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1. Introduction

Solutions of ordinary differential equations that are meromorphic in the complex plane are of great 
theoretical and practical importance. In many cases physically relevant solutions belong to the class of 
meromorphic functions. Powerful tools of the Nevanlinna theory can be used to study existence and prop-
erties of meromorphic solutions [3,4,6–8,14,15,17,18,20,23,25].

Let us consider an Nth-order autonomous algebraic ordinary differential equation

∑
j

αjw
j0

{
dw

dz

}j1

. . .

{
dNw

dzN

}jN

= 0, (1.1)

where j = (j0, . . . , jN ) is a multi-index. The number j0+j1+. . .+jN is called the degree of the corresponding 
monomial. A monomial is said to be dominant if it has the highest degree among other monomials of the 
differential equation. A. Eremenko studied autonomous algebraic ordinary differential equation with one 
dominant monomial and finite number of admissible Laurent series with a pole at the origin. A. Eremenko 
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proved that transcendental meromorphic solutions of such equations are either elliptic or rational in exp(az), 
a ∈ C [14]. Further, the general structure of these solutions was clarified in [10,11]. In addition a method, 
which can be used to find these solutions in explicit form, was given in articles [10,11], see also [12,13].

In this article we study algebraic ordinary differential equations possessing two dominant monomials 
forming the following balance

λwk{wz − μw} = 0, λ �= 0, μ �= 0, k ∈ N. (1.2)

Our results are presented in the following theorems.

Theorem 1.1. Transcendental meromorphic functions with finite number of poles that satisfy equation (1.1)
with two dominant monomials given by (1.2) are entire and take the form

w(z) = h0 + h1 exp [μz] , (1.3)

where h0 and h1 are constants.

Theorem 1.2. Suppose that there exists at most M ∈ N pairwise distinct Laurent series

w(j)(z) =
pj∑

n=1

c
(j)
−n

zn
+

∞∑
n=0

c(j)n zn, pj ∈ N, j = 1, . . . ,M (1.4)

satisfying equation (1.1) with two dominant monomials given by (1.2). Then transcendental meromorphic 
functions with infinite number of poles that solve this equation are either elliptic or simply periodic of the 
form

w(z) = b

⎧⎨
⎩

M∑
j=1

εj

pj∑
n=1

(−1)n−1c
(j)
−n

(n− 1)!
dn−1

dzn−1

⎫⎬
⎭ cot (b{z − zj}) + h0 + h1 exp [μz] , (1.5)

where z1, . . ., zM are distinct poles lying in a period strip, εj = 1 if w(z) involves poles characterized by 
the series w(j)(z) or εj = 0 otherwise, h0 and h1 are constant, and 2b = qμi, q ∈ Q/{0}, q > 0 whenever 
h1 �= 0.

If there exists infinite number of Laurent series of the form (1.4) satisfying equation (1.1) with two 
dominant monomials, then our results can be used to classify meromorphic simply periodic solutions with 
finite number of poles in a period strip. The following theorem is valid.

Theorem 1.3. Meromorphic simply periodic functions with finite number of poles in a period strip that satisfy 
equation (1.1) with two dominant monomials given by (1.2) are of the form (1.5).

Theorems 1.1 and 1.2 establish the general structure of transcendental meromorphic solutions. Another 
important problem is to find these solutions in explicit form. In this article we describe such a method. In 
fact we generalize the method of articles [10,11]. The case of elliptic solutions was considered in detail in 
[6,12,13].

This article is organized as follows. In section 2 we use the Nevanlinna theory to prove our results and 
in section 3 we describe a method, which allows one to construct solutions in question explicitly. Section 4
is devoted to an example: we study two third-order ordinary differential equations related to the Lorenz 
system and present the general structure of meromorphic simply periodic solutions with finite number of 
poles in a period strip. We find explicitly several families of solutions. These solutions of the Lorenz system 
seem to be new.
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2. Proof of main results

In what follows we shall use some basic results of the Nevanlinna theory. By T (r, f) we denote the 
Nevanlinna characteristic function of a meromorphic function f(z). We recall that T (r, f) = m(r, f) +
N(r, f), where m(r, f) is the proximity function and N(r, f) is the integrated counting function. For more 
details on the Nevanlinna theory see, for example [18,20].

Further we shall need the following lemmas.

Lemma 2.1. Suppose Laurent series w(j)(z), see (1.4), with uniquely determined coefficients satisfies an 
algebraic ordinary differential equation; then this equation admits at most one meromorphic solution having 
a pole z = 0 with Laurent series w(j)(z).

This lemma can be easily proved using properties of Laurent series and uniqueness of analytic continua-
tion.

Lemma 2.2 (Clunie). Let f(z) be a transcendental meromorphic function satisfying the following equation

fkP (z, f, fz, . . .) = Q(z, f, fz, . . .), (2.1)

where P , Q are polynomials in f(z) and its derivatives with rational coefficients. If the degree of Q is at 
most k, then

m(r, P (z, f, fz, . . .)) = O(log{rT (r, f)}), r → ∞ (2.2)

possibly outside a set of finite linear measure.

The proof of this lemma is given in [4,18,20]. Recall that the order � of a meromorphic function f(z) is 
defined as

� = lim
r→∞

log T (r, f)
log r . (2.3)

Let us take an autonomous algebraic ordinary differential equation (1.1) with two dominant monomials 
(1.2). We can present such an equation in the form

wk{wz − μw} = Q(w,wz, . . .), μ �= 0, k ∈ N, (2.4)

where Q is a polynomial of its arguments with degree at most k. While proving Theorems 1.1, 1.2 we suppose 
that all asymptotic relations are valid for sufficiently large values of r possibly outside an exceptional set as 
that arising in Lemma 2.2.

Proof of Theorem 1.1. Let w(z) be a transcendental meromorphic solution of equation (2.4). In addition 
let us suppose that w(z) possesses finite number of poles. Hence we can present w(z) in the form

w(z) = W (z) + R1(z), (2.5)

where W (z) is a transcendental entire function and R1(z) is a rational function. Applying Clunie Lemma 2.2
to equation (2.4) yields m(r, wz − μw) = O(log {rT (r, w)}). Since the function w(z) has finite num-
ber of poles, we see that the integrated counting function is N(r, w) = O(log r). As a result we obtain 
N(r, wz−μw) = O(log r). Further, we can estimate the Nevanlinna characteristic function: T (r, wz−μw) =
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O(log {rT (r, w)}). It follows from this relation that w(z) is of finite order and T (r, wz − μw) = O(log r). 
Consequently the combination wz − μw is a rational function. Let us denote this function by R2(z) and 
consider the equation wz − μw = R2(z). Substituting (2.5) into this equation yields Wz − μW = S1(z), 
where S1(z) = R2 +μR1−R1,z. We claim that the function S1(z) is a polynomial in z. Indeed, assuming the 
contrary and performing the singularity analysis near a pole z0 ∈ C of S1(z) in equation Wz −μW = S1(z), 
we obtain that z0 is a pole or a branch point of W (z). But W (z) is entire. It is a contradiction.

The general solution of equation Wz − μW = S1(z) takes the form

W (z) = h1 exp [μz] + S2(z). (2.6)

In this expression S2(z) is a polynomial in z, h1 is an arbitrary constant. This yields the general expression 
for transcendental meromorphic solutions with finite number of poles:

w(z) = h1 exp [μz] + R3(z) (2.7)

Here R3(z) = R1(z) + S2(z) is a rational function. If h1 = 0, then w(z) is not transcendental. Thus we set 
h1 �= 0. Substituting expression (2.7) into equation (2.4) and setting to zero the coefficient at exp [kμz], we 
get R3,z − μR3 + A = 0, where A is a constant. Any rational solution of such an equation is a constant. 
This completes the proof. �

Now let us proceed to Theorem 1.2.

Proof of Theorem 1.2. Let w(z) be a transcendental meromorphic function with infinite number of poles 
that solves equation (2.4). Since w(z) possesses infinite number of poles, we see that there are distinct poles 
z1 and z2 such that the functions w(z + z1), w(z + z2) have coinciding Laurent series in a neighborhood of 
the origin. In addition these functions solve equation (2.4) since the latter is autonomous. From Lemma 2.1
it follows that w(z + z1) = w(z + z2). Further we get w(z) = w(z + z2 − z1). Consequently, w(z) is periodic. 
A periodic meromorphic function is either elliptic or simply periodic. If w(z) is elliptic, then the theorem is 
proved. Let us suppose that w(z) is simply periodic. Arguing as above, we see that w(z) cannot have more 
than M poles in a period strip.

The Laurent series in a neighborhood of the origin that satisfy equation (2.4) are given by (1.4). From 
equality

π

T
cot

(πz
T

)
= 1

z
+

∑
n∈Z, n �=0

[
1

z − nT
+ 1

nT

]
(2.8)

with T being a principle period, we see that w(z) can be presented in the form

w(z) = W (z) + R1(z),

R1(z) = b

⎧⎨
⎩

M∑
j=1

εj

pj∑
n=1

(−1)n−1c
(j)
−n

(n− 1)!
dn−1

dzn−1

⎫⎬
⎭ cot (b{z − zj}) , b = π

T
,

(2.9)

where z1, . . ., zM are distinct poles lying in a period strip, εj = 1 if w(z) involves poles characterized by 
the series w(j)(z) or εj = 0 otherwise, and W (z) is a periodic entire function.

Applying Clunie Lemma 2.2 to equation (2.4) yields m(r, wz − μw) = O(log {rT (r, w)}). Integrated 
counting function in this case is N(r, w) = O(r) and we obtain N(r, wz − μw) = O(r). Thus we conclude 
that w(z) is of finite order and T (r, wz − μw) = O(r).
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As a result there exists a ∈ C such that the function wz − μw is rational in exp(az). Let us consider 
the following first-order ordinary differential equation wz −μw = R2(z), where R2(z) is rational in exp(az). 
Substituting expression (2.9) into this equation, we find the ordinary differential equation for transcendental 
entire function W (z): Wz − μW = S(z), where S(z) = R2 − R1,z + μR1. We claim that the function S(z)
does not have poles. Indeed, assuming the contrary and performing the singularity analysis near a pole 
z0 ∈ C of S(z) in equation Wz −μW = S(z), we get that z0 is a pole or a branch point of W (z). But W (z)
is entire. It is a contradiction. Consequently, the function S(z) reads as S(z) = S1(z) + S2(z), where S1(z)
is a polynomial in exp(az) and S2(z) is a polynomial in exp(−az). The general periodic solution of equation 
Wz − μW = S1(z) + S2(z) is

W (z) = h1 exp [μz] + Q1(z) + Q2(z), (2.10)

where h1 is an arbitrary constant and Q1(z), Q2(z) are polynomials in exp(az), exp(−az) accordingly. 
Substituting relation (2.10) into expression (2.9), we obtain

w(z) = b

⎧⎨
⎩

M∑
j=1

εj

pj∑
n=1

(−1)n−1c
(j)
−n

(n− 1)!
dn−1

dzn−1

⎫⎬
⎭ cot (b{z − zj}) + h1 exp [μz]

+Q1(z) + Q2(z).

(2.11)

Let us note that the parameters a, b, and μ are not independent because function (2.11) is meromorphic 
and simply periodic. There exists a principle period τ of the function w(z) and all these parameters are 
expressible via τ .

Further let us consider the following asymptotic representation

w(z) = α1 exp [A1z] + α0 exp [A0z] + (lower order terms),

Re {A1z} > Re {A0z}, z → ∞,
(2.12)

where α1 �= 0, α0, A1, A0 are constants and z tends to infinity along such a pass that Re {A1z} > 0. 
Substituting this expression into equation (2.4) and setting to zero coefficients at exp[A1(k+1)z], exp[(A1k+
A2)z] yields A1 = μ, A0 = 0.

Combining expressions (2.11) and (2.12), we obtain

w(z) = b

⎧⎨
⎩

M∑
j=1

εj

pj∑
n=1

(−1)n−1c
(j)
−n

(n− 1)!
dn−1

dzn−1

⎫⎬
⎭ cot (b{z − zj}) + h1 exp [μz] + h0. (2.13)

Concluding the proof it remains to mention that the functions exp [μz], cot [b {z − zj}] should have the 
same principal period. This gives 2b = qμi, q ∈ Q/{0}, q > 0 whenever h1 �= 0. �

If equation (2.4) admits Laurent series in a neighborhood of the origin such that one or several coefficients 
are arbitrary, then there may exist meromorphic solutions with infinite number of poles that have more 
complicated structure. However if we require that the meromorphic solution w(z) is simply periodic with 
finite number of poles in a period strip, then as a consequence of Theorem 1.2 we obtain Theorem 1.3.

3. Method applied

To begin this section let us mention that solutions of Theorem 1.1 can be obtained explicitly by substitut-
ing relation (1.3) into the original equation and setting to zero coefficients at exp[mμz], m = 0, . . . , k. If this 
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system of algebraic equations is inconsistent, then equation (2.4) does not have transcendental meromorphic 
solutions with finite number of poles.

A method of finding solutions of Theorem 1.2 in explicit form is based on the fact that the Laurent series 
in a neighborhood of poles for solutions (1.5) and the corresponding Laurent series satisfying the original 
equation should coincide. The case of elliptic solutions and simply periodic with h1 = 0 was studied in detail 
in articles [6,10–13]. In what follows we consider the case of simply periodic solutions (1.5) with h1 �= 0. 
The following lemma is valid.

Lemma 3.1. Let z tend to infinity along such a pass that Re {μz} > 0, then solutions (1.5) can be presented 
asymptotically as follows

w(z) = h1 exp [μz] + h0 + qμ

2

M∑
j=1

εjc
(j)
−1 + o(1), Re {μz} > 0, z → ∞. (3.1)

Proof. We begin the proof by substituting 2b = qμi, q ∈ Q/{0}, q > 0 into the relation

cot [b {z − zj}] = {1 + exp[−2ib(z − zj)]} i
1 − exp[−2ib(z − zj)]

(3.2)

The result is

cot [b {z − zj}] = {1 + exp[qμ(z − zj)]} i
1 − exp[qμ(z − zj)]

. (3.3)

Calculating the limit z → ∞, Re {μz} > 0 yields

cot [b {z − zj}] = −i + o(1), Re {μz} > 0, z → ∞. (3.4)

Further, using relations

d

dz
cot [b {z − zj}] = −b

{
1 + cot2 [b {z − zj}]

}
,

d2

dz2 cot [b {z − zj}] = −2b cot [b {z − zj}]
d

dz
cot [b {z − zj}] ,

. . .

(3.5)

we obtain by induction the following expressions

dn

dzn
cot [b {z − zj}] = o(1), Re {μz} > 0, z → ∞, n ∈ N. (3.6)

We complete the proof by substituting these asymptotic expressions into (1.5). Note that a1,2 = ±i are 
Picard exceptional values of the meromorphic function cot bz. �

Suppose we wish to find solutions (1.5) with h1 �= 0 of equation (2.4). Our algorithm can be subdivided 
into several steps.

Step 1. Perform local singularity analysis for solutions of equation (2.4). Construct all the Laurent series 
of the form (1.4).

Step 2. Write down general expressions (1.5).
Step 3. For the solutions of step 2 find the Laurent series in a neighborhood of the poles.
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Step 4. Substitute asymptotic representation

w(z) = h1 exp [μz] + α0 + o(1), Re {μz} > 0, z → ∞, (3.7)

into the original equation and find the constant α0 by setting to zero the coefficient at exp[kμz]. From 
Lemma 3.1 it follows that the following relation is valid

α0 = h0 + qμ

2

M∑
j=1

εjc
(j)
−1. (3.8)

Step 5. Substitute all those Laurent series found at step 3 that are captured by a supposed solution into 
the original equation and set to zero coefficients at negative and zero powers of the expression {z − zj}. At 
this step it is convenient to introduce notation

Aj,l = b cot(b{zj − zl}), j > l; Bj = exp[μzj ], 1 ≤ j, l ≤ M. (3.9)

Step 6. Solve the algebraic system obtained at step 5 and equation (3.8). It is necessary to take into 
account that {Aj,l, Bj} are not independent and b = (qμi)/2.

Remark 1. Without loss of generality it can be assumed that z1 = 0. Under such an assumption the addition 
formula

cot(s− t) = cot s cot t + 1
cot t− cot s

(3.10)

allows us to rewrite solutions (1.5) as

w(z) = h1 exp [μz] + h0 + bε1

{
p1∑

n=1

(−1)n−1c
(j)
−n

(n− 1)!
dn−1

dzn−1

}
cot(bz)

+b

⎧⎨
⎩

M∑
j=2

εj

pj∑
n=1

(−1)n−1c
(j)
−n

(n− 1)!
dn−1

dzn−1

⎫⎬
⎭ {Aj,1 cot(bz) + b}

{Aj,1 − b cot(bz)} , b = qμi

2 .

(3.11)

Remark 2. As soon as the simply meromorphic solution w(z) is found one should recall that in fact there 
exists the family of solutions w(z − z0) with arbitrary z0.

In the next section we shall consider an example.

4. Lorenz model

The famous Lorenz model is given by the following system of polynomial ordinary differential equations 
[22]

⎧⎪⎪⎨
⎪⎪⎩

xt = σ(y − x),

yt = rx− y − zx,

zt = xy − βz.

(4.1)

In this article we consider the Lorenz system in the framework of analytic theory of differential equations. 
The time t and the parameters (β, σ, r) are supposed to be complex variables. In their turn the functions 
x(t), y(t), z(t) are supposed to be complex-valued.
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The Lorenz system becomes linear if we set σ = 0. The general solutions of the Lorenz system with σ �= 0
are known if the parameters (β, σ, r) take the following values [24]:

(β, σ, r) =
(

0, 1
3 , r

)
, (β, σ, r) =

(
1, 1

2 , 0
)
, (β, σ, r) =

(
2, 1, 1

9

)
. (4.2)

It is a remarkable fact that in all these cases the Lorenz system passes the Painlevé test. The general 
solutions of the Lorenz system with the parameters given by (4.2) belong to the class of simply periodic 
meromorphic functions. Further, a natural question arises: can there exist periodic meromorphic solutions 
at other values of the parameters? Our aim is to obtain new families of exact simply periodic meromorphic 
solutions.

The Lorenz system possesses Darboux polynomials at certain values of the parameters. The Darboux 
polynomials produce time-dependent first integrals. The final classification of Darboux polynomials was 
obtained by Llibre and Zhang [21].

In what follows we suppose that the parameters (β, σ, r) do not take values that make the Lorenz system 
integrable. In particular, we set σ �= 0. Solving the first and the second equations of the system with respect 
to y(t) and z(t) yields

y(t) = xt

σ
+ x, z(t) = −xtt

σx
− (σ + 1)xt

σx
+ r − 1. (4.3)

If x(t) is a simply periodic meromorphic function, then so do y(t) and z(t). Substituting these relations into 
the third equation of the system, we get the following third-order ordinary differential equation

xxttt − {xt − (1 + β + σ)x}xtt − (σ + 1)x2
t + x{x2 + β(σ + 1)}xt

+σx4 + βσ(1 − r)x2 = 0
(4.4)

Let us note that introducing the new function w(t) = x2(t) we obtain another algebraic third-order ordinary 
differential equation

w2wttt − w{2wt − (1 + β + σ)w}wtt + w3
t −

(
1 + σ + β

2

)
ww2

t

+w2{w + β(σ + 1)}wt + 2σw4 + 2βσ(1 − r)w3 = 0.
(4.5)

Our aim is to investigate the structure of simply periodic meromorphic functions with finite number of poles 
in a period strip that satisfy equation (4.4). It turns out that it is convenient to use equation (4.5) instead 
of equation (4.4) since the former possesses only one family of Laurent series in a neighborhood of a pole.

We use the Painlevé methods to obtain Laurent series in a neighborhood of a pole that satisfy equations 
(4.4), (4.5). For more details on the Painlevé methods, related algorithms and examples see [1,2,5,9,16]. 
These equations are autonomous, consequently, without loss of generality we shall construct the Laurent 
series in a neighborhood of the origin. Let us begin with equation (4.5). The dominant behavior and the 
Fuchs indices are the following

w(t) = − 4
t2

; j = −1, 2, 4. (4.6)

The Laurent series of the form

w(t) = − 4
t2

+ 4(1 − 3σ + 2β)
3t +

∞∑
ckt

k−2, 0 < |t| < δ1 (4.7)

k=2
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exists provided that one of the following conditions is valid: β = 1 − 3σ, β = 2σ. This series contains two 
arbitrary coefficients c2 and c4 in integrable cases. In other cases the coefficient c2 is no longer arbitrary. 
Consequently we see that equation (4.5) necessarily possess meromorphic solutions with at least one pole 
only under one of the following restrictions: β = 1 − 3σ, β = 2σ.

Note that another dominant balance w2wttt − 2wwtwtt + w3
t = 0 gives the asymptotic behavior of the 

form w(t) = a0 or w(t) = a0(t − t0)2 with an arbitrary coefficient a0. These solutions cannot generate 
Laurent series in a neighborhood of a pole t0.

Similarly, we obtain two families of Laurent series in a neighborhood of the origin that satisfy equation 
(4.4) with β = 1 − 3σ or β = 2σ. They are the following

x(1,2)(t) = ±2i
t

+
∞∑
k=1

c
(1,2)
k tk−1, 0 < |t| < δ

(1,2)
2 . (4.8)

The coefficients c(1,2)4 are arbitrary, while the coefficients c(1,2)2 are arbitrary only in integrable cases.
Again the dominant balance xxttt − xtxtt = 0 does not give solutions that generate Laurent series in a 

neighborhood of poles lying in C.
Equations (4.4), (4.5) possess two dominant monomials forming the following ordinary differential equa-

tions

x3(xt + σx) = 0;

w3(wt + 2σw) = 0.
(4.9)

Using results of sections 1 and 3, we get the following theorems.

Theorem 4.1. Transcendental meromorphic solutions of equation (4.5) possessing finite number of poles are 
of the form

w(t) = h1 exp(−2σt), βr = 0, (4.10)

where h1 is an arbitrary constant.

Theorem 4.2. Simply periodic non-entire meromorphic solutions of equation (4.5) possessing finite number 
of poles in a period strip are of the form

w(t) = −4b
M∑

m=1

{
b cot2 (b{t− tm}) − (1 − 3σ + 2β)

3 cot (b{t− tm})
}

+h0 − 4b2M + h1 exp(−2σt), M ∈ N,

(4.11)

where t1, . . ., tM are distinct poles lying in a period strip and b = −iσq, q ∈ Q/{0}, q > 0 whenever h1 �= 0.

Theorem 4.3. Transcendental meromorphic solutions of equation (4.4) possessing finite number of poles are 
of the form

w(t) = p1 exp(−σt), βr = 0, (4.12)

where p1 is an arbitrary constant.
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Theorem 4.4. Simply periodic non-entire meromorphic solutions of equation (4.4) possessing finite number 
of poles in a period strip are of the form

x(t) = 2ib
{

M1∑
m=1

cot
(
b
{
t− t(1)m

})
−

M2∑
m=1

cot
(
b
{
t− t(2)m

})}

+p0 + p1 exp(−σt), M1,M2 ∈ N0, M1 + M2 > 0,

(4.13)

where t(j)1 , . . ., t(j)Mj
, j = 1, 2 are distinct poles lying in a period strip and 2b = −iσs, s ∈ Q/{0}, s > 0

whenever p1 �= 0.

Let us construct simply periodic solutions (4.11) with M = 1 in explicit form. We shall use the method 
of section 3. The case h1 = 0 was studied in [19]. Consequently, we set h1 �= 0. Relation (3.8) takes the form

h0 −
4(1 − 3σ + 2βb)σq

3 = βr. (4.14)

The Laurent series expansion of function (4.11) with M = 1 and t1 = 0 in a neighborhood of the origin is 
the following

w(t) = − 4
t2

+ c1
t

+ h0 + h1 + 8b2

3 −
(

2h1σ + c1b
2

3

)
t +

(
2h1σ

2 − 4b4

15

)
t2

−
(

4h1σ
3

3 + c1b
4

45

)
t3 +

(
2h1σ

4

3 − 8b6

189

)
t4 + . . . ,

(4.15)

where we use notation

c1 = 4(1 − 3σ + 2β)
3 . (4.16)

Substituting series (4.15) into equation (4.5) and setting to zero the coefficients at negative and zero 
powers of t, we obtain the system of eight algebraic equations. One of these equation gives: β = 1 − 3σ or 
β = 2σ. Further, we combine this system with relation (4.14). Solving obtained equations, we find two simply 
periodic solutions of the form (4.11). These solutions exist under certain conditions on the parameters of 
the original equation. Our results are the following

(I) : w(t) = − 4
121

(
coth2

{
t

11

}
− 4 coth

{
t

11

}
+ 3 + 4 exp

[
− 2t

11

])

(II) : w(t) = − 4
49

(
coth2

{
t

7

}
− 4 coth

{
t

7

}
+ 3 + 4 exp

[
−2t

7

]) (4.17)

The first solution corresponds to the case β = 2σ, the second solution solves the original equation whenever 
β = 1 − 3σ. For all these solutions the parameter q equals 1. Other parameters are given by

(I) : (β, σ, r) = 1
11 (2, 1,−16) ;

(II) : (β, σ, r) = 1 (4, 1,−8) .
(4.18)
7
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Finally, let us recall the relation w(t) = x2(t) and find solutions of equation (4.4). The result is

(I) : x(t) = ± i

11

(
coth

{
t

22

}
− coth−1

{
t

22

}
− 4 exp

[
− t

11

])

(II) : x(t) = ± i

7

(
coth

{
t

14

}
− coth−1

{
t

14

}
− 4 exp

[
− t

7

]) (4.19)

Simply periodic solutions (4.19) possess two distinct poles in a period strip. They can be presented in the 
form

(I) : x(t) = ± i

11

(
coth

{
t

22

}
− coth

{
t

22 − πi

2

}
− 4 exp

[
− t

11

])

(II) : x(t) = ± i

7

(
coth

{
t

14

}
− coth

{
t

14 − πi

2

}
− 4 exp

[
− t

7

]) (4.20)

Recall that we omit the arbitrary constant t0 resulting from the invariance of equations (4.4), (4.5) under 
the substitution t �→ t − t0. Let us also mention that the Lorenz system has no Darboux polynomials in the 
case β = 1 − 3σ [21]. Solutions (4.20) seem to be new.

5. Conclusion

In this article we have found the general structure of transcendental meromorphic solutions for a wide class 
of autonomous nonlinear ordinary differential equations with two dominant monomials. We have described 
an algebro-geometric method, which can be used to obtain these solutions in explicit form. As an example 
we have studied third-order ordinary differential equations (4.4) and (4.5) related to the Lorenz model. We 
have derived new simply periodic meromorphic solutions of these equations. Let us note that these solutions 
can not be found with the help of the tanh-function method and related methods.
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