 = P,
...

αh−1Qh−1 − (αh + 1)Qh = P,

αhQh = P,

(31)

where,

P = −u11(W ) −W 2 + 3ε1n
2H2

4(n− 1)

and

Qk = n(n + 2)εH
2(n− 1) εkεk+1(Γk1

p111
)2, p = k + 1.

From (31), we can get Qk = 0, 2 ≤ k ≤ h and (16) holds. �
Lemma 3.4. We have

(n− 1)Wu11(H) + u11u11(H) − ε1ε
(n + 8)n2H3

4(n− 1) + ε1λH = 0. (32)

Proof. Based upon the basis Bk = {uk1 , uk2 , · · · , ukαk
} of Vk, 1 ≤ k ≤ m, we can construct an orthonormal 

basis Ek = {ek1 , ek2 , · · · , ekαk
} of Vk as follows.

If αk is an even number, then we let

eka
=

uka
− ukαk−a+1√

2
, ekαk−a+1 =

uka
+ ukαk−a+1√

2
, 1 ≤ a ≤ αk

2 , (33)

and have

〈eka
, eka

〉 = −εk, 〈ekαk−a+1 , ekαk−a+1〉 = εk.

If αk is an odd number, then we give



J. Liu, C. Yang / J. Math. Anal. Appl. 451 (2017) 14–33 23
eka
=

uka
− ukαk−a+1√

2
, ekαk−a+1 =

uka
+ ukαk−a+1√

2
, ekαk+1

2
= ukαk+1

2
, (34)

with 1 ≤ a < αk+1
2 , and have

〈eka
, eka

〉 = −εk, 〈ekαk−a+1 , ekαk−a+1〉 = εk, 〈ekαk+1
2

, ekαk+1
2

〉 = εk.

Thus, E = {eka
, 1 ≤ k ≤ m, 1 ≤ a ≤ αk} is an orthonormal basis. Note that e11 = u11 , it follows from (8)

that

e11(H) �= 0, eia(H) = 0, 2 ≤ i ≤ m, 1 ≤ a ≤ αi.

In fact, trA2 is independent of the choice of basis. By calculating, we get

trA2 = (n + 8)n2H2

4(n− 1) .

When αk is an even number, then from (8) and (33), we easily obtain for 1 ≤ a ≤ αk

2 ,

∇eka
eka

(H) = 1
2(Γ11

kaka
+ Γ11

kαk−a+1kαk−a+1
− Γ11

kakαk−a+1
− Γ11

kαk−a+1ka
)u11(H),

∇ekαk−a+1
ekαk−a+1(H) = 1

2(Γ11
kaka

+ Γ11
kαk−a+1kαk−a+1

+ Γ11
kakαk−a+1

+ Γ11
kαk−a+1ka

)u11(H).

Similarly, as αk is an odd number, then from (8) and (34), we easily obtain for 1 ≤ a < αk+1
2 ,

∇eka
eka

(H) = 1
2(Γ11

kaka
+ Γ11

kαk−a+1kαk−a+1
− Γ11

kakαk−a+1
− Γ11

kαk−a+1ka
)u11(H),

∇ekαk−a+1
ekαk−a+1(H) = 1

2(Γ11
kaka

+ Γ11
kαk−a+1kαk−a+1

+ Γ11
kakαk−a+1

+ Γ11
kαk−a+1ka

)u11(H),

∇ekαk+1
2

ekαk+1
2

(H) = Γ11
kαk+1

2
kαk+1

2

u11(H).

It follows from (2), (6) and the above that

m∑
i=2

αi∑
a=1

Γia
ia11

u11(H) + u11u11(H) − ε1ε
(n + 8)n2H3

4(n− 1) + ε1λH = 0. (35)

Combining (7) and W = Γia
ia11

, 2 ≤ i ≤ m, then (35) can be simplified to (32) and Lemma 3.4 follows. �
Now, we continue the proof of Theorem 3.1 for case 1.
Calculating u11u11(H), using (15) and (16), we get

u11u11(H) = (n + 2)(n + 5)H
9 W 2 − (n + 2)n2ε1H

3

4(n− 1) .

By (15) and the above equation, (32) becomes

{2(n− 4)(n + 2)
9 W 2 + (n + 2 + ε(n + 8))n2ε1H

2

4(n− 1) − ε1λ}H = 0. (36)

Applying u11 to both sides of (36) and using (15) and (16), we obtain
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{2(n− 4)(n + 2)
9 W 2 + (n + 2 + ε(n + 8))n2ε1H

2

4(n− 1) − ε1λ}u11(H)

− 2(n + 2){2(n− 4)
9 W 2 + (n− 10 − ε(n + 8))n2ε1H

2

12(n− 1) }HW = 0.

Further, using (15) and (36), the above equation implies that

2(n− 4)
9 W 2 + (n− 10 − ε(n + 8))n2ε1H

2

12(n− 1) = 0,

which together with (36) gives that H must be a constant, and this is a contradiction.

Case 2: ∇H is light-like.
In this case, we will focus on proving Lemmas 3.5 and 3.7. The two lemmas imply that H is a constant, 

a contradiction.
Notice that ∇H is in the direction of u1α1

, λ1 = −n
2 εH, and u1α1

is light-like means α1 �= 1. Since 

trA = nεH, we can suppose λ1 = · · · = λp = −n
2 εH and λp+1 = · · · = λm = (2+α1+···+αp)nεH

2(αp+1+···+αm) . It follows 
from (4) that

u11(H) �= 0, uB(H) = 0, B �= 11, (37)

where B ∈ {ha, 1 ≤ h ≤ m, 1 ≤ a ≤ αh}. Certainly,

u11(λk) �= 0, uB(λk) = 0, B �= 11, 1 ≤ k ≤ m. (38)

Observe (∇uB
uC −∇uC

uB)(H) = [uB , uC ](H), B, C ∈ {ha, 1 ≤ h ≤ m, 1 ≤ a ≤ αh}, using (37), we have

Γ11
BC = Γ11

CB , B,C �= 11. (39)

Lemma 3.5. We have

−ε1

p∑
i=2

αiΓ
iαi
iαi

1α1
u11(H) + εHtrA2 = λH, (40)

where

trA2 = [(n + 4)(α1 + · · · + αp) + 4]n2H2

4[n− (α1 + · · · + αp)]
.

Proof. We construct an orthonormal basis E the same as that in the proof of Lemma 3.4. With this 
orthonormal basis E and (37), we have

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
e11e11(H) = (u11u11(H) − u1α1

u11(H))/2,
e1α1

e1α1
(H) = (u11u11(H) + u1α1

u11(H))/2,
e1b

e1b
(H) = 0, 2 ≤ b ≤ α1 − 1,

eka
eka

(H) = 0, 2 ≤ k ≤ m, 1 ≤ a ≤ αk.

(41)

Similar to the proof of Lemma 3.4, according to the orthonormal basis E and (37), we obtain the expres-
sions of ∇ek eka

(H), 1 ≤ k ≤ m, 1 ≤ a ≤ αk. Substitute the expressions and (41) into (2), we get

a
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−ε1u1α1
u11(H) − ε1

m∑
k=1

αk∑
a=1

Γka

ka1α1
u11(H) + εHtrA2 = λH. (42)

Calculating 〈(∇uka
A)ukb

, u1α1
〉 = 〈(∇ukb

A)uka
, u1α1

〉, 2 ≤ k ≤ m, for a = αk, 1 ≤ b ≤ αk − 1 and 
1 ≤ a, b ≤ αk − 1, and combining (39), we obtain

Γ11
kαk

kd
= Γ11

kdkαk
= 0, 2 ≤ k ≤ m, 2 ≤ d ≤ αk,

and

Γ11
kakb+1

= Γ11
kbka+1

, 2 ≤ k ≤ m, 1 ≤ a, b ≤ αk − 1.

By using (6) and (39), it follows from the above equations that

Γk1
k11α1

= Γk2
k21α1

= · · · = Γkαk

kαk
1α1

, 2 ≤ k ≤ m, (43)

and

Γk1
k21α1

= Γk2
k31α1

= · · · = Γkαk−1
kαk

1α1
= 0, 2 ≤ k ≤ m. (44)

From the relations

〈(∇uka
A)u1α1

, ukαk−a+1〉 = 〈(∇u1α1
A)uka

, ukαk−a+1〉, 2 ≤ k ≤ m,

as well as (38) and (44), we know⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−n
2 εH − λk)Γk1

k11α1
= Γk1

1α1k2
,

(−n
2 εH − λk)Γk2

k21α1
= Γk2

1α1k3
− Γk1

1α1k2
,

...
(−n

2 εH − λk)Γ
kαk−1
kαk−11α1

= Γkαk−1
1α1kαk

− Γkαk−2
1α1kαk−1

,

(−n
2 εH − λk)Γ

kαk

kαk
1α1

= −Γkαk−1
1α1kαk

,

which together with (43), implies that

Γk1
1α1k2

= Γk2
1α1k3

= · · · = Γkαk−1
1α1kαk

= 0, 2 ≤ k ≤ m,

and

Γh1
h11α1

= Γh2
h21α1

= · · · = Γhαh

hαh
1α1

= 0, p + 1 ≤ h ≤ m. (45)

The relations 〈(∇u1a
A)u1b

, u1α1
〉 = 〈(∇u1b

A)u1a
, u1α1

〉, 1 ≤ a ≤ α1 − 1, 2 ≤ b ≤ α1 − 1, and (38) give that

Γ11
1a1b+1

= Γ11
1b1a+1

.

Applying (5), (6) and (39), we get from the above equation that

Γ1α1−1
1α1−11α1

= · · · = Γ12
121α1

= Γ11
111α1

= 0. (46)

Since [u11 , u1α
](H) = ∇u1 u1α

(H) −∇u1 u11(H), combining (5) and (37), we have

1 1 1 α1



26 J. Liu, C. Yang / J. Math. Anal. Appl. 451 (2017) 14–33
u1α1
u11(H) = Γ11

1α111
u11(H). (47)

Notice that α1 + · · · + αm = n. By calculating, we easily obtain

trA2 = [(n + 4)(α1 + · · · + αp) + 4]n2H2

4[n− (α1 + · · · + αp)]
. (48)

Combining (45), (46), (47) and (48), (42) can be simplified to (40). �
In the proofs of Lemmas 3.6 and 3.7, we give the range of indices i, j: 2 ≤ i, j ≤ p and i �= j.

Lemma 3.6. We have

u1α1
(Γiαi

iαi
1α1

) = Γ1α1
1α11α1

Γiαi
iαi

1α1
− (Γiαi

iαi
1α1

)2 −
∑
c1

(Γj1
i11α1

Γi1
1α1 j1

− Γi1
j11α1

Γj1
1α1 i1

+ Γj1
i11α1

Γi1
j11α1

),
(49)

for 2 ≤ i ≤ p, where c1 means 2 ≤ j ≤ p, j �= i, αj = αi.

Proof. It follows from (5), (6) and (39) that

Γkb
1α11α1

= −εkε1Γ11
1α1kαk−b+1

= −εkε1Γ11
kαk−b+11α1

= 0, kb �= 1α1 . (50)

Evaluating (B, C, D) in the set

{(iαi
, 1a, 1α1), (1a, 1α1 , iαi

), (iαi
, ib, 1α1), (ib, 1α1 , iαi

)}

with 1 ≤ a ≤ α1−1, 1 ≤ b ≤ αi−1, then the equation 〈(∇uB
A)uC , uD〉 = 〈(∇uC

A)uB , uD〉, combining (38), 
implies that

Γ11
iαi

1a+1
= Γi1

1α11a+1
= Γ11

iαi
ib+1

= Γi1
1α1 ib+1

= 0.

As (6), the above is equivalent to

Γ1a
iαi

1α1
= Γ1a

1α1 iαi
= Γib

iαi
1α1

= Γib
1α1 iαi

= 0, 1 ≤ a ≤ α1 − 1, 1 ≤ b ≤ αi − 1. (51)

From the expressions 〈(∇uia
A)ukb

, u1α1
〉 = 〈(∇ukb

A)uia , u1α1
〉, 2 ≤ k ≤ m, k �= i, we get

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(λk + n
2 εH)Γ11

iαi
kαk

= 0,
(λk + n

2 εH)Γ11
iαi

kb
+ Γ11

iαi
kb+1

= 0, 1 ≤ b ≤ αk − 1,
(λk + n

2 εH)Γ11
iakαk

= Γ11
kαk

ia+1
, 1 ≤ a ≤ αi − 1,

(λk + n
2 εH)Γ11

iakb
+ Γ11

iakb+1
= Γ11

kbia+1
, 1 ≤ a ≤ αi − 1, 1 ≤ b ≤ αk − 1,

which together with (39), tells us that

Γ11
iahb

= 0, i.e. Γhb
ia1α1

= Γia
hb1α1

= 0, p + 1 ≤ h ≤ m. (52)

The relations
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〈(∇uiαi
A)ujb , u1α1

〉 = 〈(∇ujb
A)uiαi

, u1α1
〉,

〈(∇ujb
A)u1α1

, uiαi
〉 = 〈(∇u1α1

A)ujb , uiαi
〉,

give that

Γ11
iαi

jb+1
= Γi1

1α1jb+1
= 0,

i.e.

Γjb
iαi

1α1
= Γjb

1α1 iαi
= 0, 1 ≤ b ≤ αj − 1. (53)

Using Gauss equation for 〈R(u1α1
, uiαi

)u1α1
, ui1〉, combining (50), (51), (52) and (53), we have

u1α1
(Γiαi

iαi
1α1

) = Γ1α1
1α11α1

Γiαi
iαi

1α1
− (Γiαi

iαi
1α1

)2 −
p∑

j=2, j �=i

(Γ
jαj

iαi
1α1

Γiαi
1α1jαj

− Γiαi
jαj

1α1
Γ
jαj

1α1 iαi
+ Γ

jαj

iαi
1α1

Γiαi
jαj

1α1
).

It follows from (6) and (39) that Γ
jαj

iαi
1α1

= εiεjΓi1
j11α1

. So, we can rewrite the above equation as

u1α1
(Γiαi

iαi
1α1

) = Γ1α1
1α11α1

Γiαi
iαi

1α1
− (Γiαi

iαi
1α1

)2 −
m∑

j=2, j �=i

(Γj1
i11α1

Γi1
1α1 j1

− Γi1
j11α1

Γj1
1α1 i1

+ Γj1
i11α1

Γi1
j11α1

).

(54)

We know from the equation

〈(∇uia
A)ujb , u1α1

〉 = 〈(∇ujb
A)uia , u1α1

〉, 1 ≤ a ≤ αi − 1, 1 ≤ b ≤ αj − 1,

that Γ11
iajb+1

= Γ11
jbia+1

, which implies that

Γjb
ia1α1

= Γjb+1
ia+11α1

. (55)

If αj > αi, then from (53) and (55), we find

Γj1
i11α1

= · · · = Γjαi
iαi

1α1
= 0. (56)

And from 〈(∇uib
A)u1α1

, ujαj−b
〉 = 〈(∇u1α1

A)uib , ujαj−b
〉, 1 ≤ b ≤ αi, we get that

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−Γj1
i11α1

= Γj2
1α1 i2

− Γj1
1α1 i1

,
...

−Γjαi−1
iαi−11α1

= Γjαi
1α1 iαi

− Γjαi−1
1α1 iαi−1

,

−Γjαi
iαi

1α1
= −Γjαi

1α1 iαi
,

which together with (56), gives that if αj > αi, then

Γj1
1 i = 0. (57)

α1 1
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Similarly, if αi > αj , then

Γi1
j11α1

= Γi1
1α1 j1

= 0. (58)

Combining (56), (57) and (58), we conclude from (54) that (49) holds. �
Lemma 3.7. We have

Γiαi
iαi

1α1
= 0, 2 ≤ i ≤ p.

Proof. Differentiating (40) along the direction u1α1
, combining (6), (37), (47) and (49), we obtain

p∑
i=2

αi(Γ
iαi
iαi

1α1
)2 +

∑
c2

αi(Γj1
i11α1

Γi1
1α1 j1

− Γi1
j11α1

Γj1
1α1 i1

+ Γj1
i11α1

Γi1
j11α1

) = 0,

where c2 means 2 ≤ i, j ≤ p, i �= j, αi = αj , i.e.

p∑
i=2

αi(Γ
iαi
iαi

1α1
)2 +

∑
c2

αi(Γj1
i11α1

Γi1
j11α1

) = 0.

In fact, if αi = αj , then Γi1
j11α1

= Γiαi
jαj

1α1
= εiεjΓj1

i11α1
, the above equation can be rewritten as

p∑
i=2

αi(Γ
iαi
iαi

1α1
)2 +

∑
c2

αiεiεj(Γj1
i11α1

)2 = 0. (59)

For αi = αj , we know from 〈(∇uib
A)u1α1

, ujαj−b
〉 = 〈(∇u1α1

A)uib , ujαj−b
〉, 1 ≤ b ≤ αi − 1, that

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−Γj1

i11α1
= Γj2

1α1 i2
− Γj1

1α1 i1
,

...
−Γ

jαj−1

iαi−11α1
= Γ

jαj

1α1 iαi
− Γ

jαj−1

1α1 iαi−1
,

which together with (6) and (55), tells us that if αi = αj and εiεj = −1, then

Γj1
i11α1

=
Γj1

1α1 i1
− Γi1

1α1j1

αi − 1 .

Putting the above equation into (59), we obtain

p∑
i=2

αi(Γ
iαi
iαi

1α1
)2 +

∑
c3

αi(Γj1
i11α1

)2 −
∑
c4

αi

(αi − 1)2 (Γj1
1α1 i1

− Γi1
1α1j1

)2 = 0,

where c3 means 2 ≤ i, j ≤ p, i �= j, αi = αj , εiεj = 1 and c4 means 2 ≤ i, j ≤ p, i �= j, αi = αj , εiεj = −1. 
It follows from the above equation that

p∑
i=2

αi(Γ
iαi
iαi

1α1
)2 +

∑
c3

αi(Γj1
i11α1

)2 = 0,

which implies Lemma 3.7. �
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Coming back to the proof of Theorem 3.1 for case 2, we have from Lemmas 3.5 and 3.7 that

[(n + 4)(α1 + · · · + αp) + 4]εn2H3

4[n− (α1 + · · · + αp)]
= λH,

which implies H is a constant. It is a contradiction.
In view of the two cases, we complete the proof of Theorem 3.1. �

Remark. Recall the method or ideas in the proof of Theorem 3.1, we find that the principal curvatures of 
the hypersurfaces considered in Theorem 3.1 are all real or all imaginary. When the hypersurfaces have more 
than two distinct principal curvatures, the principal curvatures are possibly all real or not all real. For the 
later case, the shape operator can have a complicated form. For the former case, the principal curvatures 
are not all terms about H and it is difficult to get an algebraic equation about H.

4. Estimation of the constant mean curvature H

Based upon Theorem 3.1, we know that the hypersurface Mn
r satisfying Δ−→

H = λ
−→
H with at most two 

distinct principal curvatures has constant mean curvature. In this section, we will estimate that constant 
according to the two possible cases: Mn

r has at most two distinct real principal curvatures or a pair of 
adjoint imaginary principal curvatures. As before, ε is the inner product of the normal vector field ξ with 
itself.

4.1. Mn
r has at most two distinct real principal curvatures

Proposition 4.1. Let Mn
r be a nondegenerate hypersurface of En+1

s satisfying Δ−→
H = λ

−→
H . Suppose that Mn

r

has at most two distinct principal curvatures, which are all real numbers.

(1) If ελ ≤ 0, then Mn
r is minimal.

(2) If ελ > 0, then we have
(i) When the principal curvatures are the same, says μ, then μ = 0, H = 0, or μ = ε

√
ελ
n , H =

√
ελ
n , 

or μ = −ε
√

ελ
n , H = −

√
ελ
n .

(ii) When Mn
r has two distinct principal curvatures μ and ν, then −

√
ελ
n < H <

√
ελ
n . Specially, if 

algebraic and geometric multiplicities of μ or ν coincide, says l, then Mn
r is minimal or H =

√
lελ
n , 

μ = ε
√

ελ
l , ν = 0 or H = −

√
lελ
n , μ = −ε

√
ελ
l , ν = 0.

Proof. We know from Theorem 3.1 that H is a constant, it follows from (2) that

HtrA2 = ελH. (60)

(1) When ελ < 0, it is easy to see from (60) that H = 0. When ελ = 0, then (60) implies H = 0, or 
trA2 = 0. Since trA2 is equal to the sum of the squares of all principal curvatures and trA is equal to the 
sum of all principal curvatures, so trA2 = 0 tells us trA = 0. Combining trA = nεH, we have H = 0, i.e. 
Mn

r is minimal.
(2) When ελ > 0, it follows from (60) that H = 0 or trA2 = ελ. For the case that the principal curvatures 

are the same, says μ, if H = 0, together with trA = nεH, we easily find μ = 0. If trA2 = ελ, then nμ2 = ελ. 
Notice that μ = εH, we obtain H =

√
ελ , μ = ε

√
ελ , or H = −

√
ελ , μ = −ε

√
ελ .
n n n n
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For the case that Mn
r has two distinct principal curvatures μ and ν, with multiplicities l and n − l, 

respectively, if trA2 = ελ, by investigating trA and trA2, we have

{
lμ + (n− l)ν = nεH,

lμ2 + (n− l)ν2 = ελ,
(61)

which implies that nlμ2 − 2nlεHμ + n2H2 − (n − l)ελ = 0. Note that μ �= ν, this equation has real roots if 
and only if

4n2l2H2 − 4nl(n2H2 − (n− l)ελ) > 0,

which tells us that −
√

ελ
n < H <

√
ελ
n .

Finally, we consider the special case that algebraic and geometric multiplicities of μ or ν coincide. If 
trA2 = ελ, then (61) holds, which implies that Mn

r is isoparametric. Using a basic identity of Cartan in 
[7, Theorem 2.9], we know that lμν

μ−ν = 0 or (n−l)νμ
ν−μ = 0, i.e. μν = 0. Suppose μ �= 0 and ν = 0, the 

Proposition 4.1 follows from (61). �
4.2. Mn

r has a pair of adjoint imaginary principal curvatures

Proposition 4.2. Let M2n
r be a nondegenerate hypersurface of E2n+1

s satisfying Δ−→
H = λ

−→
H with ελ ≥ 0. 

Suppose that M2n
r has a pair of adjoint imaginary principal curvatures, then H = 0, or H < −

√
ελ
2n or 

H >
√

ελ
2n . H = 0 if and only if the real parts of principal curvatures are zero.

Proof. From Theorem 3.1, we know H is a constant. It follows from (2) that H = 0 or trA2 = ελ.
Denote γ + τ

√
−1 and γ − τ

√
−1 the two imaginary principal curvatures of M2n

r with multiplicity n, 
then γ = εH, and H = 0 if and only if γ = 0.

Following from the form (II) of the shape operator A, we get trA2 = 2n(γ2 − τ2). So, when we consider 
the possible case of trA2 = ελ, the two equations together with γ = εH imply that γ, τ are constants and 

H2 > ελ
2n . So, H < −

√
ελ
2n or H >

√
ελ
2n . We complete the proof of Proposition 4.2. �

5. Classification for proper Lorentzian hypersurfaces

In this section, we will classify proper Lorentzian hypersurfaces (i.e. r = s = 1) in En+1
1 satisfying 

Δ−→
H = λ

−→
H with at most two distinct principal curvatures. In this case, ε = 〈ξ, ξ〉 = 1.

Recall from [10] or [11] that, for Lorentz hypersurface Mn
1 in En+1

1 , the shape operator A has four possible 
forms with respect to a frame at TxM

n
1 :

(I) A = diag{λ1, · · · , λn}, G = diag{1, · · · , 1,−1},

(II) A =

⎛⎜⎝ λ1
1 λ1

Dn−2

⎞⎟⎠ , G =

⎛⎜⎝ 0 1
1 0

In−2

⎞⎟⎠ ,

(III) A =

⎛⎜⎜⎜⎝
λ1
1 λ1

1 λ1
D

⎞⎟⎟⎟⎠ , G =

⎛⎜⎜⎜⎝
1

1
1

I

⎞⎟⎟⎟⎠ ,
n−3 n−3
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(IV) A =

⎛⎜⎝Dn−2
γ τ

−τ γ

⎞⎟⎠ , G =
(
In−1

−1

)
, τ �= 0,

where Dn−2 = diag{λ2, · · · , λn−1}, Dn−3 = diag{λ2, · · · , λn−2} and I the identity matrix.
Our first result asserts the following non-existence property.

Proposition 5.1. There is no proper Lorentzian hypersurface of En+1
1 with at most two distinct principal 

curvatures, and satisfying Δ−→
H = λ

−→
H for λ ≤ 0.

Proof. Assume that Mn
1 is such a proper Lorentzian hypersurface, then Proposition 4.1 implies that Mn

1
has a pair of imaginary principal curvatures γ + τ

√
−1 and γ − τ

√
−1.

From Theorem 3.1, H is a non-zero constant (since we consider the proper ones). Moreover, it follows from 
(2) that trA2 = λ. On the other hand, γ = H and trA2 = 2n(γ2 − τ2). Those equations imply that γ and 
τ are all constant, and Mn

1 is isoparametric. However, Magid showed in [11] that the principal curvatures 
of Lorentzian isoparametric hypersurface Mn

1 in En+1
1 are all real, a contradiction, and Proposition 5.1

follows. �
In view of Proposition 5.1, we need only to consider the classification problem for the case of λ > 0. When 

the shape operator is diagonalizable, the classification results have been obtained by L. Du in [5]. So our 
Theorem 5.2 only classifies such proper Lorentzian hypersurfaces with non-diagonalizable shape operators, 
and the results in Theorem 5.2 for n = 2 just coincide with that in [6].

Theorem 5.2. Let Mn
1 (n ≥ 3) be a nondegenerate proper Lorentzian hypersurface of En+1

1 satisfying 
Δ−→
H = λ

−→
H with λ > 0. Suppose that Mn

1 has non-diagonalizable shape operator and at most two distinct 
principal curvatures, then one of the following holds:

(1) When all the principal curvatures are the same, then it must be 
√

λ
n or −

√
λ
n , in this case, Mn

1 is 
locally congruent to a generalized umbilical hypersurface.

(2) When Mn
1 has two distinct principal curvatures μ (with multiplicity l) and ν, then (μ, ν) = (

√
λ
l , 0) or 

(−
√

λ
l , 0), in this case, Mn

1 is locally congruent to a generalized cylinder.

Before proving Theorem 5.2, we remark that the generalized umbilical hypersurfaces and generalized 
cylinders are proper ones satisfying Δ−→

H = λ
−→
H with at most two distinct principal curvatures. Indeed, 

those are certain parametrized hypersurfaces in En+1
1 , given by M. A. Magid in [11] for studying the 

isoparametric ones. We recall from [11] that there are two types of generalized umbilical hypersurfaces 
whose shape operators take the following two possible forms:

⎛⎜⎝ μ

1 μ

Dn−2(μ)

⎞⎟⎠ ,

⎛⎜⎜⎜⎝
μ

1 μ

1 μ

Dn−3(μ)

⎞⎟⎟⎟⎠ ,

and there are four types of generalized cylinders whose shape operators take the following four possible 
forms:
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⎛⎜⎜⎜⎝
0
1 0

Dn−l−2(0)
Dl(μ)

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
μ

1 μ

Dl−2(μ)
Dn−l(0)

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎝
0
1 0

1 0
Dn−l−3(0)

Dl(μ)

⎞⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎝
μ

1 μ

1 μ

Dl−3(μ)
Dn−l(0)

⎞⎟⎟⎟⎟⎟⎠ ,

where μ is a nonzero constant and Dk(x) = diag{x, · · · , x} is a k-order matrix.
Using those forms, we can get the values of trA and trA2. Since trA = nH, we also can obtain the value 

of H and find H is a nonzero constant, which implies ∇H = 0 and ΔH = 0. Then we can check that the 
equations (1) and (2) hold, equivalently, Δ−→

H = λ
−→
H holds. Therefore, generalized umbilical hypersurfaces 

and generalized cylinders are proper Lorentzian hypersurfaces in En+1
1 satisfying Δ−→

H = λ
−→
H with at most 

two distinct principal curvatures.

Proof of Theorem 5.2. In fact, the principal curvatures of Mn
1 are all real. If not, then Mn

1 has two adjoint 
imaginary principal curvatures, it follows from the proof of Proposition 4.2 that Mn

1 is isoparametric and 
its principal curvatures are all real, a contradiction. So the non-diagonalizable shape operator takes only 
forms (II) or (III).

If all the principal curvatures of Mn
1 are the same, says μ, using the forms (II) and (III), it is not hard 

to check that the minimal polynomial of the shape operator is (x − μ)2 or (x − μ)3, where μ = ±
√

λ
n (see 

Proposition 4.1). According to [11, Theorems 4.5 and 4.8], Mn
1 is locally congruent to a generalized umbilical 

hypersurface.
If Mn

1 has two distinct principal curvatures μ and ν, then by observing the forms (II) and (III) of A, 
we know that the algebraic and geometric multiplicity of μ or ν coincide. So, from Proposition 4.1, two 

principal curvatures are μ = ±
√

λ
l (with multiplicity l) and 0. Again by means of the forms (II) and (III), 

the minimal polynomial of the shape operator is (x − μ)x2, (x − μ)2x, (x − μ)x3 or (x − μ)3x. Finally, we 
conclude from [11, Theorems 4.4, 4.6, 4.7 and 4.9] Mn

1 is locally congruent to a generalized cylinder. We 
compete the proof of Theorem 5.2. �
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