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MEASURE OF NONCOMPACTNESS, SURJECTIVITY OF

GRADIENT OPERATORS AND AN APPLICATION TO THE

p−LAPLACIAN

R. CHIAPPINELLI AND D. E. EDMUNDS

Abstract. It is shown that if X is a real Banach space with dual X∗ and
F : X → X∗ is a continuous gradient operator that is coercive in a certain sense

and proper on closed bounded sets, then it is surjective. Use of the notion of
measure of noncompactness enables sufficient conditions for properness to be
given. These give rise to a surjectivity theorem for compact perturbations of

strongly monotone maps and also facilitate discussion of a Dirichlet boundary-
value problem involving the p−Laplacian.

1. Introduction

This paper is a direct development of the ideas in [6]. In that paper, the following
result was proved: let F be a bounded continuous gradient operator acting in a real,
infinite-dimensional Hilbert space with scalar product denoted by 〈·, ·〉. Suppose
that F is strongly coercive in the sense that

〈F (x), x〉 ≥ c‖x‖2 (1.1)

for some c > 0 and for all x ∈ H, and suppose moreover that it is α-coercive [4] in
the sense that

ω(F ) ≡ inf

{
α(F (A))

α(A)
: A ⊂ H,A bounded , α(A) > 0

}
> 0, (1.2)

α(A) denoting the measure of noncompactness (see, e.g., Chapter 1 of [1]) of the
set A. Under the above conditions, F is surjective. This result was proved in [6]
as a simple consequence of the Ekeland variational principle (see, e.g., Chapter 4
of [7]), after converting the existence problem into a minimization problem for an
appropriately defined functional on H.

The purpose of the present paper is both to extend in various directions this
surjectivity theorem, and to show that the resulting abstract result can be usefully
applied to boundary-value problems for nonlinear partial differential equations. (In
[6], the theorem was only applied within the context of operator theory itself, and
precisely to the spectral theory of nonlinear operators, see in particular Chapters 6
and 7 of [1]).

We generalize the result in [6] considering gradient maps F that act from a Ba-
nach space X to its dual space X∗, we weaken considerably the coercivity condition
(1.1), and finally we replace the “quantitative” technical assumption ω(F ) > 0 with
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the qualitative and more general condition on F of being locally proper (see below
for the precise definitions).

Theorems in the literature concerning the surjectivity of nonlinear maps F :
X → X∗ are plentiful and typically impose the assumptions of monotonicity and
coercivity on F. By monotonicity is meant that all x, y ∈ X,

〈F (x)− F (y), x− y〉 ≥ 0,

while coercivity requires that

〈F (x), x〉 / ‖x‖ → ∞ as ‖x‖ → ∞.

Here 〈·, ·〉 stands for the duality pairing between X and X∗. Thus Theorem 26.11 of
[12] shows that if F is a gradient operator that is bounded, monotone and coercive,
then it is surjective. The celebrated Minty-Browder theorem (see [5], Theorem
5.16 and [9], p. 323) requires neither that F be a gradient operator nor that it
be bounded, but some continuity condition on F is imposed. Later work of Leray
and Lions (see [9], p. 323) led to a weakening of the monotonicity assumption
and the introduction of pseudo-monotone maps (see [16, Chapter 2, Section 2.4]).
In contrast, Theorem 2.1 of the present paper (Section 2) makes no monotonicity
requirement and shows that F is surjective if it is a continuous gradient map that
satisfies a strong coercivity condition and is proper on closed bounded sets. A
sufficient condition for properness is that a refinement of ω(F ) - as defined in (1.2) -
be positive, and from this theorems concerning compact perturbations of monotone
maps can be recovered, in the setting of gradient operators: see Corollary 3.3.

In Section 3 we discuss in some detail the refinement of ω(F ) useful to ensure
local properness. In fact, we start with a similar work for the companion number
α(F ) to ω(F ); recall (see, for instance, [13]) that in general, given Banach spaces
X,Y and a bounded continuous map F : X → Y, α(F ) is defined by

α(F ) = inf {k : αY (F (A)) ≤ kαX(A) for all bounded A ⊂ X} ,
where αX , αY correspond to the measures of noncompactness of subsets of X,Y
respectively. Evidently F is compact if and only if α(F ) = 0; hence α(F ) is often
referred to as the measure of noncompactness of F. When F = T , a bounded linear
map from X to itself, there are various important theorems that are now classical.
For example,

lim
n→∞ (α (Tn))

1/n

exists and equals the radius of the essential spectrum of T. We refer to Chapter
1 of [11] for further information, proofs and references for these classical results
concerning linear maps; for nonlinear maps the reader can consult the papers [13],
[4] and Chapter 2 of [1].

Finally in Section 4, we apply the abstract results to the following Dirichlet
problem for the p−Laplacian Δp:

−Δpu− λ1 |u|p−2
u + f(x, u) = h in Ω, u = 0 on ∂Ω. (1.3)

Here 2 ≤ p < ∞, Δpu = div
(
|∇u|p−2 ∇u

)
, Ω is a bounded open subset of Rn,

h ∈ Lp′(Ω) (p′ = p/(p − 1)) and f : Ω × R → R satisfies adequate assumptions.



MEASURE OF NONCOMPACTNESS, SURJECTIVITY OF GRADIENT OPERATORS AND AN APPLICATION TO THE p−LAPLA

Moreover, λ1 is the first eigenvalue for the Dirichlet p−Laplacian in Ω [14]. We see
(1.3) as a perturbation of the same problem where f = 0, namely

−Δpu− λ1 |u|p−2
u = h in Ω, u = 0 on ∂Ω. (1.4)

If p = 2, we know by the Fredholm theory for linear elliptic problems that (1.4) is
not solvable for any h ∈ L2(Ω), but only for those h satisfying the orthogonality
condition ∫

Ω

hφ1 dx = 0 (1.5)

where φ1 is a normalized eigenfunction corresponding to λ1. In fact, restrictions
on h ∈ Lp′(Ω) for the solvability of (1.4) hold for any p, as follows in particular
by the sharp results of Takáč [18]. Our question is: do there exist nonzero f ’s
such that (1.3) has a solution for any h ∈ Lp′(Ω)? Or in other words: can we
perturb the problem (1.4) with an appropriate additional term f so as to restore
surjectivity? Indeed, we use the results of Section 3 to prove solvability of (1.3) for
any h ∈ Lp′(Ω) if f satisfies - in addition to the standard regularity and growth
assumptions - a definiteness condition of the form sf(x, s) ≥ m |s|p, for some m > 0
and all (x, s) ∈ Ω× R.

2. A surjectivity theorem for gradient operators

Let X be a real Banach space with norm ‖.‖ and with dual X∗. We denote with
〈x, y〉 the pairing between x ∈ X∗ and y ∈ X. Recall (see e.g. [2], Definition 2.5.1)
that a map F : X → X∗ is said to be a gradient (or potential) operator if there
exists a differentiable functional f : X → R such that

F (x) = f ′(x) for all x ∈ X (2.1)

where f ′(x) ∈ X∗ denotes the (Fréchet) derivative of f at the point x ∈ X. When
it is so, the functional f - the potential of F - is defined up to an additive con-
stant; assuming for convenience that f(0) = 0 and assuming in addition that F is
continuous, f is explicitly related to F via the equation

f(x) =

∫ 1

0

〈F (tx), x〉 dt. (2.2)

We recall moreover that given a differentiable functional f : X → R, a point
x ∈ X is said to be a critical point of f if f ′(x) = 0. Therefore, the zeroes of a
gradient operator are precisely the critical points of its potential.

Finally, we recall that a map F : X → Y (X,Y metric spaces) is said to be proper
if the preimage F−1(K) is a compact subset of X whenever K ⊂ Y is compact,
and is said to be proper on closed bounded sets if given any closed bounded set M
of X, the set M ∩ F−1(K) is compact whenever K ⊂ Y is compact.

Theorem 2.1. Let X be a real Banach space with dual X∗, and let F : X → X∗ be
a continuous gradient operator. Suppose that F satisfies the following assumptions:

i) 〈F (x), x〉 ≥ c‖x‖p for some c > 0, some p > 1 and all x ∈ X;
ii) F is proper on closed bounded sets.

Then F is surjective.



4 R. CHIAPPINELLI AND D. E. EDMUNDS

Proof. Let f be the potential of F . Using i) we have, for x ∈ X and t ∈ R, t > 0,

〈F (tx), x〉 = 〈F (tx), tx〉
t

≥ c‖tx‖p
t

= ctp−1‖x‖p

whence

f(x) =

∫ 1

0

〈F (tx), x〉 dt ≥ c′‖x‖p (2.3)

with c′ = c/p > 0. To prove that F is surjective, we take y ∈ X ′ and look for an
x ∈ X such that F (x) = y; however, since F = f ′ this equation is equivalent to to
the search of a critical point x for the functional f1 defined on X putting

f1(x) = f(x)− 〈y, x〉, x ∈ X (2.4)

for we have evidently

f ′
1(x) = f ′(x)− y = F (x)− y. (2.5)

Now using (2.3), and writing simply ‖y‖ rather than ‖y‖X∗ , we get

f1(x) ≥ c′‖x‖p − ‖y‖‖x‖ (2.6)

which shows in particular that f1 is coercive on X in the sense that

f1(x) → +∞ as ‖x‖ → ∞. (2.7)

We claim that f1 is bounded below on X. For suppose on the contrary that
infx∈X f1(x) = −∞, and let (xn) ⊂ X be such that

f1(xn) → −∞. (2.8)

The sequence (xn) is necessarily bounded (otherwise there would exists a subse-
quence (xnk

) with ‖xnk
‖ → ∞, and thus f1(xnk

) → +∞ by (2.7), contradicting
(2.8)). But then by (2.6), f1(xn) must be bounded below, contradicting again (2.8).

Therefore f1 is bounded below on X. As f1 is of class C1, the Ekeland Varia-
tional Principle (see, in particular, Theorem 4.4 of [7]) ensures the existence of a
minimizing sequence along which the derivative of f1 tends to 0, that is, a sequence
(xn) ⊂ X such that

f1(xn) → c1 ≡ inf
x∈X

f1(x) and f ′
1(xn) → 0.

Using the expression (2.5) of f ′
1, we see that the latter condition is equivalent to

F (xn) → y.

The sequence (xn) is bounded by virtue of (2.7), and since F is proper on closed
bounded sets by assumption, the convergence of F (xn) implies that (xn) contains
a convergent subsequence. Letting (xnk

) denoting this subsequence and putting
x = limk→∞ xnk

, we then see immediately by the continuity of f1 and F that
f1(x) = c1 and F (x) = y. �

It may be useful to single out a slightly more general version of the argument
used in the proof of Theorem 2.1 in order to show that the relevant functional is
bounded below.
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Proposition 2.1. Let X be a Banach space and let f : X → R be such that

f(x) ≥ φ(‖x‖) (2.9)

where φ : [0,+∞[→ [0,+∞[ is bounded on bounded sets and such that φ(t) → +∞
as t → +∞. Then f is bounded below on X. Moreover, any minimizing sequence
is necessarily bounded.

Proof. Identical to that given in Theorem 2.1 for f = f1 and for the special case

φ(t) = c′tp − ‖y‖t.
�

Let us now consider in more detail the assumptions stated in Theorem 2.1.
We first ask whether the coercivity condition i) can be weakened. Note that the
hypothesis that p > 1 is used in an essential way: the proof of Theorem 2.1 breaks
down if p = 1. Nevertheless it is possible to replace the term ‖x‖p in assumption
i) by one of the form ‖x‖h (‖x‖) , where h is a suitable function, such as one of
logarithmic type, that grows more slowly than any power. A convenient way of
explaining this is by means of the so-called slowly varying functions, a detailed
account of which is given in [10, Chapter 3, Subsection 3.4.3].

A measurable function b : [1,∞) → (0,∞) is said to be slowly varying (sv) if
given any ε > 0, the map t �−→ tεb(t) is equivalent to (i.e. bounded above and below
by constant multiples of) a non-decreasing function and t �−→ t−εb(t) is equivalent
to a non-increasing function on [1,∞).

Functions of power type are plainly not sv. To illustrate the sv class, define
functions li on [1,∞) by

l0(t) = t, li(t) = 1 + log li−1(t) for i ∈ N.

Examples of sv functions b are given by

(i) b(t) =
∏m

i=1 l
αi
i (t), m ∈ N, α ∈ R

m;
(ii) b(t) = exp (logα t) , 0 < a < 1;
(iii) b(t) = exp (lamt) , 0 < a < 1,m ∈ N;
(iv) b(t) = lm(t),m ∈ N.

Given any sv function b, define by γb the function defined on (0,∞) by

γb(t) = b (max {t, 1/t}) , t > 0.

It turns out (see [10], p.109) that if b is sv, then∫ t

0

γb(s)ds � tγb(t), t > 0, (2.10)

where the symbol � stands for “equivalent to” in the sense explained above.

Proposition 2.2. Let all the assumptions in Theorem 2.1 be satisfied except that
i) is replaced by the weaker assumption

i’) 〈F (x), x〉 ≥ ‖x‖γb(‖x‖) for all x ∈ X and for some sl funtion b with
b(t) → ∞ as t → ∞.

Then F is surjective.
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Proof. Using i), we first have for t > 0 and x ∈ X

〈F (tx), x〉 = t−1 〈F (tx), tx〉 ≥ ‖x‖γb (t ‖x‖)
whence, using the expression (2.2) for the potential f and the equivalence (2.10),
we obtain

f(x) ≥ ‖x‖
∫ 1

0

γb (t ‖x‖) dt =
∫ ‖x‖

0

γb(s)ds ≥ c ‖x‖ b (‖x‖) (2.11)

for some c > 0. It follows that the functional f1 defined in (2.4) satisfies the lower
bound

f1(x) ≥ ‖x‖(cb(‖x‖)− ‖y‖) (2.12)

and therefore satisfies the condition (2.9) of Proposition 2.1 with

φ(t) = t(cb(t)− ‖y‖).
Using this Proposition, and arguing as in the proof of Theorem 2.1 via the Ekeland’s
principle, the conclusion follows. �

More space is needed for an adequate discussion of condition ii) in Theorem 2.1,
and we place this separately in the next Section.

3. Measure of noncompactness and α-coercivity

The aim of this Section is to discuss conditions on a map F : X → X∗ that
ensure its local properness, as required by condition ii) of Theorem 2.1. We do this
using the definition and properties of the measure of noncompactness of sets and
operators (see, for instance, [1, Chapter 2], [4] or [13]). If A is a bounded subset of a
Banach space X, we let α(A) denote its (Kuratowski) measure of noncompactness,
defined by

α(A) = inf{ε > 0 : A can be covered by finitely many subsets of diameter ≤ ε}.
Thus, α(A) = 0 if and only if A is totally bounded, or equivalently if the closure A
of A is compact. Consider now a mapping F of a Banach space X into a Banach
space Y . The measure of noncompactness of bounded sets in either space will be
denoted with the same letter α. Here and henceforth, we shall only consider maps
F : X → Y that are bounded on bounded sets, so that α(F (A)) is defined whenever
A ⊂ X is bounded; when we need to stress that F satisfies this condition, we merely
say that F is bounded. We assume moreover that dimX = ∞, so that there exist
bounded sets A ⊂ X with α(A) > 0. We first generalize the known definitions (see,
e.g., [1, Chapter 2], [4] or [13]) as follows.

Definition 3.1. A map F : X → Y is said to be α-Hölder of exponent γ (0 < γ <
∞) if α(F (A)) ≤ k[α(A)]γ for some k ≥ 0 and all bounded subsets A of X; in this
case we put

αγ(F ) = inf{k ≥ 0 : α(F (A)) ≤ k[α(A)]γ for all boundedA ⊂ X}, (3.1)

that is,

αγ(F ) = sup

{
α(F (A))

[α(A)]γ
: A ⊂ X,Abounded , α(A) > 0

}
. (3.2)
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Thus if F is α-Hölder of exponent γ, it follows that for all bounded A ⊂ X,

α(F (A)) ≤ αγ(F )[α(A)]γ . (3.3)

In particular when γ = 1, F is α−Lipschitz; in this case we continue to write - as
in [13] and in [4], for instance - α(F ) rather than α1(F ). We note moreover that
the following statements are equivalent:

• F is compact, that is, the closure F (A) of F (A) is compact for any bounded
A ⊂ E1;

• ∀γ > 0, F is α-Hölder of exponent γ and αγ(F ) = 0;
• ∃γ > 0 : F is α-Hölder of exponent γ and αγ(F ) = 0.

Example 3.1. Let F : X → Y be Hölder continuous of exponent γ, i.e., such that

‖F (x)− F (y)‖ ≤ k‖x− y‖γ (3.4)

for some k ≥ 0 and for all x, y ∈ X. Then F is α-Hölder of the same exponent γ
and we have

αγ(F ) ≤ k. (3.5)

The following two Propositions yield elementary properties of αγ(F ) that are
stated for completeness and that can be proved immediately.

Proposition 3.1. Let F,G : X → Y be α-Hölder of exponent γ. Then so are
F +G and λF (λ ∈ R), and moreover

• αγ(λF ) = |λ|αγ(F )
• αγ(F +G) ≤ αγ(F ) + αγ(G).

We simply mention for further use the inequalities

α(F +G)(A) ≤ α(F (A) +G(A)) ≤ α(F (A)) + α(G(A)) (3.6)

that give rise to the second property stated in Proposition 3.1.

Proposition 3.2. Let X,Y, Z be Banach spaces, let F : X → Y be α-Hölder of
exponent γ and let G : Y → Z be α−Lipschitz. Then G ◦ F : X → Z is α-Hölder
of exponent γ, and moreover

αγ(G ◦ F ) ≤ α(G)αγ(F ).

Next, given F : X → Y and given γ with 0 < γ < ∞, let ωγ(F ) be defined as
follows:

ωγ(F ) = inf

{
[α(F (A))]γ

α(A)
: A ⊂ X,Abounded , α(A) > 0

}
. (3.7)

It follows by (3.7) that, for all bounded A ⊂ X,

[α(F (A))]γ ≥ ωγ(F )α(A). (3.8)

We stress the fact that unlike αγ(F ) (which is defined as a real nonnegative
number only for α-Hölder maps), ωγ(F ) is defined as a real nonnegative number
for any F . One basic property of the number ωγ(F ) is the fact that - as in the case
γ = 1 [13] - its strict positivity guarantees the local properness of F .

Proposition 3.3. Let F : X → Y be continuous and such that ωγ(F ) > 0 for
some γ ∈]0,∞[. Then F is proper on closed bounded sets, that is, given any closed
bounded set M of X, the set M ∩F−1(K) is compact whenever K ⊂ Y is compact.
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Proof. Let M and K be as in the statement. We have

K ⊃ K ∩ F (M) ⊃ F (F−1(K)) ∩ F (M) ⊃ F (M ∩ F−1(K))

and therefore
[α(K)]γ ≥ [α(F (M ∩ F−1(K)))]γ

whence, using (3.8), it follows that

[α(K)]γ ≥ ωγ(F )α(M ∩ F−1(K)). (3.9)

As K is compact by assumption, the left-hand side of (3.9) is zero, whence the
result follows since M ∩ F−1(K) is a closed subset of X. �

The behaviour of ωγ under addition and composition is somewhat more involved
than that of αγ .

Proposition 3.4. Let F,G : X → Y , fix γ > 0 and suppose that G is α-Hölder of
exponent 1/γ. Then if γ ≤ 1,

ωγ(F +G) ≤ ωγ(F ) + αγ
1/γ(G) (3.10)

while if γ > 1,
ωγ(F +G) ≤ 2γ−1(ωγ(F ) + αγ

1/γ(G)). (3.11)

Proof. The case γ = 1 was dealt with in [13]. If γ < 1, consider the inequality (3.6)
and divide each term by α(A) > 0:

[α(F +G)(A)]γ

α(A)
≤ [α(F (A) +G(A))]γ

α(A)
≤ [α(F (A))]γ

α(A)
+

[α(G(A))]γ

α(A)
. (3.12)

Now observe that for any A,

[α(G(A))]γ

α(A)
=

(
[α(G(A))]

[α(A)]1/γ ]

)γ

≤ αγ
1/γ(G).

Use this bound for the last term of (3.12) and then take the infimum of the first and
second member of the resulting inequality: the definition (3.7) then yields (3.10).

The case γ > 1 is dealt with in the same way, save that one must use here the
inequality (a+ b)γ ≤ 2γ−1(aγ + bγ). �

The inequalities (3.10) and (3.11) give rise in turn to useful lower bounds for
ωγ(F +G). Indeed if 0 < γ ≤ 1, we have from (3.10) and Proposition 3.1

ωγ(F ) = ωγ(F +G−G) ≤ ωγ(F +G) + αγ
1/γ(G)

which yields
ωγ(F +G) ≥ ωγ(F )− αγ

1/γ(G) (0 < γ ≤ 1), (3.13)

while using in a similar way (3.11) we obtain

ωγ(F +G) ≥ 1

2p−1
ωγ(F )− αγ

1/γ(G) (γ > 1). (3.14)

The estimates (3.13) and (3.14) are important as they show that the property
ωγ(F ) > 0 is stable under α−Hölder additive perturbations G of F of sufficiently
small constant αγ(G). In view of this remarkable property, maps satisfying the
condition ωγ(F ) > 0 have been named (in case γ = 1) α-coercive [4], and allow
among others for the construction of the degree for quasi-Fredholm maps (see for
instance [3] and [4]), a topological invariant having properties similar to those of
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the classical Leray-Schauder degree. For our present needs, the following precise
statement will be sufficient.

Corollary 3.1. Let F : X → Y be such that ωγ(F ) > 0 for some γ ∈]0,∞[, and
let G : X → Y be compact. Then ωγ(F + G) > 0. In particular, F + G is proper
on closed bounded sets.

Remark 3.1. It follows in particular from (3.10) and (3.13) that if G is compact
and 0 < γ ≤ 1, then

ωγ(F +G) = ωγ(F ). (3.15)

The next two statements deal with the behaviour of ωγ with respect to compo-
sition.

Proposition 3.5. Let X,Y, Z be Banach spaces, let F : X → Y , let G : Y → Z
and suppose that G is α-Hölder of exponent γ. Then

ω(G ◦ F ) ≤ αγ(G)ωγ(F ). (3.16)

Proof. Using (3.3) we have, for all bounded A ⊂ X,

α(G(F (A)) ≤ αγ(G)[α(F (A))]γ . (3.17)

Now divide both members of (3.17) by α(A) > 0, take the infimum of the respective
ratios over all bounded A ⊂ X with α(A) > 0, and finally use the definition (3.7)
to obtain (3.16). �
Corollary 3.2. Let F be a bijective mapping of a Banach space X onto itself, and
suppose that the inverse map F−1 : X → X is α-Hölder of exponent γ. Then both
αγ(F

−1) and ωγ(F ) are strictly positive, and precisely ωγ(F ) ≥ [αγ(F
−1)]−1.

Proof. By the assumptions and by Proposition 3.5 we have, letting I denote the
identity map in X,

1 = ω(I) = ω(F−1 ◦ F ) ≤ αγ(F
−1)ωγ(F ),

whence the result follows. �
Our next result gives in an important case an explicit lower bound for ωγ .

Theorem 3.1. Let X be a real, reflexive Banach space with dual X∗, and let
F : X → X∗ be bounded, continuous and strongly monotone in the sense that

〈F (x)− F (y), x− y〉 ≥ k‖x− y‖p (3.18)

for some k > 0, some p ∈ [2,∞[ and all x, y ∈ X. Put γ = 1/(p− 1); then

ωγ(F ) ≥ kγ . (3.19)

Proof. By the Minty-Browder Theorem (see e.g. [5], Theorem 5.16), F is bijective.
Moreover, it follows from (3.18) that

‖F (x)− F (y)‖ ≥ k‖x− y‖p−1 (3.20)

which shows that, for all u, v ∈ F (X) = X∗,

‖F−1(u)− F−1(v)‖ ≤ k−1/(p−1)‖u− v‖1/(p−1). (3.21)

Thus F−1 : X∗ → X is Hölder continuous of exponent γ. It follows by Example
3.1 that F−1 is α-Hölder of the same exponent, and (3.5) shows in particular that

αγ(F ) ≤ k−1/(p−1). (3.22)
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The conclusion now follows from Corollary 3.2. �

The restriction of p to the interval [2,∞[ stems from the fact that when 1 < p < 2
there are no maps F sasfying (3.18). For if there were, then by (3.21), F−1 would
be Hölder-continuous with exponent 1/(p − 1) > 1; so that the Fréchet derivative
of F−1 would exist and be zero; hence F−1 would be constant, which is impossible.

Finally, the results of this Section can be gathered in order to give a concrete
form of the general surjectivity Theorem 2.1.

Corollary 3.3. Let X be a real, reflexive Banach space with dual X∗, and let F,G :
X → X∗ be bounded continuous gradient operators. Suppose that the following
assumptions are satisfied:

i) 〈F (x) +G(x), x〉 ≥ c‖x‖p for some c > 0, some p ∈ [2,∞[ and all x ∈ X;
ii) F is strongly monotone in the sense of (3.18);
iii) G is compact.

Then F +G is surjective.

Proof. Apply Theorem 2.1 observing that F +G is proper on closed bounded sets,
as follows by Theorem 3.1 and Corollary 3.1. �

4. Application: the p−Laplacian

Let p ∈ [2,∞), let Ω be a bounded open subset of Rn, denote by ‖·‖p the usual

norm on the Lebesgue space Lp (Ω) and put X =
0

W 1
p (Ω) , the closure of C∞

0 (Ω)
with respect to the norm ‖·‖X given by

‖u‖X :=

(∫
Ω

|∇u|p dx
)1/p

.

Endowed with this norm X is a reflexive Banach space that is compactly embedded
in Lp (Ω) . The p−Laplacian Δp is defined on appropriate functions u by

Δpu = div
(
|∇u|p−2 ∇u

)
. (4.1)

It is naturally associated with a map T : X → X∗ given by

〈T (u), v〉X :=

∫
Ω

|∇u|p−2 ∇u · ∇vdx (u, v ∈ X) , (4.2)

where 〈w, v〉X denotes the value of w ∈ X∗ at v ∈ X. This map has various
interesting properties. First, we have

〈T (u), u〉X =

∫
Ω

|∇u|p dx = ‖u‖pX (u ∈ X) . (4.3)

Moreover, in view of the inequality

Cp |a− b|p ≤
{
|a|p−2

a− |b|p−2
b
}
· (a− b), Cp =

2

p (2p−1 − 1)
,

valid for all a, b ∈ R
n (see [14], Appendix 4), we have

〈T (u)− T (v), u− v〉X =

∫
Ω

{
|∇u|p−2 ∇u− |∇v|p−2 ∇v

}
· (∇u−∇v) dx (4.4)

≥ Cp ‖u− v‖pX .
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Thus T is strongly monotone. Moreover, use of Hölder’s inequality shows that

‖T (u)‖X∗ = sup
‖v‖X≤1

|〈T (u), v〉X | ≤ ‖u‖p−1
X , (4.5)

which implies that T is bounded. If ‖w‖X = 1, then

‖T (w)‖X∗ ≥ |〈T (w), w〉X | = ‖w‖pX = 1,

and so given any u ∈ X\{0},

‖T (u)‖X∗ = ‖u‖p−1
X

∥∥∥∥T
(

u

‖u‖X

)∥∥∥∥
X∗

≥ ‖u‖p−1
X .

Together with (4.5) this shows that

‖T (u)‖X∗ = ‖u‖p−1
X for all u ∈ X. (4.6)

In fact, T is continuous. To check this the following inequalities, valid for all
w, z ∈ R

n, will be useful:∣∣∣|z|(p−2)/2
z − |w|(p−2)/2

w
∣∣∣2 ≤ p2

4

(
|z|p−2

z − |w|p−2
w
)
· (z − w) (4.7)

and∣∣∣|z|p−2
z − |w|p−2

w
∣∣∣ ≤ (p−1)

(
|z|(p−2)/2

+ |w|(p−2)/2
) ∣∣∣|z|(p−2)/2

z − |w|(p−2)/2
w
∣∣∣ .

(4.8)
For a proof of these see [15, Section 10]. Combination of (4.7) and (4.8) shows that∣∣∣|z|p−2

z − |w|p−2
w
∣∣∣ ≤ p(p− 1)

2

(
|z|(p−2)/2

+ |w|(p−2)/2
)

×
∣∣∣|z|p−2

z − |w|p−2
w
∣∣∣1/2 |z − w|1/2 ,

so that∣∣∣|z|p−2
z − |w|p−2

w
∣∣∣ ≤ p2(p− 1)2

4

(
|z|(p−2)/2

+ |w|(p−2)/2
)2

|z − w| (4.9)

≤ p2(p− 1)2

2

(
|z|p−2

+ |w|p−2
)
|z − w| .

It follows that for all u, v ∈ X,

‖T (u)− T (v)‖X∗ ≤ sup
‖w‖X=1

∣∣∣∣
∫
Ω

(
|∇u|p−2 ∇u− |∇v|p−2 ∇v

)
· wdx

∣∣∣∣
≤

∣∣∣∣
∫
Ω

∣∣∣|∇u|p−2 ∇u− |∇v|p−2 ∇v
∣∣∣p′

dx

∣∣∣∣
1/p′

≤ p2(p− 1)2

2

∣∣∣∣
∫
Ω

(
|∇u|p−2

+ |∇v|p−2
)p′

|∇u−∇v|p′
dx

∣∣∣∣
1/p′

≤ p2(p− 1)2

2

(∫
Ω

(
|∇u|p−2

+ |∇v|p−2
)p/(p−2)

dx

)(p−2)/p

‖u− v‖X

≤ p2(p− 1)2
(∫

Ω

(|∇u|p + |∇v|p) dx
)(p−2)/p

‖u− v‖X
= p2(p− 1)2 (‖u‖pX + ‖u‖pX)

(p−2)/p ‖u− v‖X .

Standard procedures now show that T is continuous.
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To complete this catalogue of properties of T we note that T is a gradient
operator since 〈T (u), v〉X =

∫
Ω
|∇u|p−2 ∇u · ∇vdx is the directional derivative in

the direction v ∈ X of the C1−functional

E(u) =
1

p

∫
Ω

|∇u|p dx (u ∈ X).

We summarise these results in the following

Proposition 4.1. The map T : X → X∗ defined by (4.2) is a bounded, continuous,
strongly monotone gradient operator.

By an eigenvalue of the (Dirichlet) p−Laplacian is meant a real number λ such
that there is a function u �= 0 (an eigenfunction) such that

−Δpu = λ |u|p−2
u in Ω, u = 0 on ∂Ω. (4.10)

This eigenvalue problem is interpreted in the weak sense, so that one asks whether
there exist λ ∈ R and u ∈ X\{0} such that for all v ∈ X,∫

Ω

|∇u|p−2 ∇u · ∇vdx = λ

∫
Ω

|u|p−2
uvdx. (4.11)

In term of the map T this means that

〈T (u), v〉X = λ

∫
Ω

|u|p−2
uvdx. (4.12)

It is well known (see [14]) that there is a principal eigenvalue, that is, a least such
eigenvalue, denoted by λ1, and that it is positive, simple, isolated and characterised
variationally by

λ1 = inf
u∈X\{0}

‖u‖pX / ‖u‖pp . (4.13)

This characterization of λ1 and (4.3) show in particular that, for all u ∈ X,

〈T (u), u〉X = ‖u‖pX ≥ λ1 ‖u‖pp . (4.14)

We consider the problem

−Δpu− λ1 |u|p−2
u + f(x, u) = h in Ω, u = 0 on ∂Ω, (4.15)

where h ∈ Lp′(Ω) (p′ = p/(p − 1)) and f : Ω × R → R is continuous and satisfies
the conditions

|f(x, s)| ≤ a |s|p−1
+ b (4.16)

and
sf(x, s) ≥ m |s|p (4.17)

for all (x, s) ∈ Ω× R. Here a and b are non-negative constants and m is a positive
constant; all of these are independent of (x, s) . Problem (4.15) too is interpreted in
the weak sense, so that we ask whether there exists u ∈ X such that for all v ∈ X,∫

Ω

|∇u|p−2 ∇u · ∇vdx− λ1

∫
Ω

|u|p−2
uvdx+

∫
Ω

f(x, u)vdx =

∫
Ω

hvdx. (4.18)

Such a problem, with f = 0, was discussed by Drábek and Holubová in [8].
When 1 < p < 2 they gave conditions on h under which (4.18) has no solutions,
and other conditions on h leading to the existence of at least one solution; they
expect that similar results can be obtained when 2 < p < ∞. Here we show that
when p ∈ [2,∞), there are general conditions on a non-zero f sufficient to ensure
that there is a solution of (4.18) for all h ∈ Lp′ (Ω) .
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As ∣∣∣∣
∫
Ω

|u|p−2
uvdx

∣∣∣∣ ≤ ‖v‖p ‖u‖p/p
′

p = ‖v‖p ‖u‖p−1
p , (4.19)

it follows that the map v �−→ ∫
Ω
|u|p−2

uvdx belongs to (Lp (Ω))
∗
↪→↪→ X∗; thus

we have a compact map K : X → X∗ defined by

〈K(u), v〉X =

∫
Ω

|u|p−2
uvdx. (4.20)

By (4.19) and by Poincaré’s inequality we have, for some k > 0,

‖K(u)‖X∗ ≤ k ‖u‖p−1
X (u ∈ X) ,

so that K is bounded. That it is also continuous follows from an argument similar
to that used to prove continuity of T and involving (4.9). Consideration of the
functional

u �−→ 1

p

∫
Ω

|u|p dx
shows that K is a gradient operator.

Next we consider the term
∫
Ω
f(x, u)vdx in (4.18). Using (4.16) we see that∣∣∣∣

∫
Ω

f(x, u)vdx

∣∣∣∣ ≤ ‖v‖p ‖f(·, u)‖p′ ≤ ‖v‖p
{
a ‖u‖p−1

p + ‖b‖p′

}
,

and so a bounded, compact map N : X → X∗ may be defined by

〈N(u), v〉X =

∫
Ω

f(x, u)vdx. (4.21)

In view of (4.17),

〈N(u), u〉X ≥ m ‖u‖pp . (4.22)

The map N is of Nemytskii type and from the familiar properties of such operators
(see, for example, [9], p. 127) we see that N is continuous. Moreover, it follows by
arguments entirely similar to those used for the case p = 2 in [17], Appendix B,
that N is a gradient operator with potential

I(u) =

∫
Ω

P (x, u) dx, u ∈ X

where P : Ω× R → R is defined by

P (x, z) =

∫ z

0

f(x, t) dt.

We summarise these facts on the following

Proposition 4.2. The maps K,N : X → X∗ defined by (4.20), (4.21) respectively
are bounded, continuous, compact gradient operators.

The problem (4.18) is equivalent to the operator equation

T (u)− λ1K(u) +N(u) = ĥ, (4.23)

where ĥ ∈ X∗ is defined by〈
ĥ, v

〉
X

=

∫
Ω

hvdx (v ∈ X) .
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Put G = −λ1K+N. Then use of (4.3), (4.20) and (4.22) shows that, for all u ∈ X,

〈T (u) +G(u), u〉X ≥ ‖u‖pX + (m− λ1) ‖u‖pp . (4.24)

Thus if m ≥ λ1,

〈T (u) +G(u), u〉X ≥ ‖u‖pX (u ∈ X). (4.25)

If 0 < m < λ1, using (4.14) we see that

(m− λ1) ‖u‖pp ≥
(
m

λ1
− 1

)
‖u‖pX ,

and using this in (4.24) yields

〈F (u) +G(u), u〉X ≥ m

λ1
‖u‖pX (u ∈ X).

Corollary 3.3 can now be applied to give the following result.

Theorem 4.1. Suppose that f is continuous and satisfies (4.16) and (4.17) with
m > 0. Then given any h ∈ Lp′(Ω) (p′ = p/(p− 1)), problem (4.18) has a solution
u ∈ X.
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[12] S. Fuč́ık and A. Kufner, Nonlinear differential equations, Elsevier, Amsterdam-Oxford-New

York, 1980.
[13] M. Furi, M. Martelli and A. Vignoli, Contributions to the spectral theory for nonlinear oper-

ators in Banach spaces, Ann. Mat. Pura Appl. 118 (1978), 229-294.

[14] P. Lindqvist, On the equation div
(
|∇u|p−2 ∇u

)
+ λ |u|p−2 u = 0, Proc. American Math.

Soc. 109 (1990), 157-164.
[15] P. Lindqvist, Notes on the p−Laplace equation, Univ. of Jyväskylä, Lecture Notes, 2006.
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