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On existence of semi-wavefronts for a non-local
reaction-diffusion equation with distributed delay

Maitere Aguerrea, Carlos Gómez

Facultad de Ciencias Básicas, Universidad Católica del Maule,Casilla 617, Talca, Chile.

Abstract

We study the problem of existence of semi-wavefront solutions for a non-local

delayed reaction-diffusion equation with monostable nonlinearity. In differ-

ence with previous works, we consider non-local interaction which can be

asymmetric in space. As a consequence of this asymmetry, we must analyze the

existence of expansion waves for both positive and negative speeds. In the pa-

per, we use a framework of the general theory recently developed for a certain

nonlinear convolution equation. This approach allows us to prove the wave

existence for the range of admissible speeds c ∈ R \ (c−� , c+� ), where the critical

speeds c−� and c+� can be calculated explicitly from some associated equations.

The main result is then applied to several non-local reaction-diffusion epidemic

and population models.

Keywords: reaction-diffusion equation; traveling wave; non-local interaction;

delay; existence.

1. Introduction.

The main object of study in this paper is the following monostable non-local

reaction-diffusion equation

ut(t, x) = uxx(t, x)− f(u(t, x)) +

∫ ∞

0

∫
R

K(s, w)g(u(t− s, x− w))dwds. (1.1)
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With appropriate f, g (where f(0) = g(0) = 0) and K, equation (1.1) is of-

ten used to model ecological and biological processes where the typical inter-

pretation of u(t, x) is the density of population. Thus we will be interested

only in non-negative solutions of the above equation. Now, it is well known

that the key elements determining the dynamics of solutions of equation (1.1)

are the semi-wavefronts, i.e. bounded positive classical non-constant solutions

u(t, x) = φ(x + ct) satisfying one of the boundary conditions φ(−∞) = 0,

φ(+∞) = 0. The parameter c is called the speed of propagation. An impor-

tant special case of semi-wavefront is a wavefront, i.e. semi-wavefront whose

profile φ converges at both +∞ and −∞.

Over the last decade, the existence and uniqueness of semi-wavefronts and

wavefronts for the general non-local equation (1.1) have been investigated in

a series of papers where different geometric and smoothness conditions on

f , K and g were assumed (see e.g. [1, 7, 23, 29]). One of the main goals of

this paper is to weaken two major (at least, on our opinion) geometric restric-

tions imposed on the functions K, g. The first one is the evenness condition

K(s, x) = K(s,−x), x ∈ R, assumed in [7, 23, 29]. However, several recent

studies indicate that asymmetric kernels might appear in the population mod-

eling in a natural way, cf. [11]. Importantly, the asymmetry of interaction can

produce interesting ecological effects [11, 15]. So, first, we get rid of the above

mentioned restrictive symmetry assumption. The second geometric restriction

to be weaken in this paper is the sub-tangency inequality

g(s) ≤ g′(0)s, s ≥ 0. (1.2)

Indeed, we show that the bulk of existence results still holds even if we do not

use (1.2). Finally, it is worth to mention that our approach also allows to assume

less restrictive smoothness conditions on f, g. In order to be more precise, let

us list our main hypotheses:

H0: K ∈ L1(R+×R,R+) and
∫∞
0

∫
R
K(s, w)dwds = 1. Moreover, for any c ∈ R,

there exist γ#
1 (c) < 0 < γ#

2 (c) such that for each z ∈ (γ#
1 (c), γ#

2 (c)) the
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integral
∫∞
0

∫
R
K(s, w)e−z(cs+w)dwds is finite and it diverges, if z > γ#

2 (c)

or z < γ#
1 (c).

H1: Function g ∈ C(R+,R+) is bounded and g(0) = 0, g(s) > 0 for all s > 0.

In addition, the right-hand Dini derivates g′−(0
+) > 0 and g′+(0

+) are

finite.

H2: Locally Lipschitzian function f : R+ → R+ is strictly increasing with

f(0) = 0 and f(ξ̄2) > sups≥0 g(s) for some ξ̄2 > 0. Moreover, 0 <

f ′−(0
+) < g′−(0

+) and f(s) ≥ f ′−(0
+)s for s ∈ [0,+∞).

Our main results are given below:

Theorem 1.1. Assume that H0-H2 hold. Then there exist c−� , c+� ∈ R such that for

every c ∈ R\(c−� , c+� ) the equation (1.1) has a semi-wavefront solution u(x, t) = φ(x+

ct) propagating with speed c. If c ≥ c+� , then φ(−∞) = 0 and lim inft→+∞ φ(t) > 0.

If c ≤ c−� , then φ(+∞) = 0 and lim inft→−∞ φ(t) > 0. Furthermore, if equation

f(s) = g(s) has only two solutions: 0 and κ, with κ being globally attracting with

respect to f−1 ◦ g : (0, ξ2] → (0, ξ2], then each of these semi-wavefront is a wavefront.

Theorem 1.2. Assume that H0-H2 hold. Then there exist c−∗ , c
+
∗ ∈ R such that

c−� ≤ c−∗ < c+∗ ≤ c+� , and for any c ∈ (c−∗ , c
+
∗ ), the equation (3.1) has no semi-

wavefront solution u(t, x) = φ(x+ ct) propagating with speed c.

Remark 1.3. We observe that if g satisfies condition g(s) ≤ Ls, s > 0 with L =

g′−(0), then c+� = c+∗ and c−� = c−∗ . Moreover, Theorems 1.1 and 1.2 imply that

c+� and c−� are the minimal speeds of propagation. Now, the situation when

L > g′−(0) and g is non-monotone is clearly more complicated: in particular,

the existence of the minimal speed of semi-wavefronts propagation with the

usual properties is not yet proved in such a case. In other words, if we take a

general non-monotone reaction term g satisfying L > g′−(0), then the question

about the structure of the set of all admissible speeds from the interval [c+∗ , c+� ]

is largely open at this moment (even for the particular case of local interactions

with discrete delay).
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Remark 1.4. By considering waves in the form ψ(x + ct) := φ(−(x + ct), we

find that c+� = −c−� , c+∗ = −c−∗ for spatially symmetric kernels. However, as

Example 3.5 below shows, if kernel K(s, x) is not symmetric in the second vari-

able then may happen that c+� �= −c−� (again, profiles propagating with speed

c ≥ c+� will satisfy φ(−∞) = 0 while profiles propagating with the speed

c ≤ c−� will satisfy φ(+∞) = 0). Models with spatially asymmetric kernels

have been studied by means of the dynamical system methods in [18, 34, 31].

The existence of the left and right minimal speeds was proved for some sub-

classes of monotone and non-monotone semiflows in [18, 34]. The existence

and non-existence results of [34] were applied to equation (1.1) considered with

K(s, w) = δ(s − τ)k(w), τ > 0 and with g satisfying inequality (1.2). Similar

results were also obtained in [11], by using sub-supersolutions method. In this

way, Theorems 1.1 and 1.2 extend studies of [11, 34], where the existence and

non-existence theorems were established for g satisfying the sub-tangency con-

dition (1.2).

The existence and non-existence results are established by applying the

general wave’s existence and uniqueness theory developed in [2, 11]. These

works deal with the scalar integral equation

φ(t) =

∫
X

dρ(τ)

∫
R

N (s, τ)g(φ(t− s), τ)ds, t ∈ R, (1.3)

where (X, ρ) denotes a space with finite measure ρ, N (s, τ) ≥ 0 is integrable

on R ×X with
∫
R
N (s, τ)ds > 0, τ ∈ X, while measurable g : R+ ×X → R+,

g(0, τ) ≡ 0, is continuous in φ for every fixed τ ∈ X . In order to apply the

techniques of [11], we will transform equation (1.1) into the form (1.3).

We conclude the introduction by saying several words about the organiza-

tion of the paper. The next section contains some preliminary results. In Section

3, we describe geometric properties of the bounded solutions of equation (1.1),

the associated characteristic equations are studied and our main existence re-

sults are proved. In the final section, we apply Theorems 1.1 to some non-local

reaction-diffusion epidemic and population models with distributed time de-

lay (these models were also previously studied in [4, 8, 11, 12, 21, 23, 25, 27, 28,
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30]).

2. Preliminaries.

In this section, we first extend various abstract results proved in [11]. Then

we show how to transform equation (1.1) into the convolution form (1.3). We

assume that the functions N(s, τ), g(v, τ) and ρ(τ) satisfy all assumptions men-

tioned in the introduction.

We begin by stating a general result obtained in [11, Theorem 7] (Proposi-

tion 2.1 below). This result ensures the existence of semi-wavefront solutions

of the equation (1.3) under the following conditions

(N) There exists τ0 ∈ X , ρ(τ0) = 1, such that g(v, τ) is increasing in v ∈ R+ for

each fixed τ �= τ0 and g(v, τ) > 0, v > 0. Furthermore, there exists ξ2 > 0

such that θ(v) := v − g̃(v) is strictly increasing on [0, ξ2], where

g̃(v) :=

∫
R

∫
X\{τ0}

g(v, τ)N (s, τ)dρ(τ)ds,

and θ(ξ2) > maxv≥0 g(v, τ0)
∫
R
N (s, τ0)ds.

(P ) Bounded continuous solution φ(t) ≥ 0 of (1.3) vanishes at some point only

if φ(t) ≡ 0.

We also need the following characteristic function χ associated with the

variational equation along the trivial steady state of (1.3):

χ(z) := 1−
∫
R

∫
X

N (s, τ)g′(0, τ)dρ(τ)e−szds,

as well as the function G(v) := θ−1(Cg(v, τ0)), where C =
∫
R
N (s, τ0)ds.

We have the following general result:

Proposition 2.1. (See [11, Theorema 7]) Assume (N) and (P ) and let g′(0, τ) > 0,

G′(0) be finite and

g(s, τ) ≤ g′(0, τ)s for all s ≥ 0, τ ∈ X. (2.1)
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If χ(z), χ(0) < 0, is well defined and changes its sign on some open interval (0, w̄)

[respectively, on (−w̄, 0)], then equation (1.3) has at least one semi-wavefront φ with

sups∈R φ(s) ≤ ξ2, φ(−∞) = 0, and lim inft→+∞ φ(t) > ξ1 > 0 [respectively,

φ(+∞) = 0, and lim inft→−∞ φ(t) > ξ1 > 0]. Moreover, if the equation G(s) = s

has exactly two solutions 0 and κ on R+, and the point κ is globally attracting for the

map G : (0, ξ2] → (0, ξ2], then φ(+∞) = κ.

Remark 2.2. Note that ξ1 can be found explicitly, see [11, Lemma 5]. We also

observe that the proof of Proposition 2.1 uses the sublinearity assumption (2.1)

and G′(0) < ∞ in an essential way.

Nevertheless, it is possible to show that the Proposition 2.1 remains valid if

we assume (N) and (P ) and the following weak conditions (L), (G1) instead

of the restrictive (2.1) and G′(0) < ∞.

(L) g(s, τ) ≤ l(τ)s for all s ≥ 0, τ ∈ X and some a measurable map l(τ) : X →
R+ such that

∫
X
l(τ)dρ(τ)

∫
R
N (s, τ)ds < ∞.

(M) g̃L :=
∫
R

∫
X\{τ0}N (s, τ)l(τ)dρ(τ)ds < 1, where τ0 is as in (N).

We also will consider the following modified characteristic functions

χL(z) := 1−
∫
R

∫
X

N (s, τ)l(τ)dρ(τ)e−szds.

χ−(z) := 1−
∫
R

∫
X

N (s, τ)g′−(0
+, τ)dρ(τ)e−szds,

where we suppose that the right-hand Dini derivate g′−(0
+, τ) > 0 for each

τ ∈ X .

Lemma 2.3. Assume that (N), (M) and (L) hold, χ−(0) < 0 and g′−(0
+, τ) >

0, τ ∈ X . Then, for some ξ1 ∈ (0, ξ2), G([ξ1, ξ2]) ⊂ [ξ1, ξ2] and mins∈[ξ1,ξ2] G(s) =

G(ξ1), while G(s) > s for s ∈ (0, ξ1], where ξ2 is as in (N). Moreover, the right-hand

Dini derivate G′+(0+) is finite.

Proof. First, note that G(0) = 0 and 0 < G(v) < ξ2, v > 0. Since χ−(0) < 0 we

have

1−
∫
R

∫
X\{τ0}

N (s, τ)g′−(0
+, τ)dρ(τ)ds < Cg′−(0

+, τ0).

6



Observe that, by the general version of the Fatou lemma given in [5], we get

that ∫
R

∫
X\{τ0}

N (s, τ)g′−(0
+, τ)dsdρ(τ) ≤ g̃′−(0).

Hence, 1 − g̃′−(0) < Cg′−(0
+, τ0). Since g′+(0

+, τ) ≤ l(τ) we get from (M) that

θ′−(0) is finite and

0 < 1− g̃L ≤ θ′−(0) ≤ 1− g̃′−(0).

Thus g̃′−(0) < 1 and

1 <
Cg′−(0

+, τ0)

1− g̃′−(0)
< ∞.

On the other hand,

lim inf
v→0+

G(v)

v
= lim inf

v→0+

((
θ−1(Cg(v, τ0))

θ(θ−1(Cg(v, τ0))

)
Cg(v, τ0)

v

)

≥ lim inf
v→0+

(
θ−1(Cg(v, τ0))

θ(θ−1(Cg(v, τ0))

)
Cg′−(0

+, τ0) =
Cg′−(0

+, τ0)

1− g̃′−(0)
> 1.

so that G′−(0+) > 1. Thus G(s) > s for each s ∈ (0, ξ1] for some ξ1 ∈ (0, ξ2).

Since G(0) = 0 and 0 < G(v) < ξ2, v ∈ (0, ξ2], we can choose ξ1 sufficiently

small such that G([ξ1, ξ2]) ⊂ [ξ1, ξ2] and mins∈[ξ1,ξ2] G(s) = G(ξ1). Finally,

G′+(0+) is finite because of

lim sup
v→0+

G(v)

v
≤ lim sup

v→0+

(
θ−1(Cg(v, τ0))

θ(θ−1(Cg(v, τ0))

)
Cg′+(0

+, τ0) ≤
Cg′+(0

+, τ0)

1− g̃L
.

Now, we are ready to state the following useful extension of Proposition

2.1.

Theorem 2.4. Assume (N), (P ), (L), (M) and g′−(0
+, τ) > 0, τ ∈ X . Suppose also

that χL(z) is well defined on some open interval (−w̄, w̄) and χ−(0) < 0. If χL(z)

changes its sign on the open interval (0, w̄) [respectively, on (−w̄, 0)], then equation

(1.3) has at least one semi-wavefront φ satisfying sups∈R φ(s) ≤ ξ2, φ(−∞) = 0,

and lim inft→+∞ φ(t) > ξ1 [respectively, sups∈R φ(s) ≤ ξ2, φ(+∞) = 0, and

lim inft→−∞ φ(t) > ξ1]. Moreover, if the equation G(s) = s has exactly two solutions
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0 and κ on R+, and the point κ is globally attracting for the map G : (0, ξ2] → (0, ξ2],

then φ(+∞) = κ [respectively, φ(−∞) = κ].

To prove Theorem 2.4, we will need Lemma 2.5 and Theorem 2.6 below:

Lemma 2.5. Suppose that (L) holds and assume that g′−(0+, τ) > 0, τ ∈ X , and

χ−(0) ∈ (−∞, 0). Let φ : R → [0,+∞) be a bounded solution to equation (1.3). If

φ(−∞) = 0 and, for each fixed t′ ∈ R, it holds that φ(t) �≡ 0 for all t ≤ t′, then χ−

is well defined and has a zero on some non-degenerate interval (0, γφ]. If φ(+∞) = 0,

then χ− has a zero on some non-degenerate interval [γφ, 0).

Proof. The proof (where we follow the approach of [11]) will be divided into

the four steps.

Step I. First we consider the bilateral Laplace transforms

Φ(z) :=

∫
R

e−zsφ(s)ds, L(z) :=
∫
R

∫
X

N (s, τ)g′−(0
+, τ)dρ(τ)e−szds,

and, for δ > 0, the measurable function

λ−δ (τ) := inf
u∈(0,δ)

g(u, τ)

u
≥ 0.

Observe that, by the monotone convergence theorem,

lim
δ→0+

∫
X

∫
R

N (s, τ)λ−δ (τ)dsdρ(τ) =
∫
X

∫
R

N (s, τ)g′−(0
+, τ)dsdρ(τ)

= 1− χ−(0) > 1.

Therefore, ∫
X

∫
R

N (s, τ)λ−δ (τ)dsdρ(τ) ∈ (1,∞),

for all 0 < δ < δ′, being δ′ sufficiently small. In this way, since φ satisfies (1.3)

and g(s, τ) ≥ λ−δ (τ)s for s ∈ (0, δ) ⊂ (0, δ′), τ ∈ X , [2, Theorem 1] assures that

there exist x̄ > 0 such that∫ 0

−∞
φ(s)e−sx̄ds and

∫
R

∫
X

N (s, τ)λ−δ (τ)dρ(τ)e
−sx̄ds

are convergent. Consequently, since 0 < g′−(0
+, τ) ≤ 2λ−δ (τ) for all δ > 0

sufficiently small, we have∫
R

∫
X

N (s, τ)g′−(0, τ)dρ(τ)e
−sx̄ds < ∞. (2.2)
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Thus Φ(z), L(z) are finite for all 0 ≤ �z ≤ x̄. Now, we denote the maximal

open vertical strips of convergence for these two integrals as σφ < �z < γφ

and σK < �z < γK , respectively. Note that, from [2, Lemma 1] we get that

σK ≤ σφ < γφ ≤ γK and L(γφ) is always a finite number, so that χ−(γφ) =

1− L(γφ) ∈ R.

Step II. For real z ∈ (0, γφ) we consider the integrals

G(z, τ) :=
∫
R

e−zsg(φ(s), τ)ds, K(z, τ) :=

∫
R

e−zsN (s, τ)ds.

Since φ is non-negative and bounded, and since g′−(0+, τ) > 0 exists and g

satisfies the condition (L), the convergence of G(z, τ) is equivalent to the con-

vergence of Φ(z) for z > 0. Note that applying the bilateral Laplace transform

to equation (1.3), we obtain that

Φ(z) =

∫
X

K(z, τ)G(z, τ)dρ(τ). (2.3)

Moreover, observe that L,G,Φ are positive at each real point of the conver-

gence, and ∫
X

K(z, τ)
G(z, τ)
Φ(z)

dρ(τ) = 1. (2.4)

Step III. Now, we will prove that χ(z) has a zero on (0, γφ]. First, we suppose

that Φ(γφ) = limz→γφ− Φ(z) = ∞. Let Tδ be the rightmost non-positive number

such that φ(s) ≤ δ for s ≤ Tδ . Then

λ−δ

∫ Tδ

−∞
e−zsφ(s)ds ≤

∫ +∞

−∞
e−zsg(φ(s), τ)ds ≤ l(τ)

∫ +∞

−∞
e−zsφ(s)ds.

As a consequence, for each positive δ > 0,

λ−δ ≤ lim inf
z→γφ−

G(z, τ)
Φ(z)

≤ l(τ),

and

g′−(0
+, τ) ≤ lim inf

z→γφ−
G(z, τ)
Φ(z)

, for each τ ∈ X.

Now, the non-negative function F(τ) := lim infz→γφ−
G(z,τ)
Φ(z) is well defined

for each τ ∈ X and is measurable on X . By using Fatou Lemma as z → γφ− in

9



(2.4) we obtain

1− χ−(γφ) =
∫
X

K(γφ, τ)g
′
−(0

+, τ)dρ(τ) ≤
∫
X

K(γφ, τ)F(τ)dρ(τ)

≤ lim inf
z→γφ−

∫
X

K(z, τ)
G(z, τ)
Φ(z)

dρ(τ) = 1.

Therefore χ−(γφ) ≥ 0, and since χ−(0) < 0 we get the required assertion.

Step IV. Let us prove that χ−(z) = 0 has a root in (0, γφ] even if Φ(γφ) =

limz→γφ− Φ(z) > 0 is finite. Since φ(t) �≡ 0, t ≤ t′ for each fixed t′, in such a

case γφ < ∞.

Suppose now on the contrary that the characteristic equation

χ−(z) = 1−
∫
R

∫
X

N (s, τ)g′−(0+, τ)dρ(τ)e−szds = 0

has not real roots on [0, γφ]. Then χ−(0) < 0 implies χ−(γφ) < 0. Set

ζ(t) := φ(t)e−γφt, N1(s, τ) := e−γφsN (s, τ).

Then, for t < Tδ −N , N > 0, we have from (1.3) that∫ t

−∞
ζ(v)dv =

∫ t

−∞
φ(v)e−γφvdv

≥
∫
X

dρ(τ)

∫ N

−N

N1(s, τ)

∫ t

−∞
g(φ(v − s), τ)e−γφ(v−s)dvds

≥
∫
X

dρ(τ)

∫ N

−N

λ−δ (τ)N1(s, τ)

∫ t

−∞
ζ(v − s)dvds

≥
(∫

X

dρ(τ)

∫ N

−N

λ−δ (τ)N1(s, τ)ds

)∫ t−N

−∞
ζ(v)dv =: κδ

∫ t−N

−∞
ζ(v)dv.

On the other hand, in virtue of the monotone convergence theorem, we have

lim
δ→0+

lim
N→+∞

∫
X

dμ(τ)

∫ N

−N

λ−δ (τ)N1(s, τ)ds = 1− χ−(γφ) > 1.

Hence, for some appropriate δ,N > 0, the increasing function ξ(t) =
∫ t

−∞ ζ(s)ds

satisfies ξ(t) ≥ κδξ(t−N), t < Tδ −N with κδ > 1. We now consider the func-

tion h(t) = ξ(t)e−γt with γ = N−1 lnκδ > 0. For all t < Tδ −N we have

h(t−N) = ξ(t−N)e−γ(t−N) ≤ 1

κδ
ξ(t)e−γteγN = h(t).
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Hence supt≤0 h(t) < ∞ and ξ(t) = O(eγt), t → −∞. After taking x̄ ∈ (0, γ) and

integrating by parts, we obtain

∫ t

−∞
ζ(s)e−x̄sds = ξ(t)e−x̄t + x̄

∫ t

−∞
ξ(s)e−x̄sds < +∞.

This implies that the integral
∫ t

−∞ φ(s)e−(γφ+x̄)sds converges, contradicting to

the definition of γφ, which completes Step IV.

Finally, note that if φ(+∞) = 0, then ψ(t) := φ(−t) satisfies the equation

ψ(t) =

∫
X

dρ(τ)

∫
R

N (−s, τ)g(φ(t− s), τ)ds, t ∈ R,

and ψ(−∞) = 0. Moreover, the associated characteristic equation

χ̂−(z) := 1−
∫
R

∫
X

N (−s, τ)g′−(0+, τ)dρ(τ)e−szds = χ−(−z), (2.5)

and thus χ̂−(0) = χ−(0) < 0. In consequence, χ̂−(z) has at least one positive

root, so that χ−(z) has at least one negative root. The lemma is proved.

Theorem 2.6. Assume all conditions of Theorem 2.4. Let φ be a positive bounded solu-

tion to equation (1.3). If infs∈R φ(s) < ξ1, then limt→ω φ(t) = 0 and lim inft→−ω φ(t) >

ξ1 for some ω ∈ {−∞,∞}.

Proof. The proof will be divided into the tree steps.

Step I. Here we prove the following property: if φ is a positive bounded

solution to equation (1.3), then either lim inft→+∞ φ(t) > 0 or φ(+∞) = 0 (a

similar statement is also true at −∞). This result may be proved in much the

same way as [11, Theorem 3, p.5]. First, observe that φ(t) is uniformly contin-

uous on R:

|φ(t+ h)− φ(t)| ≤
∫
X

dρ(τ)

∫
R

|N (s+ h, τ)−N (s, τ)|g(φ(t− s), τ)ds

≤ |φ|∞
∫
X

l(τ)dρ(τ)

∫
R

|N (s+ h, τ)−N (s, τ)|ds =: |φ|∞σ(h).

Next, by condition (L), we have

l(τ)

∫
R

N (s, τ)ds ∈ L1(X),
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so that limh→0 σ(h) = 0, in view of the continuity of translation in L1(R) and

the Lebesgue’s dominated convergence theorem.

Now, let suppose that lim supt→+∞ φ(t) = S > 0 and lim inft→+∞ φ(t) = 0.

Then Lemma 2.5 allows to repeat Step 3 of the proof of Theorem 3 in [11] (where

χ is replaced with χ−) and, for each fixed j > S−1, to find a positive solution

ζj : R → (0, 1/j] of (1.3) such that

0 < max
t∈R

ζj(t) = ζj(0) ≤ 1/j.

Now, let us consider yj(t) = ζj(t)/ζj(0). Each yj satisfies

yj(t) =

∫
X

dρ(τ)

∫
R

N (s, τ)aj(t− s, τ)yj(t− s)ds, (2.6)

where aj(t, τ) = g(ζj(t), τ)/ζj(t). In addition, note that the sequence {yj(t)}+∞j=1

is equicontinuous. In fact, since aj(t, τ) ≤ l(τ) for all τ ∈ X , we get that

|yj(t+ h)− yj(t)| ≤
∫
X

dρ(τ)

∫
R

aj(t− s)yj(t− s)|N (s+ h, τ)−N (s, τ)|ds

≤
∫
X

dρ(τ)

∫
R

aj(t− s)|N (s+ h, τ)−N (s, τ)|ds

≤
∫
X

dρ(τ)

∫
R

l(τ)|N (s+ h, τ)−N (s, τ)|ds = σ(h)

where σ(h) was defined on step 1. In consequence, {yj(t)} has a subsequence

converging to a continuous function y∗ : R → [0, 1], y∗(0) = 1.

On the other hand,∣∣∣∣
∫
R

N (s, τ)aj(t− s, τ)yj(t− s)ds

∣∣∣∣ ≤ l(τ)

∫
R

N (s, τ)ds ∈ L1(X).

Thus, by the Fatou lemma,

y∗(t) = lim inf
j→∞

∫
X

dρ(τ)

∫
R

N (s, τ)aj(t− s, τ)yj(t− s)ds

≥
∫
X

g′−(0, τ)dρ(τ)
∫
R

N (s, τ)y∗(t− s)ds ≥ 0. (2.7)

To finish the proof, note that cannot exist any nontrivial continuous function

y∗ ≥ 0 satisfying (2.7). Indeed, since χ−(0) < 0 there exists N > 0 such that∫
X

g′−(0, τ)dρ(τ)
∫ N

−N

N (s, τ)ds > 1.

12



From (2.7) for t > t′, we obtain∫ t

t′
y∗(v)dv ≥

∫
X

g′−(0, τ)dρ(τ)
∫ N

−N

N (s, τ)

∫ t

t′
y∗(v − s)dvds

=

∫
X

g′−(0, τ)dρ(τ)
∫ N

−N

N (s, τ)(

∫ t′

t′−s

+

∫ t

t′
+

∫ t−s

t

)y∗(v)dvds,

from which
∫ t

t′
y∗(v)dv ≤ 2

∫
X

∫ N

−N
|s|N (s, τ)g′−(0, τ)dsdρ(τ)∫

X

∫ N

−N
N (s, τ)g′−(0, τ)dsdρ(τ)− 1

, t′ < t.

Therefore y∗ ∈ L1(R). Now by integrating (2.7) over the real line, we get that∫
R

y∗(v)dv ≥
[∫

X

g′−(0, τ)dρ(τ)
∫
R

N (s, τ)ds

] ∫
R

y∗(v)dv,

a contradiction. Hence, the dichotomy principle is established at +∞. The

other case can be reduced to the previous one by doing the change of variables

ψ(t) := φ(−t) and considering χ̂− (defined in (2.5)) instead of χ−.

Step II. We now observe that χ−(0) < 0 and χ− concave on its maximal

domain of definition, so that all real zeros of χ should be of the same sign (if

they exist). Thus, if χ−(z) does not have any real positive [negative] zero and φ

is a positive bounded solution of (1.3), then lim inft→−∞ φ(t) > 0 [respectively,

lim inft→+∞ φ(t) > 0], in view of Lemma 2.5. As a consequence, equation (1.3)

can not have positive pulse like solutions (i.e. solutions satisfying φ(−∞) =

φ(+∞) = 0).

Step III. Now we will prove the following uniform persistence property: if

m = infs∈R φ(s) < ξ1, then limt→ω φ(t) = 0 and lim inft→−ω φ(t) > ξ1. First

note that, since φ is a bounded positive solution of equation (1.3), we have

0 ≤ m := inf
t∈R

φ(t) ≤ sup
t∈R

φ(t) =: M < +∞.

Repeating the proof of Lemma 10 in [11], we get

[m,M ] ⊆ G([m,M ]). (2.8)

Now, since G(s) > s, s ∈ (0, ξ1) and m < ξ1, using Lemma 2.3 we obtain

m = 0. Hence, due to the positivity of φ(t), there exists ω ∈ {−∞,+∞} such
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that lim inft→ω φ(t) = 0. Then, applying the step I and II, we find that μ :=

lim inft→−ω φ(t) > 0 and φ(ω) = 0. Making use of standard limiting solution

argument, we see that, for some tj → −ω, the sequence φ(t+tj) is converging in

the compact-open topology of C(R) to some function φ1(t), μ = inft∈R φ1(t) ≤
supt∈R φ1(t) ≤ M solving equation (1.3). By (2.8), we have [μ,M ] ⊆ G([μ,M ])

which implies μ > ξ1.

Proof Theorem 2.4. We follow the approach presented in [11, Theorem 7]. The

proof will be divided into two steps.

Step I. First, let ξ2 and ξ1 be as in the hypothesis (N) and Lemma 2.3, re-

spectively. Consider the sequence of measurable functions

gn(s, τ) =

⎧⎨
⎩ l(τ)s, s ∈ [0, 1/n],

max{ l(τ)
n , g(s, τ)}, s > 1/n.

(2.9)

Clearly, gn(s, τ) are continuous in s for each fixed τ . We also claim that for

all sufficiently large n, each gn(s, τ) satisfy the hypotheses of Proposition 2.1,

where ξ1 and ξ2 do not depend on n.

Proof the claim: since g(s, τ) satisfies (N), we have that gn(s, τ) is increasing

in s ∈ R+ for all n ∈ N and each fixed τ �= τ0, and gn(s, τ0) > 0, s > 0. In

addition, the functions θn(v) = v − g̃n(v), where

g̃n(v) =

∫
R

∫
X\{τ0}

gn(v, τ)N (s, τ)dρ(τ)ds,

are strictly increasing on [0, ξ2] for each n ∈ N such that n ≥ 1/ξ2. Indeed, for

0 ≤ v1 < v2 ≤ 1
n ≤ ξ2,

θn(v2)− θn(v1) = (v2 − v1)− (g̃n(v2)− g̃n(v1))

= (v2 − v1)(1− g̃L) > 0.

Now, if 1
n ≤ v1 < v2 ≤ ξ2, then using strict monotonicity of θ, we have that

θ(v2)− θ(v1) = (v2 − v1)− (g̃(v2)− g̃(v1)) > 0.

Thus g̃(v2)− g̃(v1) < (v2 − v1). On the other hand, we claim that

g̃n(v2)− g̃n(v1) ≤ g̃(v2)− g̃(v1).
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Indeed, let us consider the measurable subsets of X ′ := X \ {τ0}:

Aj := {τ ∈ X ′ : g(vj , τ) ≤ l(τ)/n}, Bj := {τ ∈ X ′ : g(vj , τ) > l(τ)/n}.

Note that Bj = X ′ \ Aj . Since for each τ ∈ X ′, g(v, τ) is increasing in v > 0,

we have A2 ⊂ A1. Thus B1 ⊂ B2 and B2 \ B1 = A1 \ A2. Consequently,

X ′ = B1 ∪ (B2 \B1) ∪A2 is a disjoint union of three sets, and since∫
R

∫
A2

(gn(v2, τ)− gn(v1, τ))N (s, τ)dρ(τ)ds = 0,

we get that

g̃n(v2)− g̃n(v1) =

∫
R

∫
B2\B1

(g(v2, τ)− l(τ)/n)N (s, τ)dρ(τ)ds

+

∫
R

∫
B1

(g(v2, τ)− g(v1, τ))N (s, τ)dρ(τ)ds

≤
∫
R

∫
B2

(g(v2, τ)− g(v1, τ))N (s, τ)dρ(τ)ds

≤
∫
R

∫
X′

(g(v2, τ)− g(v1, τ))N (s, τ)dρ(τ)ds

= g̃(v2)− g̃(v1).

Hence θn(v2)− θn(v1) ≥ (v2 − v1)− (g̃(v2)− g̃(v1)) > 0.

Finally, if v1 ≤ 1
n < v2 ≤ ξ2, then

θn(v2)− θn(v1) = (θn(v2)− θn(1/n)) + (θn(1/n)− θn(v1)) > 0.

by the above. Hence θn are strictly increasing on [0, ξ2] for all n > 1/ξ2.

On the other hand, note that limn→∞ gn(s, τ) = g(s, τ) uniformly on R+

for every fixed τ ∈ X . Since gn+1(s, τ) ≤ gn(s, τ), n ∈ N, {g̃n} is a decreas-

ing sequence of measurable nonnegative functions. Now, for each fixed v ≥ 0

we have limn→∞ g̃n(v) = g̃(v), and, by virtue of the Dini’s Theorem, the con-

vergence is uniformly on compact sets. We thus get limn→∞ θn(ξ2) = θ(ξ2),

and

θn(ξ2) > max
v≥0

g(v, τ0)

∫
R

N (s, τ0)ds = Cmax
v≥0

g(v, τ0),

for n is sufficiently large, see the hypothesis (N). Finally, the uniform conver-

gence of gn(s, τ0) to g(s, τ0) on R+, allows conclude that θn(ξ2) > Cmaxv≥0 gn(v, τ0),

and consequently gn(s, τ) satisfy the hypothesis (N) for each large n.
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In particular, for each n sufficiently large, we can define the functions Gn(v) :=

θ−1
n (Cgn(v, τ0)), v ∈ [0, ξ2]. Note that Gn(0) = 0, 0 < Gn(v) < ξ2, v > 0.

Moreover, from the uniform convergence of the sequences gn(s, τ) and g̃n(v),

we have that Gn(v) converge to G(v) uniformly on [0, ξ2], and finally, since

g̃′n(0) = g̃L < 1, we get that

G′n(0) =
Cg′n(0, τ0)
1− g̃L

=
Cl(τ0)

1− g̃L
< ∞.

On the other hand, for each n ∈ N the characteristic function χn(z) satisfies

χn(z) = 1−
∫
R

∫
X

N (s, τ)g′n(0, τ)dρ(τ)e
−szds

= 1−
∫
R

∫
X

N (s, τ)l(τ)dρ(τ)e−szds

= χL(z).

Since χ−(0) < 0, we have χn(0) = χL(0) < 0, so that

1−
∫
R

∫
X\{τ0}

l(τ)N (s, τ)dρ(τ)ds− Cl(τ0) = 1− g̃L − Cl(τ0) < 0,

and G′n(0) > 1. Hence Gn(v) = G′n(0)v for v ∈ [0, δn) for some δn > 0.

Now, suppose that Gn(a) = a for some a ∈ [0, ξ2]. Since gn(v, τ) ≥ g(v, τ),

v ≥ 0, we have

a = Cgn(a, τ0) + g̃n(a) ≥ Cg(a, τ0) + g̃(a).

We thus get θ(a) ≥ Cg(a, τ0) and G(a) ≤ a. From Lemma 2.3 we have G(v) > v

for each v ∈ (0, ξ1], and hence a > ξ1. Since Gn(v) > v for v ∈ [0, δn), then

Gn(v) > v for each v ∈ (0, ξ1].

Now, by Lemma 2.3, we have that θ−1(Cg(s, τ0)) ≥ θ−1(Cg(ξ1, τ0)), s ∈
[ξ1, ξ2]. Thus g(s, τ0) ≥ g(ξ1, τ0) for each s ∈ [ξ1, ξ2]. In addition, the condition

gn(v, τ0) ≥ g(v, τ0), v ≥ 0, yields

θ−1
n (Cgn(v, τ0)) ≥ θ−1

n (Cg(v, τ0)), v ∈ [0, ξ2].

Thus for v ∈ [ξ1, ξ2] we have that θ−1
n (Cgn(v, τ0)) ≥ θ−1

n (Cg(ξ1, τ0)). On the

other hand, note that for each n sufficiently large gn(ξ1, τ0) = g(ξ1, τ0), so that

Gn(v) = θ−1
n (Cgn(v, τ0)) ≥ θ−1

n (Cgn(ξ1, τ0)) = Gn(ξ1) = G(ξ1), v ∈ [ξ1, ξ2].
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Hence mins∈[ξ1,ξ2] Gn(s) = Gn(ξ1) = G(ξ1) for each n large. This ends the

proof of the claim.

Consequently, since gn(s, τ) ≤ g′n(0, τ)s for all s ≥ 0 and gn satisfy all

hypotheses of Preposition 2.1 for all n sufficiently large, with ξ1 and ξ2 as in

Lemma 2.3, which do not depend of n, there exist positive continuos function

φn such that

φn(t) =

∫
X

dρ(τ)

∫
R

N (s, τ)gn(φn(t− s), τ)ds, (2.10)

such that φn(t) ≤ ξ2, t ∈ R, and if χn(z) = χL(z) changes sign on some open

interval (0, w̄), the functions φn satisfy the boundary conditions φn(−∞) = 0

and lim inft→+∞ φn(t) > ξ1, and if χn(z) changes sign on some open interval

(−w̄, 0), then φn(+∞) = 0 and lim inft→−∞ φn(t) > ξ1.

Step II. Now we will study the convergence of the sequence φn on compact

sets. First, note that the functions φn(t + t0) also satisfy equation (2.10), hence

we can assume that φn(0) = ξ1/2. On the other hand, since {φn} is uniformly

bounded, Lebesgue’s dominates convergence theorem, continuity of the trans-

lation in L1(R) and the estimation

|φn(t+ h)− φn(t)| ≤
∫
X

l(τ)dρ(τ)

∫
R

|N (t+ h− u, τ)−N (t− u, τ)|φn(u)du

=

∫
X

l(τ)dρ(τ)

∫
R

|N (h+ s, τ)−N (s, τ)|φn(t− s)ds

≤ ξ2

∫
X

l(τ)dρ(τ)

∫
R

|N (s+ h, τ)−N (s, τ)|ds → 0, h → 0,

imply that the sequence {φn} is equicontinuous on R. Therefore there ex-

ists a subsequence {φnj
} which converges uniformly on compact sets to some

bounded function φ ∈ C(R,R), by the Ascoli-Arzelà Theorem. Note that

Lebesgue’s dominated convergence theorem implies that φ satisfies equation

(1.3). Consequently, 0 ≤ φ(t) ≤ ξ2, t ∈ R and φ(0) = ξ1/2. Thus inft∈R φ(t) <

ξ1, and Theorem 2.6 shows that φ(−∞) = 0 and lim inft→+∞ φ(t) > ξ1, if χn(z)

changes sign on some open interval (0, w̄), and if χn(z) changes sign on some

open interval (−w̄, 0), then φ(+∞) = 0 and lim inft→−∞ φ(t) > ξ1.

Finally, set m′ := lim inft→w φ(t) ≤ lim supt→w φ(t) =: M ′, w ∈ {−∞,+∞}
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and suppose that m′ > ξ1. Then repeating the proof of Lemma 10 in [11], we

get [m′,M ′] ⊆ G([m′,M ′]), and hence m′,M ′ ∈ (ξ1, ξ2]. In addition, since the

equation G(s) = s has exactly two solutions 0 and κ on R+, we obtain that κ ∈
(ξ1, ξ2]. Moreover, since κ is globally attracting for the map G : (0, ξ2] → (0, ξ2],

and

[m′,M ′] ⊆ G([m′,M ′]) ⊆ G2([m′,M ′]) ⊆ · · · ⊆ Gn([m′,M ′]) ⊆ · · · ,

where Gn := G ◦ · · · ◦ G (n times), then limn→∞Gn([m′,M ′]) = κ and thus,

m′ = M ′ = κ, and finally, we have φ(w) = κ. This completes the proof.

3. Semi-wavefront solutions for non-local delayed reaction-diffusion equa-

tion (1.1)

In this section, we study the problem of existence and non-existence of

semi-wavefront solutions for (1.1) using the framework developed in the Sec-

tion 2. We will rewrite equation (1.1) in the form (1.3) in order to apply Theo-

rem 2.4 and prove the existence of solutions u(t, x) = φ(x+ ct) for some range

of admissible speeds.

Everywhere in this section, we are assuming the hypotheses H0-H2.

3.1. Modification of the equation (1.1)

Note that the profile φ must satisfy the equation

y′′(t)− cy′(t)− f(y(t)) +

∫ ∞

0

∫
R

K(s, w)g (y(t− cs− w)) dwds = 0 (3.1)

for all t ∈ R. This equation can be written as

y′′(t)−cy′(t)−βy(t)+fβ(y(t))+

∫ ∞

0

∫
R

K(s, w)g(y(t−cs−w))dwds = 0, (3.2)

where fβ(s) = βs − f(s) and β > 0. Clearly, now we have to prove the exis-

tence of positive bounded solution φ of equation (3.1), satisfying φ(−∞) = 0

or φ(+∞) = 0.
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Next, if φ is a positive bounded solution to (3.1), it should satisfy the inte-

gral equation

φ(t) =
1

σ(c)

(∫ t

−∞
eν(c)(t−s)(Gφ)(s)ds+

∫ +∞

t

eμ(c)(t−s)(Gφ)(s)ds
)

(3.3)

=

∫
R

k1(t− s)(Gφ)(s)ds, t ∈ R,

where

k1(s) := (σ(c))−1

⎧⎨
⎩ eν(c)s, s ≥ 0

eμ(c)s, s < 0
,

σ(c) =
√
c2 + 4β, ν(c) < 0 < μ(c) are the roots of z2 − cz − β = 0 and the

operator G is defined as

(Gφ)(t) :=
∫ ∞

0

∫
R

K(s, w)g(φ(t− cs− w))dwds+ fβ(φ(t)).

Note that (Gφ)(t) can be rewritten as

(Gφ)(t) =
∫
R

g(φ(t− r))

∫ ∞

0

K(s, r − cs)dsdr + fβ(φ(t))

=

∫
R

g(φ(t− r))k2(r)dr + fβ(φ(t)), (3.4)

where

k2(r) :=

∫ ∞

0

K(s, r − cs)ds

is well defined a.e. on R. Finally, from (3.4) we get that φ also must satisfy the

equation

φ(t) = (k1 ∗ k2) ∗ g(φ)(t) + k1 ∗ fβ(φ)(t), t ∈ R, (3.5)

where ∗ denotes the convolution (f ∗ g)(t) = ∫
R
f(t− s)g(s)ds.

Equation (3.5) can be rewritten as

φ(t) =

∫
X

dρ(τ)

∫
R

N (s, τ)g(φ(t− s), τ)ds, t ∈ R, (3.6)

with

N (s, τ) =

⎧⎨
⎩ (k1 ∗ k2)(s), τ = τ0,

k1(s), τ = τ1,
g(s, τ) =

⎧⎨
⎩ g(s), τ = τ0,

fβ(s), τ = τ1,
, (3.7)
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X = {τ0, τ1} and ρ(τ0) = ρ(τ1) = 1. Note that the function g(·, ·) is continuous

on R×X with g(0, τ) ≡ 0 and N (s, τ) is integrable on R×X with∫
R

N (s, τ)ds =
1

β
> 0, τ ∈ X.

Set now

f̄β(s) = max{fβ(t) : 0 ≤ t ≤ s}, s ≥ 0,

ḡ(s, τ) =

⎧⎨
⎩ g(s), τ = τ0,

f̄β(s), τ = τ1,
(3.8)

and consider the modified convolution equation

φ(t) =

∫
X

dρ(τ)

∫
R

N (s, τ)ḡ(φ(t− s), τ)ds, t ∈ R. (3.9)

Observe that for every M > 0 we can choose β > 0 sufficiently large such that

f̄β(s) = fβ(s) ≥ 0, s ∈ [0,M ].

Thus a solutions family {φβ} of (3.9), uniformly bounded by some constant

M > 0, where β(M), is also a family of bounded solutions of (3.6).

Lemma 3.1. If f satisfies the condition H2, then for each M > 0 there exists β > 0

such that f̄β(s) = βs − f(s), s ∈ [0,M ]. Furthermore, the function f̄β is monotone

increasing on (0,+∞), f̄β(0) = 0 and f̄β(s) > 0, s > 0. Finally, the Dini derivate

f̄ ′β+(0) = β − f ′−(0) > 0 is finite and f̄β(s) ≤ f̄ ′β+(0)s, s ≥ 0.

Proof. Let u ∈ [0,M ]. Since f is increasing and locally Lipschitzian function,

there exists β = β(M) > 0 such that f ′+(0) < β and

f(u)− f(s) ≤ β(u− s), 0 ≤ s ≤ u.

In particular, f̄β(u) = βu − f(u) for each u ∈ [0,M ], f̄β(0) = 0. Now,

if f̄β(s0) = 0 for some s0 > 0, then f̄β(t) = 0 for all 0 ≤ t ≤ s0, which is

impossible in view of f ′+(0) = β − f ′−(0) > 0. Thus, f̄β(s) > 0 for each s > 0.

Finally, by hypothesis H2, f(s) ≥ f ′−(0)s for all s ≥ 0. This implies that

fβ(s) = βs− f(s) ≤ (β − f ′−(0))s ≤ (β − f ′−(0))u, 0 ≤ s ≤ u.
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In consequence, f̄β(u) = max{fβ(t) : 0 ≤ t ≤ u} ≤ (β − f ′−(0))u for each u ≥ 0,

which completes the proof.

Lemma 3.2. Assume that H0-H2 hold. If N (s, τ) and ḡ(v, τ) are defined as in (3.7)

and (3.8), respectively, then all the conditions of hypotheses (N), (L) and (M) are true

with ξ2 = ξ̄2. Moreover, ḡ′−(0+, τ) > 0 for each τ .

Proof. First, consider β = β(ξ̄2) > 0 sufficiently large such that β > f ′+(0). Then

the function ḡ(·, ·) is continuous on R ×X with ḡ(0, τ) ≡ 0 and ḡ(s, τ) > 0 for

each (s, τ) ∈ R+ ×X ( see Lemma 3.1). Note that ρ(τ0) = 1. In addition, since

ḡ(v, τ1) = f̄β(v), we have

g̃(v) =

∫
R

g(v, τ1)N (s, τ1)ds = f̄β(v)

∫
R

k1(s)ds =
f̄β(v)

β
,

and hence ḡ(v, τ1) and g̃(v) are monotone increasing on R+. Moreover, the

function θ(v) = v − f̄β(v)
β = f(v)

β is strictly increasing on [0, ξ̄2], where f(ξ̄2) >

sups≥0 g(s), by H2. Note also that

θ(ξ̄2) =
f(ξ̄2)

β
>

1

β
sup
v≥0

g(v) = sup
v≥0

ḡ(v, τ0)

∫
R

N (s, τ0)ds.

Hence, hypothesis (N) is satisfied with ξ2 = ξ̄2.

Next, since g is bounded and g′+(0) < ∞, we can find some constant L >

g′+(0) such that

g(s) ≤ Ls, s ≥ 0. (3.10)

Thus, from Lemma 3.1 and (3.10) we conclude that

ḡ(s, τ) ≤ l(τ)s, s ≥ 0, (3.11)

where

l(τ) =

⎧⎨
⎩ L, τ = τ0,

β − f ′−(0), τ = τ1.
(3.12)

Note that ∫
X

l(τ)dρ(τ)

∫
R

N (s, τ)ds = 1 +
L− f ′−(0)

β
< ∞
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and

g̃L =

∫
R

∫
X\{τ0}

N (s, τ)l(τ)dρ(τ)ds =
(β − f ′−(0))

β
< 1.

Thus (L) and (M) are also satisfied. Finally, since g′−(0), f̄
′
β−(0) > 0, it is clear

that ḡ′−(0+, τ) > 0 for each τ ∈ {τ0, τ1}.

3.2. The characteristic equations

First, we consider the equation

R(z, c) := z2 − cz − q + p

∫ ∞

0

∫
R

K(s, w)e−z(cs+w)dwds = 0,

where p > q > 0.

Lemma 3.3. Suppose that for each c ∈ R, the function R(z, c) is defined for all z

from some maximal interval (δ1(c), δ2(c)) � 0. Then there exist c−# = c−#(R), c+# =

c+#(R) ∈ R such that c−# < c+# and the following statements are true:

(i) If c > c+#, then R(z, c) has at least one positive zero z = λ1(c) ∈ (0, δ2(c)), it

may have at most two positive zeros on (0, δ2(c)) and it does not have any neg-

ative zero. If c < c+#, then R(z, c) does not have any positive zero on (0, δ2(c)).

Furthermore, if c = c+# and limz↑δ2(c+#) R(z, c+#) �= 0, then R(z, c+#) has a

unique double zero on (0, δ2(c
+
#)), denoted by z = λ1(c

+
#), and R(z, c+#) > 0

for all z �= λ1(c
+
#) ∈ [0, δ2(c

+
#)).

(ii) If c < c−#, the function R(z, c) has at least one negative zero z = λ1(c) ∈
(δ1(c), 0), it may have at most two negative zeros on (δ1(c), 0) and it does not

have any positive zero. If c > c−#, then R(z, c) does not have any negative

zero on (0, δ1(c)). Furthermore, if c = c−# and limz↓δ1(c−#) R(z, c−#) �= 0, then

R(z, c−#) has a unique double zero on (0, δ1(c
−
#)), denoted by z = λ1(c

−
#), and

R(z, c−#) > 0 for all z �= λ1(c
−
#) ∈ (δ1(c

−
#), 0].

Proof. First, we observe that the existence of c+# is given in [1, Lemma 3.1].

Now, to prove the existence of c−# we define the function W(z, c) := R(−z, c).
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Observe that λ is a root of W(z, c) = 0 if and only if −λ is a root of R(z, c) = 0.

Since

W(z, c) = z2 + cz − q + p

∫ ∞

0

∫
R

K(s,−w)e−z(−cs+w)dwds, (3.13)

[1, Lemma 3.1] implies that there exists the minimal speed c+#(W). Therefore

taking c−#(R) := −c+#(W) we establishes the statements given in (ii) of the

lemma. Finally, it is clear that c−# < c+#, and this complete the proof.

Set now

χ0(z, c) := z2 − cz − f ′−(0) + g′−(0)
∫ ∞

0

∫
R

K(s, w)e−z(cs+w)dwds,

and

χL(z, c) := z2 − cz − f ′−(0) + L

∫ ∞

0

∫
R

K(s, w)e−z(cs+w)dwds.

Since hypothesis H2 implies that g′−(0) > f ′−(0) > 0, Lemma 3.3 guarantees

the existence of c+∗ [respectively, c+� ] which is the minimal value of c for which

χ0(z, c) = 0 [respectively, χL(z, c) = 0] has at least one positive root. Simi-

larly, there exist c−∗ [respectively, c−� ] which is the maximal value of c for which

χ0(z, c) = 0 [respectively, χL(z, c) = 0] has at least one negative root. Note that

c+� ≥ c+∗ , c−� ≤ c−∗ , because of L ≥ g′−(0).

On the other hand, for some β > 0 we have

χ−(z) = 1− g′−(0)
∫
R

N (s, τ1)e
−zsds− (β − f ′−(0))

∫
R

N (s, τ2)e
−zsds

= 1− β − f ′−(0)
β + cz − z2

− g′−(0)
β + cz − z2

∫ ∞

0

∫
R

K(r, w)e−z(rc+w)dwdr

= − χ0(z, c)

β + cz − z2
. (3.14)

Thus the zeros of function χ−(z) are determined by the roots of characteristic

equation χ0(z, c) = 0. Note also that

χ−(0) = −χ0(0, c)

β
=

f ′−(0)− g′−(0)
β

< 0. (3.15)
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Similarly, we obtain that

χL(z) = − χL(z, c)

β + cz − z2
, χL(0) =

f ′−(0)− L

β
< 0. (3.16)

Our next result shows some estimates for admissible wave speeds. Set

E := − g′−(0)
∫∞
0

∫
R
K(s, w)w dwds

1 + g′−(0)
∫∞
0

∫
R
K(s, w)s dwds

.

Note that if K(s, w) = K(s,−w), w ∈ R, then E = 0.

Lemma 3.4. Suppose that H0 −H2 hold. Then c+∗ > E > c−∗ . Moreover, if∫ ∞

0

∫
R

K(s, w)w dwds ≤ 0, (3.17)

then c+∗ > 0. If K does not satisfy the condition (3.17), then c−∗ < 0.

Proof. Let c ≥ c+∗ . Then Lemma 3.3 and the convexity of χ0 with respect to z

guarantee that χ′0(0, c) < 0, and therefore

c
(
1 + g′−(0)

∫ ∞

0

∫
R

K(s, w)s dwds
)
> −g′−(0)

∫ ∞

0

∫
R

K(s, w)w dwds,

which gives c > E. Thus c+∗ > E. Similarly, if c ≤ c−∗ , then χ′0(0, c) > 0. From

this it follows that c < E, and so c−∗ < E. Now, if condition (3.17) is valid, then

c+∗ > E ≥ 0. Finally, if (3.17) is not true, then c−∗ < E < 0.

Example 3.5. We consider a space structured population with maturation ef-

fects described by the delays, for example marine species, where the juveniles

move by advection as well as diffusion, but the adults move by diffusion only.

If u(t, x) denotes the density of the adult population at x ∈ R and time t, then

the evolution of u(t, x) is described following model:

ut(t, x) = dauxx(t, x)− μau(t, x) +

∫ ∞

0

∫
R

g(u(t− s, x− w))
μje

−(w+vjs)
2

4djs
−μjs

2
√
πdjs

dwds,

(3.18)

where g is the birth function, dj , vj , μj are respectively the diffusion rate, the

advection velocity and the death rate for juveniles and da, μa are respectively
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the diffusion rate and the death rate for adults (see [11] for more details). Note

that spatial asymmetry occurs in this model with

K(s, w) =
μje

−(w+vjs)
2

4djs
−μjs

2
√
πdjs

.

By scaling the variables, we can suppose that da = 1. Thus the characteristic

function χ(z, c) takes the following form

χ(z, c) = z2 − cz − μa + p

∫ ∞

0

∫
R

μje
−(w+vjs)

2

4djs
−μjs

2
√
πdjs

e−z(cs+w)dwds,

where p := g′−(0) > μa. A straightforward calculation of the integral gives

χ(z, c) = z2 − cz − μa +
pμj

μj + (c− vj)z − djz2
.

Note that χ(0, c) = p − μa > 0 and limc↓−∞ χ(z, c) = +∞ for z ∈ (0,+∞). In

addition,
∂2χ

∂z2
(z, c) > 0, z ∈ [0,+∞),

and hence it has at most two real zeros for each c. Moreover, the kernel of

equation (3.18) satisfies condition (3.17). In consequence, Lemma 3.4 implies

that c+∗ > 0. For example, in the particular case when vj = 0.02, dj = 100, μj =

0.001, μa = 0.05 and p = 2, we obtain the critical speeds c−∗ = −2.82483 · · · and

c+∗ = 2.85797 · · · (see Figures 1 - 4). Observe that |c−∗ | �= |c+∗ |.
We now show possible situations between c±∗ and c±� . Furthermore, if we

assume also that g satisfies the condition (3.10) with L = 2.7 > g′+(0), we obtain

the critical speeds c−� = −3.12959 · · · and c+� = 3.1623 · · · . In consequence,

c−� < c−∗ < 0 < c+∗ < c+� ,

and hence there are not semi-wavefronts to equation (3.18) propagating at the

velocity c ∈ (−2.82483 · · · , 2.85797 · · · ) (see proof of Theorem 1.2). In par-

ticular, equation (3.18) does not have stationary semi-wavefronts. Now, un-

der the same conditions stated above, but replacing vj by vj = 4.7, we obtain

c−∗ = 0.376044 · · · , c+∗ = 6.99332 · · · , c−� = 0.0332958 · · · and c+� = 7.25469 · · · .
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Thus

0 < c−� < c−∗ < c+∗ < c+� ,

and hence, in this case, there is at least one stationary semi-wavefront to equa-

tion (3.18) (see Theorem 3.10). Moreover, if 0 < c ≤ c−� , then φ(+∞) = 0 and,

in consequence, the extinction of semi-wavefront u(x, t) = φ(x+ ct) occurs.
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Figure 1: χ(z, c) for c = 2.85797 · · · .
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Figure 2: χ(z, c) for c = 3.

Figure 3: χ(z, c) for c = −2.82483 · · · . Figure 4: χ(z, c) for c = −3.

3.3. Separation properties and non-existence of wavefronts

First, we establish the following simple fact:

Lemma 3.6. Suppose that H0-H2 hold. If u(t, x) = φ(x + ct) ≥ 0 is a bounded

solution of equation (3.1) such that φ vanishes at some point, then φ ≡ 0.

Proof. Let M = supt∈R φ(t). Then by Lemma 3.1 there exists β = β(M) such

that f̄β(s) = fβ(s) ≥ 0 for all s ∈ [0,M ].
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Now, suppose that there exists t0 ∈ R such that φ(t0) = 0. From (3.3) we

get that

φ(t0) =

∫
R

k1(t0 − s)(Gφ)(s)ds = 0.

Since k1(t) > 0 and (Gφ)(t) ≥ 0 for all t ∈ R, we necessarily have (Gφ)(t) = 0

for all t ∈ R. According to g(0) = 0, g(t) > 0, t > 0, and K ≥ 0, we get that∫
R

g(φ(t− r))k2(r)dr ≥ 0, t ∈ R.

In addition, since fβ(s) ≥ 0 for all s ∈ [0,M ], we deduce from (3.4) that∫
R

g(φ(t− r))k2(r)dr = fβ(φ(t)) = 0, t ∈ R.

Thus φ(t) = 0 for all t ∈ R, and the lemma follows.

We can now prove the non-existence assertion of Theorem 1.2.

Proof Theorem 1.2. Take c+∗ , c−∗ as defined in Section 3.2.

Next, suppose that for some c ∈ (c−∗ , c
+
∗ ) there exists a semi-wavefront so-

lution φ of (3.1) propagating with the speed c. Let M = supt∈R φ(t). Then

by Lemma 3.1 there exists β = β(M) > f ′+(0) such that ḡ(v, τ) = g(v, τ),

v ∈ [0,M ], τ ∈ X . Moreover, Lemma 3.2 implies that hypothesis (L) holds and

that g′−(0+, τ) > 0 for each τ ∈ X . We also observe that χ−(0) < 0, by (3.15).

Finally, φ is a bounded solution of equation (3.6) with β defined as above, and

hence all the hypotheses of Lemma 2.5 hold.

Now, if φ(−∞) = 0, then Lemmas 3.6 and 2.5 imply that χ−(z) is well

defined on some (0, γ1] and χ−(z′) = 0 for some z′ ∈ (0, γ1]. In view of (3.14),

this yields χ0(z
′, c) = 0, which contradicts the minimality of c+∗ . If φ(+∞) = 0,

then from Lemmas 3.6 and 2.5 we also obtain that χ−(z) is well defined on

some [γ2, 0) and χ−(z′′) = 0 for some z′′ ∈ [γ2, 0). Thus χ0(z
′′, c) = 0, which

contradicts the maximality of c−∗ .

Theorem 3.7. Assume that H0-H2 hold. Let u(t, x) = φ(x+ ct) > 0 be a bounded

solution of equation (3.1).
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1. If lim inft→−∞ φ(t) = 0, then φ(−∞) = 0, the critical speed c+∗ is finite and

c ≥ c+∗ . Moreover, lim inft→+∞ φ(t) ≥ δ1(φ) > 0 for some δ1(φ) > 0.

2. If lim inft→+∞ φ(t) = 0, then φ(+∞) = 0, the critical speed c−∗ is finite and

c ≤ c−∗ . Moreover, lim inft→−∞ φ(t) ≥ δ2(φ) > 0 for some δ2(φ) > 0.

3. Equation (3.1) can not have positive pulse solutions, i.e. solutions satisfying

φ(−∞) = φ(+∞) = 0.

Proof. For M = max{ξ̄2, supt∈R φ(t)} consider β = β(M) > f ′−(0) given in

Lemma 3.1. Then ḡ(v, τ) = g(v, τ) on [0,M ] for each τ ∈ {τ0, τ1}. In addition,

by Lemma 3.2, conditions (N) and (L) hold, and g′−(0+, τ) > 0 for each τ . Note

also that χ−(0) < 0 .

On the other hand, since φ is a bounded solution of (3.6), then steps I and II

of the proof in Theorem 2.6 imply that for some w ∈ {−∞,+∞}, either φ(w) =

0 or lim inft→w φ(t) > δ(φ) > 0. If lim inft→−∞ φ(t) = 0, then φ(−∞) = 0

and χ−(z) has a positive root, by Lemma 2.5. Thus c+∗ is finite, c ≥ c+∗ and

all real zeros of χ−(z) are positive. By Lemma 2.5, φ(+∞) �= 0, and hence

lim inft→+∞ φ(t) ≥ δ(φ) > 0. Now, if lim inft→+∞ φ(t) = 0, then φ(+∞) = 0

and χ−(z) has a negative root, by Lemma 2.5. Thus c−∗ is finite, c ≤ c−∗ and

all real zeros of χ−(z) = 0 are negative. From the same lemma we get that

φ(−∞) �= 0, and hence lim inft→−∞ φ(t) ≥ δ(φ) > 0. In consequence, φ can not

satisfy the boundary condition φ(−∞) = φ(+∞) = 0.

3.4. The existence problem

Theorem 3.8. (Existence of semi-wavefronts) Let assumptions H0-H2 hold. Then the

equation (3.1) has at least one semi-wavefront u(x, t) = φ(x + ct) propagating with

speed c ≥ c+� such that φ(−∞) = 0 and lim inft→+∞ φ(t) > 0. Furthermore, if

equation f(s) = g(s) has only two solutions: 0 and κ, with κ being globally attracting

with respect to f−1 ◦ g : (0, ξ̄2] → (0, ξ̄2], then φ(+∞) = κ.

Proof. The proof will be divided into 3 steps.
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Step I. Consider β = β(ξ̄2) > f ′+(0). Then the assumptions H0-H2 and

Lemma 3.2 ensure that ḡ(v, τ), τ ∈ {τ0, τ1} satisfies all the conditions of the

hypotheses (N), (L) and (M). Moreover, ḡ′−(0+, τ) > 0 for each τ . In addition,

since Lemma 3.6 implies that hypothesis (P ) is valid, all the assumptions of

Theorem 2.4 are satisfied.

On the other hand, hypothesis H0 implies that for each c ∈ R, χL(z, c), and

hence χL(z) and χ−(z) are well defined on the maximal interval (γ#
1 (c), γ#

2 (c))

with γ#
1 (c) < 0 < γ#

2 (c). Moreover, χL(0, c) < 0, χL(0) < 0 and χ−(0) < 0,

by (3.15) and (3.16). Now, if c > c�, then χL(z, c) changes its sign on (0, γ#
2 (c)),

and hence χL(z) also changes its sign on (0, γ#
2 (c)), by (3.16). Thus Theorem

2.4 implies that the equation (3.9) has at least one semi-wavefront φ satisfying

sups∈R φ(s) ≤ ξ̄2, φ(−∞) = 0, and lim inft→+∞ φ(t) > ξ1. Since g(v, τ) = ḡ(v, τ)

if v ∈ [0, ξ̄2], then φ is also a semi-wavefronts solution to (3.6), and hence it is a

semi-wavefronts solution to (3.1) propagating with speed c > c+� .

Step II. For the case c = c+� , we define cn :=
nc+� +1

n . Since cn > c+� , the previous

result assures the existence of positive bounded solutions ψn to (3.1) such that

sups∈R ψn(s) ≤ ξ̄2, ψn(−∞) = 0 and lim inft→+∞ ψn(t) > ξ1, for each n ∈ N.

Since ψn(t+t0) also satisfy the equation (3.1), we can assume that ψn(0) = ξ1/2.

In addition, from (3.3) we have

ψn(t) =

∫
R

(k1)n(t− s)(Gnψn)(s)ds, t ∈ R, (3.19)

where

(k1)n(s) = (σ(cn))
−1

⎧⎨
⎩ eν(cn)s, s ≥ 0

eμ(cn)s, s < 0
, σ(cn) =

√
c2n + 4β,

ν(cn) < 0 < μ(cn) are the roots of z2 − cnz − β = 0 and the operators Gn are

defined as

(Gnψ)(t) :=

∫ ∞

0

∫
R

K(s, w)g(ψ(t− cns− w))dwds+ fβ(ψ(t)).

Now, since σ(cn) > σ(c+� ), differentiating (3.19) we find that

|ψ′n(t)| ≤
1

σ(c+� )

(
sup
u≥0

g(u) + (β − f ′−(0))ξ2

)
.
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In consequence, {ψn} is pre-compact in the compact open topology of C(R,R)

and we can find a subsequence {ψnj
} which converges, uniformly on compact

subsets of R, to some bounded function ψ ∈ C(R,R). In addition, note that

lim
j→+∞

(Gnjψnj )(t) =

∫ ∞

0

∫
R

K(s, w)g(ψ(t− c+� s− w))dwds+ fβ(ψ(t)),

for every t ∈ R. Thus Lebesgue’s dominated convergence theorem implies that

ψ is a solution of (3.1) propagating with the speed c = c+� . Clearly, sups∈R ψ(s) ≤
ξ̄2 and ψ(0) = ξ1/2. Thus infs∈R ψ(s) < ξ1, and from Theorem 2.6 we have

ψ(−∞) = 0 and lim inft→+∞ ψ(t) > ξ1.

Step III. If equation f(s) = g(s) has only two solutions: 0 and κ, then only 0

and κ satisfy the equation G(s) = f−1(g(s)) = s. Being κ globally attracting

with respect to G : (0, ξ̄2] → (0, ξ̄2], from Theorem 2.4, with ξ2 = ξ̄2, we have

φ(+∞) = κ.

Remark 3.9. (a) Sufficient conditions to ensure the global stability of f−1 ◦ g are

given in [24]. (b) If g′−(0) = L, then l(τ) = g′−(0, τ) and χ−(z) = χL(z). Thus

c+� = c+∗ , and the existence holds for each c ≥ c+∗ .

Small changes in the previous proof allow to prove the follow theorem:

Theorem 3.10. (Existence of semi-wavefronts) Let assumptions H0-H2 hold. Then

the equation (3.1) has at least one semi-wavefront u(x, t) = φ(x + ct) propagating

with speed c ≤ c−� such that φ(+∞) = 0 and lim inft→−∞ φ(t) > 0. Furthermore, if

equation f(s) = g(s) has only two solutions: 0 and κ, with κ being globally attracting

with respect to f−1 ◦ g : (0, ξ̄2] → (0, ξ̄2], then φ(−∞) = κ.

4. Applications.

In this section, we apply Theorem 1.1 to some non-local reaction-diffusion

epidemic and population models with distributed time delay, previously stud-

ied in [4, 8, 12, 21, 23, 25, 27, 28, 30].
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Epidemic dynamics model: Developing some ideas from [23, 27, 28, 30],

we first consider here the following non-local system with distributed delay⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut(t, x) = duxx(t, x)− f(u(t, x)) +
∫
R
K(x− y)v(t, y)dy,

vt(t, x) = −αv(t, x) +
∫∞
0

g(u(t− s, x))P (ds),

(4.1)

where α, d > 0, x ∈ R, t ≥ 0, and P is a probability measure on R+. The

functions u(t, x) and v(t, x) denote the densities of the infectious agent and the

infective human population at a point x and time t. The nonnegative kernel

K can be asymmetric and
∫
R
K(w)dw =: A > 0. The function g can be non-

monotone. By scaling the variables, we can suppose that d = 1.

Next, suppose that (u(t, x), v(t, x)) = (φ(x+ct), ψ(x+ct)) is a semi-wavefront

solution of system (4.1), i.e. the continuous non-constant uniformly bounded

functions u(t, x) = φ(x + ct) and v(t, x) = ψ(x + ct) are positive and satisfy

of the boundary conditions φ(−∞) = ψ(−∞) = 0 or φ(+∞) = ψ(+∞) = 0 .

Then the wave profiles φ and ψ must satisfy the following system:

φ′′(t)− cφ′(t)− f(φ(t)) +

∫
R

K(u)ψ(t− u)du = 0, (4.2)

cψ′(t) + αψ(t)−
∫ ∞

0

g(φ(t− cs))P (ds) = 0. (4.3)

Suppose, for example, that φ(−∞) = ψ(−∞) = 0 and c > 0. Then, integrat-

ing (4.3) between −∞ and t, we find that ψ satisfies

ψ(t) =
1

c

∫ ∞

0

∫ ∞

0

e−
α
c ug(φ(t− u− cr))P (dr)du

=

∫ ∞

0

∫ ∞

r

e−α(w−r)g(φ(t− cw))dwP (dr)

=

∫ ∞

0

∫ w

0

e−α(w−r)g(φ(t− cw))P (dr)dw

=

∫ ∞

0

K1(w)g(φ(t− cw))dw,

where

K1(w) =

∫ w

0

e−α(w−r)P (dr).
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In the case c = 0, we have αψ(t) = g(φ(t)). Now, if we suppose that φ(+∞) =

ψ(+∞) = 0 and c < 0, then we obtain a similar result. Hence

ψ(t) =

⎧⎨
⎩

∫∞
0

K1(w)g(φ(t− cw))dw, c �= 0,

ψ(t) = g(φ(t))/α, c = 0.
(4.4)

Substituting these results in equation (4.2), we get

φ′′(t)− cφ′(t)− f(φ(t)) +

∫ +∞

0

∫
R

K(s, w)g(φ(t− s− cw)dsdw = 0, (4.5)

where

K(s, w) :=

⎧⎨
⎩ K(s)K1(w), c �= 0,

K(s) δ(w)
α , c = 0.

Note that ∫ +∞

0

∫
R

K(s, w)dwds =
A

α
> 0,

hence we can suppose, without loss of generality, that the non-negative kernel

K(s, w) is normalized by
∫ +∞
0

∫
R
K(s, w)dwds = 1.

On the other hand, observe that the characteristic functions χ0 and χL as-

sociated to (4.5) have the following form:

χ0(z, c) = z2 − cz − f ′−(0) +
g′−(0)
cz + α

∫ ∞

0

e−zcrP (dr)

∫
R

K(w)e−zwdw, (4.6)

and

χL(z, c) = z2 − cz − f ′−(0) +
L

cz + α

∫ ∞

0

e−zcrP (dr)

∫
R

K(w)e−zwdw, (4.7)

for �(cz + α) > 0. In this way, if g′−(0) − f ′−(0) > 0 then Lemma 3.3 ensures

the existence of c+∗ [respectively, c+� ] which is the minimal value of c for which

(4.6) [respectively, (4.7)] has at least one positive zero.

We can now formulate the following existence result:

Theorem 4.1. Let assumptions H0-H2 hold. Then for each wave speed c /∈ (c−� , c
+
� ),

system (4.1) admits at least one wavefront solution

(u(t, x), v(t, x)) = (φ(x+ ct), ψ(x+ ct)),
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satisfying φ(−∞) = ψ(−∞) = 0 and lim inft→+∞(φ(t), ψ(t)) > (0, 0) [respec-

tively, φ(+∞) = ψ(+∞) = 0 and lim inft→−∞(φ(t), ψ(t)) > (0, 0)], if c ≥ c+�

[respectively, if c ≤ c−� ]. Moreover, system has no semi-wavefront solution propa-

gating with speed c ∈ (c−∗ , c
+
∗ ). Finally system (4.1) does not have positive pulse

solutions.

Proof. Note that hypothesis H0 implies that for each c ∈ R, χL(z, c) is well de-

fined on the maximal interval (γ1(c), γ2(c)) with γ1(c) < 0 < γ2(c). Thus for

each c ≥ c+� Theorem 3.8 implies the existence of a semi-wavefront solution φ of

(4.5) propagating with speed c, such that φ(−∞) = 0 and lim inft→+∞ φ(t) > 0.

Moreover, we also have the non-existence of semi-wavefront of (4.5), if c ∈
(c−∗ , c

+
∗ ). In addition, Theorem 3.7 ensure that equation (4.5) can not have pos-

itive pulses.

Now, since φ is a positive bounded function, ψ defined in (4.4) is also bounded:

|ψ(t)| ≤ supu≥0 g(u)

α
, t ∈ R.

In addition, applying the Lebesgue’s dominated convergence theorem [Fatou

lemma, respectively] we get that ψ(−∞) = 0 [lim inft→+∞ ψ(t) > 0, respec-

tively]. Thus (φ(t), ψ(t)) is a semi-wavefront of (4.2) and (4.3) propagating with

speed c ≥ c+� , and, in consequence, (u(t, x), v(t, x)) = (φ(x + ct), ψ(x + ct)) is

a semi-wavefront solution of (4.1) satisfying the bounded condition φ(−∞) =

ψ(−∞) = 0. A similar argument applies if c ≤ c−∗ .

Remark 4.2. Observe that if equation f(s) = g(s) has only two solutions: 0 and

κ, with κ being globally attracting with respect to f−1 ◦ g : (0, ξ̄2] → (0, ξ̄2],

where ξ̄2 is defined in H0, then the semi-wavefront (u(t, x), v(t, x)) = (φ(x +

ct), ψ(x+ ct)) is in fact a wavefront.

Remark 4.3. Theorem 4.1 completes or improves some results of [23, 27, 28, 30].

A population dynamics model: Let u and v denote the numbers of mature

and immature population of a single species at time t ≥ 0, respectively. We
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will study the system
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut(t, x) = duxx(t, x)− f(u(t, x)) +
∫∞
0

∫
R
K(s, w)g(u(t− s, x− w))dwds,

vt(t, x) = Dvxx(t, x)− γv(t, x) + g(u(t, x))− ∫∞
0

∫
R
K(s, w)g(u(t− s, x− w))dwds,

(4.8)

where γ,D, d > 0, the nonnegative kernel K can be asymmetric and satisfies

0 <
∫∞
0

∫
R
K(s, w)dwds < 1. Note that by scaling the variables, we can suppose

that d = 1. Now, observe that in the system (4.8) the first equation can be

solved independently of the second. In this way, if the system (4.8) admits a

semi-wavefront solution (u(t, x), v(t, x)) = (φ(x+ ct), ψ(x+ ct)), then v(t, x) =

ψ(x+ ct) must satisfy the equation

Dψ′′(t)− cψ′(t)− γψ(t) + (Hφ)(t) = 0,

where the operator H is defined by

(Hφ)(t) = g(φ(t))−
∫ ∞

0

∫
R

K(s, w)g(φ(t− cs− w))dwds.

Note that Hφ ∈ C(R,R), H0 = 0 and

|(Hφ)(t)| ≤ sup
t≥0

g(t)

(
1 +

∫ ∞

0

∫
R

K(s, w)dwds

)
.

Thus Hφ is a bounded function and ψ can be represented by

ψ(t) =

∫
R

k1(t− s)(Hφ)(s)ds =

∫
R

k1(s)(Hφ)(t− s)ds, (4.9)

where

k1(s) =
(√

c2 + 4Dγ
)−1

⎧⎨
⎩ eν̃(c)s, s ≥ 0,

eμ̃(c)s, s < 0,

and ν̃(c) < 0 < μ̃(c) are the roots of Dz2 − cz − γ = 0. Moreover,

|ψ(t)| ≤ supt≥0 g(t)

γ

(
1 +

∫ ∞

0

∫
R

K(s, w)dwds

)
.

On the other hand, if φ(−∞) = 0, then we have H(φ(−∞)) = 0 and

ψ(−∞) = 0, by Lebesgue’s theorem of dominated convergence. In addition, if

lim inft→+∞ φ(t) > 0, then the Fatou lemma implies that lim inft→+∞ ψ(t) > 0.

Similar argument applies at +∞. In consequence, we obtain the following

lemma:
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Lemma 4.4. Assume that H0-H2 are true. If u(t, x) = φ(x+ ct) is a semi-wavefront

of the first equation of the system (4.8), satisfying φ(−∞) = 0 and lim inft→+∞ φ(t) >

0, then the second equation of (4.8) has a semi-wavefront v(t, x) = ψ(x + ct) with

ψ(−∞) = 0 and lim inft→+∞ ψ(t) > 0. If φ(+∞) = 0 and lim inft→−∞ φ(t) > 0,

then ψ(+∞) = 0 and lim inft→−∞ ψ(t) > 0.

Finally, consider the characteristic functions χ0(z, c) and χL(z, c) associated

with the first equation of system (4.8). Note that Lemma 3.3 ensure the exis-

tence of c+∗ , c+� , c−∗ , c−� , defined as in Section 3.2. In addition, we can suppose,

without loss of generality, that the non-negative kernel K(s, w) is normalized

by
∫ +∞
0

∫
R
K(s, w)dwds = 1. Then the following theorem is a direct conse-

quence of Theorem 3.8.

Theorem 4.5. Let assumptions H0-H2 hold. Then for each wave speed c /∈ (c−� , c
+
� ),

the system (4.8) admits at least one semi-wavefront solution

(u(t, x), v(t, x)) = (φ(x+ ct), ψ(x+ ct)),

satisfying φ(−∞) = ψ(−∞) = 0 and lim inft→+∞(φ(t), ψ(t)) > (0, 0), if c ≥
c+� or φ(+∞) = ψ(+∞) = 0 and lim inft→−∞(φ(t), ψ(t)) > (0, 0), if c ≤ c−� .

Furthermore, the system (4.8) has no semi-wavefront solution propagating with speed

c ∈ (c−∗ , c
+
∗ ). Finally system (4.8) does not have positive pulse solutions.

Proof. First, for each c ≥ c+� Theorem 1.1 implies the existence of a semi-

wavefront solution φ(x + ct), φ(−∞) = 0, lim inft→+∞ φ(t) > 0 of the first

equation of system (4.8). If c ≤ c−� , then a similar result holds with φ(+∞) = 0

and lim inft→−∞ φ(t) > 0. Moreover, Theorem 3.7 ensures that this equation

can not have pulse solutions.

Now, we define the function ψ as in (4.9). Then Lemma 4.4 implies that the

second equation of the system (4.8) has a semi-wavefront v(t, x)) = ψ(x + ct)

satisfying ψ(−∞) = 0 and lim inft→+∞ ψ(t) > 0, if c ≥ c+� , and ψ(+∞) = 0 and

lim inft→−∞ ψ(t) > 0, if c ≤ c−� . Thus (u(t, x), v(t, x)) = (φ(x + ct), ψ(x + ct))

is a semi-wavefront solution to system (4.8) satisfying φ(−∞) = ψ(−∞) = 0
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and lim inft→+∞(φ(t), ψ(t)) > (0, 0), if c ≥ c+� or φ(+∞) = ψ(+∞) = 0 and

lim inft→−∞(φ(t), ψ(t)) > (0, 0), if c ≤ c−� .

Next, Theorem 1.2 implies the non-existence of semi-wavefront propagat-

ing with speed c ∈ (c−∗ , c
+
∗ ), which completes the proof.

Remark 4.6. Observe that if equation f(s) = g(s) has only two solutions: 0 and

κ, with κ being globally attracting with respect to f−1 ◦g : (0, ξ̄2] → (0, ξ̄2], then

we also have that the semi-wavefront (u(t, x), v(t, x)) = (φ(x + ct), ψ(x + ct))

is a wavefront.

Remark 4.7. We note that Theorem 4.5 completes or improves some results of

[8, 12, 23, 25], where the non-existence or the uniqueness was established under

stronger assumptions ( K is Gaussian or symmetric kernel, and g monotone).

In [12, 25] only the particular cases f(s) = βs2 and g(s) = s, were studied, and

in [23], the assumptions were either f(s) = f ′(0)s or g(s) = g′(0)s.
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