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We construct and investigate an adaptive variance reduction framework in which 
both importance sampling and control variates are employed. The three lines (Monte 
Carlo averaging and two variance reduction parameter search lines) run in parallel 
on a common sequence of uniform random vectors on the unit hypercube. Given that 
these two variance reduction techniques are effective often in a complementary way, 
their combined application is well expected to widen the applicability of adaptive 
variance reduction. We derive convergence rates of the theoretical estimator variance 
towards its minimum as a fixed computing budget increases, when stochastic 
approximation runs with optimal constant learning rates. We derive sufficient 
conditions for the proposed algorithm to attain the minimal estimator variance 
in the limit, by stochastic approximation with decreasing learning rates or by 
sample average approximation, when computing budget is unlimitedly available. 
Numerical results support our theoretical findings and illustrate the effectiveness of 
the proposed framework.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

The adaptive Monte Carlo variance reduction method aims to avoid the need for frequent recalibration 
of the parameters of the variance reduction techniques due to small changes in the experimental conditions 
governing system performance, by concurrently running the primary Monte Carlo averaging and the asso-
ciated parameter search lines for the variance reduction techniques. The concept of adaptive Monte Carlo 
variance reduction methods and their practical use have been investigated for a long time [1,5,7,8,12,13], to 
mention just a few. More recently, the adaptive importance sampling framework is generalized [10], where 
both target and proposal laws are the uniform law on the unit hypercube. The parameter search line is 
further parametrized through changes of measures so as to accelerate the parameter search line, performed 
with either the sample average approximation [9] or the stochastic approximation [11].
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The aim of the present paper is twofold. We first improve the existing adaptive importance sampling 
framework [9–11] by incorporating control variates into the framework at little additional computing cost. We 
then provide a convergence analysis of the combined adaptive framework of importance sampling and control 
variates when stochastic approximation runs with constant learning rates and a finite computing budget, 
through much more involved derivations than the preceding work [11], due to the presence of control variates. 
We also derive sufficient conditions for the combined framework to converge to the minimal estimator 
variance by stochastic approximation with decreasing learning rates or sample average approximation, when 
computing budget can be progressively increased.

The control variates method is, on the one hand, effective in a variety of forms [4,15,16] particularly when 
its variates have a high correlation, positive or negative, with the estimator, which is when the importance 
sampling technique is often not very effective. On the other hand, importance sampling is effective, for 
instance, when the estimator returns zero-valued realizations with a very high probability, which is when 
the control variates method is of almost no use due to a nearly zero correlation between the variates and 
the estimator. Experientially speaking, it is rather rare that the estimator variance cannot be reduced 
considerably via any one of those variance reduction techniques. In this sense, the combined application 
of importance sampling and control variates techniques is naturally expected to be effective at least in a 
complementary way, which helps improve the applicability of the proposed adaptive Monte Carlo variance 
reduction method to a large extent.

The ultimate goal in improving the theory and implementation of Monte Carlo methods is an increase, 
with minimal additional computing effort, in the precision of the evaluation of the integral

μ :=
∫

(0,1)d

Ψ (u) du = E[Ψ(U)], (1.1)

where Ψ is a function mapping from the unit hypercube (0, 1)d to R, and where U is a uniform random 
vector on (0, 1)d. Focusing on the uniform law is not a restriction but a generalization, in the sense that 
the expected value of a functional of a multivariate random vector can be reformulated with the standard 
uniform random vector on the unit hypercube in the same dimension with a suitable change of variables or 
the principle of inverse transform sampling.

We summarize the direction and objectives of the present work in brief without completely defining some 
notation, so that the numerical results (Section 5) are fairly accessible without going through technical details 
on the problem formulation (Section 2) and the algorithm (Section 3). First, by applying the concept of 
bypass distribution G(z; θ) with density g(z; θ) for importance sampling [10] and then incorporating control 
variates parameterized by ξ, we obtain the following expression (Section 2):

μ =
∫

(0,1)d

Ψ (u) du =
∫

(0,1)d

[
g(G−1(u;θ);θ0)
g(G−1(u;θ);θ) Ψ(G(G−1(u;θ);θ0)) + 〈ξ,u − 1d/2〉

]
du, (1.2)

where we may, yet do not, adopt the other way around (that is, control variates first and then importance 
sampling) for efficient computation (Section B.1). The estimator variance of (1.2) can be decomposed into 
three components as follows:

∫
(0,1)d

[
g(G−1(u;θ);θ0)
g(G−1(u;θ);θ) Ψ(G(G−1(u;θ);θ0)) + 〈ξ,u − 1d/2〉 − μ

]2

du = V (θ) + W (θ, ξ) − μ2, (1.3)

where the integrals (1.2) and (1.3) are taken with respect to the Lebesgue measure on the unit hypercube, 
irrespective of the parameters θ and ξ. We remark that the existing importance sampling framework [9–11]
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can be recovered in full by suppressing control variates (ξ = 0d) in (1.2) and (1.3). The first term V (θ)
represents the estimator second moment when importance sampling θ is applied alone, and the second term 
W (θ, ξ) represents a possible further reduction of the estimator variance when both importance sampling 
θ and control variates ξ are jointly applied. Due to the convexity of V (θ) and the lack of such strict convex 
structure in the sum V (θ) + W (θ, ξ), it would be most natural to first find the point θ∗ to minimize the 
term V (θ), without interference from the parameter ξ, and then look for the point ξ∗ to minimize the 
second term W (θ∗, ξ), rather than jointly searching two parameters (θ, ξ).

We construct and investigate algorithms to estimate the value μ of the integral (1.1) with a smaller 
estimator variance V (θ) + W (θ, ξ) − μ2 on the basis of the integral representation (1.3) by adaptively 
searching the parameters (θ, ξ). First, we built the following algorithm by successively averaged stochastic 
approximation (Section 3.1):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ(k) = k−1[
∑k∧τn

l=1 R(Ul;θ0) +
∑k

l=τn+1 R(Ul;θ
l−1
τn , ξ

l−1
τn )],

θk =
∏

Tk
[θk−1 − γk−1∇θN(Uk;θk−1,λ(k−1)∧τn)],

θ
k

τn =
∑k

l=τn
γl∑k

t=τn
γt
θl,

ξk =
∏

Xk
[ξk−1 − εk−1∇ξS(Uk;θk−1, ξk−1,λ(k−1)∧τn)],

ξ
k

τn =
∑k

l=τn
εl∑k

t=τn
εt
ξl,

(1.4)

where 
∏

D[x] denotes the metric projection of x onto the compact set D. (We will define the functions 
R, N and S in Section 2, and the domains {Tk}k∈N0 and {Xk}k∈N0 , the parameter λ and the stopping 
time τn in Section 3.) We remark that only one common sequence {Uk}k∈N of uniform random vectors is 
required throughout the implementation of the algorithm (1.4), enabling one to run all the five lines of (1.4)
concurrently, rather than sequentially. In this line of research [1,5,7,8,12–14], such a parallelized run is said 
to be adaptive.

The practical difficulty when running such stochastic approximation algorithms as (1.4) is the extreme 
performance sensitivity to the choice of decreasing learning rates {γk}k∈N0 and {εk}k∈N0 , that is, the 
usual �2 \ �1-condition on the decreasing learning rates is far too loose to guide how to choose. As in 
the preceding work [11], we place our main focus on the situation where the learning rates are constant 
(γk, εk) ≡ (γ, ε) when only a finite computing budget is available. In particular, we derive constant learning 
rates via minimization of (an upper bound for) the theoretical variance of the empirical mean Var(μ(n))
(Section 4.1). We also discuss the convergence of the algorithm (1.4) with decreasing learning rates under the 
�2 \ �1-condition to attain the minimal estimator variance when computing budget is unlimitedly available 
(Section 4.2).

As a possible alternative to the algorithm (1.4) by stochastic approximation, we construct (Section 3.2) 
and investigate (Section 4.2) the following algorithm by sample average approximation:⎧⎪⎪⎨⎪⎪⎩

μ(k) = k−1 ∑k
l=1 R(Ul;θl−1, ξl−1),

θk = argminθ∈Θ2
k−1 ∑k

j=1 N(Uj ;θ,λ(k−1)∧τn),
ξk = −12 1

k

∑k
j=1 R(Uj ;θk)(Uj − 1d/2).

(1.5)

In general, sample average approximation (1.5) provides more robust performance than stochastic approx-
imation (1.4) in return for heavier computing cost as well as the requirement of an external optimization 
tool. In the literature, the convergence of adaptive importance sampling scheme (without control variates 
ξk ≡ 0d), in one formulation or another, has been investigated in [5,9,10]. Note that no optimization pro-
cedure is required for the control variates parameter ξk here, which is an unbiased estimate for the unique 
optimum based on a explicit formula (Section 2.5), unlike the argmin required for the parameter θk. Hence, 
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Table 1
Existing work and the scope of the present work in adaptive variance reduction by stochastic 
approximation (SA) and sample average approximation (SAA).

Finite budget Infinite budget
SA [11] [1,10,13]
SAA × [5,9,10]

(a) Existing work in adaptive importance 
sampling.

Finite budget Infinite budget
SA Theorem 4.1 Theorem 4.2
SAA × Theorem 4.3

(b) Combined importance sampling and 
control variates.

in comparison to the additional computing effort that we had to pay when applying importance sampling 
θ by sample average approximation, this further addition of control variates ξ in (1.5) costs almost none.

Although the addition of control variates in the algorithms (1.4) and (1.5) does not cost serious additional 
computing effort, this addition turns nontrivial from a theoretical point of view. That is, the convergence 
analysis (Section 4) requires surprisingly different lines of proofs with more careful treatments, due to the 
lack of joint convexity of the estimator second moment V (θ) +W (θ, ξ). In order to support our theoretical 
findings and illustrate the effectiveness of the proposed framework and algorithms, we present numerical 
results on a high-dimensional example (Section 5), which is the one examined in the preceding work [11] so 
that a direct comparison can be made in terms of the addition of control variates. To sum up, we summarize 
the relevant existing work in the literature (Table 1 (a)) and the contribution of the present work (Table 1
(b)).

2. Problem formulation

We begin with general notation which will be used throughout. We use the notation N := {1, 2, · · · }
and N0 := {0} ∪N, and denote by | · | and ‖ · ‖, respectively, the magnitude and the Euclidean norm. We 
denote by Leb(D), int(D), ∂D, D, B(D) and diam(D), respectively, the Lebesgue volume, the interior, the 
boundary, the closure, the Borel σ-field and the diameter of a set D. All essential supremums and infimums 
are taken with respect to the Lebesgue measure. For a matrix A, we denote by A� the transpose of the 

matrix A and write A⊗2 := AA�. We denote by 1D(x) the indicator function of a set D at x. We let L=
and L→ denote the identity and convergence in law. For the sake of simplicity, we use the notation ∂q

x for 
the q-th partial derivative with respect to the univariate variable x. Moreover, ∇x and Hessx denote the 
gradient and the Hessian matrix with respect to the multivariate variable x. We denote by Id, 1d and 0d, 
respectively, the identity matrix of size d, the vector in Rd with all unit-valued components, and the zero 
vector in Rd. We reserve φ, Φ and Φ−1 for, respectively, the standard normal density function, the standard 
normal cumulative distribution function and its inverse.

We define the filtration (Fu
k )k∈N generated by the sequence {Uk}k∈N of iid uniform random vectors on 

(0, 1)d, that is, for each n ∈ N, Fu
n = σ({Uk}k∈{1,··· ,n}) is the σ-field generated by the first n iid uniform 

random vectors. We then construct the filtration (Fk)k∈N0 starting from zero by augmentation with the 
collection of P -null sets, that is, F0 := σ(N ) and Fn := Fu

n

∨
F0 for n ∈ N, where N := {N ⊆ Ω :� A ∈∨

k∈N Fu
k , P (A) = 0, N ⊆ A}. In practice, the σ-field F0 can be interpreted as the information available at 

the beginning of the experiment. In our framework, there will be no need to specify under what probability 
measure the expectation E is taken, since we end up taking expectations under a single probability measure 
P all the time, although we do change probability measures back and forth in the middle of derivations. 
Therefore, with the σ-field F :=

∨
k∈N0

Fk, we fix (Ω, F , (Fk)k∈N0 , P ) as our underlying filtered probability 
space throughout. We denote by Pk(·) the probability measure restricted to the σ-field Fk, and by Ek[·] and 
Vark(·), respectively, conditional expectation and conditional variance given the σ-field Fk. The preceding 
expectation (1.1) may be considered conditional on the σ-field F0, that is, unconditional in effect.

We keep the integrand Ψ(u) in the integral (1.1) general without special structure, as the primary interest 
of this study does not lie in a specialized problem class, such as the rare event simulation. Since we are 
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concerned with variance reduction, it loses no essential generality to impose the existence of a finite second 
moment 

∫
(0,1)d |Ψ(u)|2du = E[|Ψ(U)|2] < +∞ as well as non-degeneracy P (|Ψ(U)| 
= 0) > 0.

2.1. Bypass transform

For the rest of this section, we briefly review the problem formulation, adopting from the preceding work 
[9–11], to which we refer the reader for details omitted in some instances. First, we define the family of 
probability distributions, which we call the bypass distribution.

Assumption 2.1. We choose in advance an open set Θ0 ⊆ Rd with Leb(Θ0) > 0, a family {g(·; θ) : θ ∈ Θ0}
of probability density functions on Rd and a family {G(·; θ) : θ ∈ Θ0} of functions on Rd in such a way that

(a) The support D of the probability density function g(·; θ) is open and independent of the parameter θ;
(b) For almost every z ∈ D (with respect to dz), the probability density function g(z; θ) is twice continuously 

differentiable at θ ∈ Θ0;
(c) For each θ ∈ Θ0 and B ∈ B((0, 1)d), it holds that 

∫
D 1(G(z; θ) ∈ B)g(z; θ)dz = Leb(B);

(d) For each θ ∈ Θ0, the inverse G−1(u; θ) (with respect to u) is continuous in u on (0, 1)d;
(e) For each θ ∈ Θ0 and B ∈ B(D), it holds that 

∫
(0,1)d 1(G

−1(u; θ) ∈ B)du =
∫
B
g(z; θ)dz;

(f) For almost every z ∈ D (with respect to dz), it holds that limn↑+∞ supθ∈∂Kn
g(z; θ) = 0, where 

{Kn}n∈N is an increasing sequence of compact subsets of the open set Θ0, satisfying ∪n∈NKn = Θ0
and Kn � int(Kn+1);

(g) The function G(z; θ) is Lipschitz continuous in θ, that is, there exists c ≥ 0 such that esssupz∈D |G(z; θa) −
G(z; θb)| ≤ c‖θa − θb‖ for every (θa, θb) ∈ Θ2

0.

Assumptions 2.1 (c), (d) and (e) indicate that if Z is a random vector in D(⊆ Rd) with density g(z; θ)
and U ∼ U(0, 1)d, then it holds that G(Z; θ) L= U , and Z

L= G−1(U ; θ). Assumption 2.1 (f) will serve as a 
technical condition for convexity of the estimator variance shortly in Proposition 2.2. Assumption 2.1 (g)
is another technical condition, which was not imposed in the preceding work [9–11], but is imposed here to 
ensure that when the control variates method is applied, the estimator variance tends to its desired minimum 
(Theorems 4.1 and 4.2). Indeed, Assumption 2.1 (g) needs to be imposed or can be removed, depending 
on whether control variates is applied (2.4) or suppressed (2.3). To ease the presentation, however, we have 
included this condition as a standing assumption within Assumption 2.1, mainly for the reason that this 
assumption does not seem to be too restrictive. For instance, it is satisfied by the exponential and Gaussian 
bypass distributions [10, Section 4].

2.2. Combined importance sampling and control variates

Fix a point θ0 ∈ Θ0 and pick another point θ ∈ Θ0, which can be distinct from θ0. Under Assumption 2.1, 
the integral (1.1) of interest can be rewritten as follows:

μ =
∫

(0,1)d

Ψ (u) du =
∫

(0,1)d

g(G−1(u;θ);θ0)
g(G−1(u;θ);θ) Ψ(G(G−1(u;θ);θ0))du, (2.1)

where we have applied change of variables u = G(z; θ0) first, then z = G−1(u; θ) and the assumption 
that the support D is independent of the parameter θ. The integral representation (2.1) is indeed the base 
framework of the preceding work [9–11]. The bypass transform [10] enables one to introduce the parameter θ
without affecting the underlying Lebesgue measure du, which is nothing but the uniform law if the integral 
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is interpreted as a mathematical expectation. We next introduce control variates inside the integral (2.1) as 
follows:

μ =
∫

(0,1)d

Ψ (u) du =
∫

(0,1)d

g(G−1(u;θ);θ0)
g(G−1(u;θ);θ) Ψ(G(G−1(u;θ);θ0))du

=
∫

(0,1)d

[
g(G−1(u;θ);θ0)
g(G−1(u;θ);θ) Ψ(G(G−1(u;θ);θ0)) + 〈ξ,u − 1d/2〉

]
du, (2.2)

where the equality holds true irrespective of the parameter ξ ∈ Rd, since 
∫
(0,1)d〈ξ, u − 1d/2〉du =

〈ξ, 
∫
(0,1)d(u − 1d/2)du〉 = 0 for all ξ ∈ Rd. Clearly, if ξ = 0d, then the second line (2.2) reduces to 

the first line (2.1). The control variates here (that is, u−1d/2) is linear in its current form (2.2), whereas, in 
practice, the control variates needs to be transformed nonlinear in z (Section 5), for instance, Φd(z) −1d/2
when transformed to the Gaussian law. If moreover θ = θ0, then all three integrals above are back identical. 
If (θ, ξ) 
= (θ0, 0d), however, three integrands may not be identical in law with respect to the uniform law 
du, without changing the value 

∫
(0,1)d Ψ(u)du. Hence, by wisely choosing the parameters θ and ξ, we may 

achieve a smaller variance with the expression on the right-hand side. (We discuss some alternatives to the 
formulation (2.2), such as control variates first and nonlinear variates, in Section B.1.) Hereafter, for brevity, 
we use the notation: for u ∈ (0, 1)d and (θ, ξ, λ) ∈ Θ0 ×Rd × Θ0,

H(u;θ,λ) := g(G−1(u;λ);θ0)
g(G−1(u;λ);θ) , R(u;θ) := H(u;θ,θ)Ψ(G(G−1(u;θ);θ0)), (2.3)

and

R(u;θ, ξ) := R(u;θ) + 〈ξ,u − 1d/2〉 . (2.4)

The argument λ in (2.3) will be introduced as the auxiliary parameter shortly through (2.10) and (2.12), 
whereas it remains fixed at λ = θ0 until then. The estimator variance of the right-hand side in (2.2) is defined 
as the L2-distance of the integrand from the integral value μ with respect to the uniform distribution du, 
that is, ∫

(0,1)d

(R(u;θ, ξ) − μ)2 du = V (θ) + W (θ, ξ) − μ2, (2.5)

where

V (θ) :=
∫

(0,1)d

H(u;θ,θ0)|Ψ(u)|2du, (2.6)

and

W (θ, ξ) := 2
〈
ξ,

∫
(0,1)d

Ψ(u)
(
G(G−1(u;θ0);θ) − 1d/2

)
du

〉
+ 1

12‖ξ‖
2, (2.7)

provided that the integrals exist. The progressions in both (2.6) and (2.7) follow from a change of variables 
u = G(z; θ) first, then z = G−1(u; θ0).
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2.3. Estimator variance without control variates

In order to further investigate the estimator variance indexed by the parameter θ, we restrict our attention 
to the following domains:

Θ1 := int

⎧⎪⎨⎪⎩θ ∈ Θ0 :
∫

(0,1)d

H(u;θ,θ0)|Ψ(u)|2du < +∞

⎫⎪⎬⎪⎭ , (2.8)

and

Θ2 := int
⋃
B

{
B ⊆ Θ1 :

∫
(0,1)d

sup
θ∈B

max
{

1,
∥∥∥∥∇θH(u;θ,θ0)

H(u;θ,θ0)

∥∥∥∥ , ∥∥∥∥Hessθ(H(u;θ,θ0))
H(u;θ,θ0)

∥∥∥∥}

×H(u;θ,θ0)|Ψ(u)|2du < +∞,

and for almost every z ∈ D , (g(z;θ))−1 is strictly convex in θ on B

}
. (2.9)

In view of the expression (2.3), the convexity condition (2.9) ensures the convexity of H(u; θ, λ) in θ for 
almost every u as well as for each λ, provided that the inverse G−1(u; λ) is well defined. The convexity 
condition (2.9) is only concerned with the bypass distribution g(z; θ) and is thus verifiable irrespective of the 
integrand Ψ(u). With those domains in mind, the regularity and convexity of the second moment function 
V (θ) is given as follows.

Proposition 2.2. (i) If Leb(Θ2) > 0, then it holds that V (θ) is twice continuously differentiable and strictly 
convex on Θ2, with

∇θV (θ) = E
[
∇θH(U ;θ,θ0)|Ψ(U)|2

]
, Hessθ(V (θ)) = E

[
Hessθ (H(U ;θ,θ0)) |Ψ(U)|2

]
.

(ii) If moreover Θ1 = Θ2, then θ∗ := argminθ∈Θ2
V (θ) exists uniquely in the domain Θ2 satisfying 

∇θV (θ∗) = 0.

We remark that for implementation purposes, the twice (continuous) differentiability requirement in 
Proposition 2.2 (i) is redundant. Moreover, unless trying to attain the minimum value V (θ∗) and/or find a 
minimizer θ∗, the existence and uniqueness result of Proposition 2.2 (ii) is not really necessary.

2.4. Auxiliary parameter

We next review the concept of the auxiliary parameter [9] into the second moment. In brief, when 
searching the optimal importance sampling parameter θ∗ on the basis of Proposition 2.2 by stochastic 
approximation (Section 3.1) or sample average approximation (Section 3.2), we approximate the gradient 
of the second moment ∇θV (θ) or the second moment V (θ) itself by sampling their respective integrands 
∇θH(U ; θ, θ0)|Ψ(U)|2 or H(U ; θ, θ0)|Ψ(U)|2. This approximation is however fatally inefficient when the 
term |Ψ(U)|2 is zero-valued with a very high probability [9, Section 2.2]. Hence, we inject another parameter 
(which we call the auxiliary parameter) into the function |Ψ(·)|2 inside the second moment V (θ) so as to 
avoid zero-valued realizations.

We introduce the auxiliary parameter λ into the second moment function V (θ) through change of prob-
ability measure as follows: for each (θ, λ) ∈ Θ2

1,
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V (θ) =
∫

(0,1)d

g(G−1(u;λ);θ0)
g(G−1(u;λ);θ)

g(G−1(u;λ);θ0)
g(G−1(u;λ);λ) |Ψ(G(G−1(u;λ);θ0))|2du =

∫
(0,1)d

N(u;θ,λ)du, (2.10)

where

N(u;θ,λ) := H (u;θ,λ)H (u;λ,λ) |Ψ(G(G−1(u;λ);θ0))|2. (2.11)

Above, we have applied change of variables z = G−1(u; θ0) and u = G(z; λ), each of which requires no 
additional integrability condition, since then the support D is independent of the parameter, as imposed in 
Assumption 2.1 (a). In a similar manner, we incorporate the same auxiliary parameter λ into the control 
variates component W (θ, ξ) as follows: for each (θ, ξ, λ) ∈ Θ1 ×Rd × Θ1,

W (θ, ξ) = 2
〈
ξ,

∫
(0,1)d

H(u;λ,λ)Ψ(G(G−1(u;λ);θ0))
(
G(G−1(u;λ);θ) − 1d/2

)
du

〉
+ 1

12‖ξ‖
2

=
∫

(0,1)d

S(u;θ, ξ,λ)du, (2.12)

where

Q(u;θ,λ) := H(u;λ,λ)Ψ(G(G−1(u;λ);θ0))
(
G(G−1(u;λ);θ) − 1d/2

)
,

S(u;θ, ξ,λ) := 2 〈ξ, Q(u;θ,λ)〉 + 1
12‖ξ‖

2. (2.13)

The auxiliary parameter λ inside the integrals acts as importance sampling in the estimator of the second 
moment functions V (θ) and W (θ, ξ). We refer the reader to [9, Section 4] for more details, such as how and 
when to set the auxiliary parameter effectively.

2.5. Estimator variance with importance sampling and control variates

In the expression (2.5), the estimator variance is a sum of the two terms V (θ) and W (θ, ξ) (minus the 
unknown constant μ2), whereas Proposition 2.2 only addresses the smoothness of the first term V (θ) with 
respect to the parameter θ. We here turn to the second term W (θ, ξ). First of all, the term W (θ, ξ) is clearly 
finite valued as soon as the parameter θ stays in the domain Θ1, since the additional term (u − 1d/2) in 
the integrand is bounded. Its smoothness with respect to ξ requires no additional conditions, due to its 
quadratic structure:

∇ξW (θ, ξ) = 2
∫

(0,1)d

Q(u;θ,λ)du + 1
6ξ =

∫
(0,1)d

∇ξS(u;θ, ξ,λ)du. (2.14)

Therefore, it follows readily that for each θ ∈ Θ2,

min
ξ∈Rd

W (θ, ξ) = 12

∥∥∥∥∥∥∥
∫

(0,1)d

R(u;θ)(u − 1d/2)du

∥∥∥∥∥∥∥
2

= −12

∥∥∥∥∥∥∥
∫

(0,1)d

Q(u;θ,λ)du

∥∥∥∥∥∥∥
2

,

where the minimum is attained uniquely at
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argmin
ξ∈Rd

W (θ, ξ) = −12
∫

(0,1)d

R(u;θ)(u − 1d/2)du = −12
∫

(0,1)d

Q(u;θ,λ)du. (2.15)

Accordingly, define the optimal point ξ∗, given the optimal importance sampling parameter θ∗, by

ξ∗ := argmin
ξ∈Rd

W (θ∗, ξ) = −12
∫

(0,1)d

R(u;θ∗)(u − 1d/2)du = −12
∫

(0,1)d

Q(u;θ∗,λ)du, (2.16)

and thus the corresponding optimal value is given in the very simple form:

min
ξ∈Rd

W (θ∗, ξ) = W (θ∗, ξ∗) = − 1
12‖ξ

∗‖2.

As should now be clear from the structure (2.16) as well as that the gradient (2.14), our algorithm will be 
constructed to first search the point θ∗ to minimize the term V (θ), without interference from the control 
variates parameter ξ, and then look for the point ξ∗ to minimize the second term W (θ∗, ξ), rather than 
jointly searching two parameters (θ, ξ) so as to minimize the sum V (θ) + W (θ, ξ) altogether. In fact, our 
intended point (θ∗, ξ∗) could be sub-optimal, that is, there may exist distinct points, say, (θ	, ξ	) within the 
search domain, which coincides with or even outperforms our target, that is, V (θ	) +W (θ	, ξ	) ≤ V (θ∗) +
W (θ∗, ξ∗). Let us point out a few, both technical and practical, reasons for not pursuing this joint optimality. 
First of all, the convexity of V (θ) + W (θ, ξ) does not hold true in general and indeed does not in practice. 
(We will provide simple yet illustrative examples in Appendix B.3.) Hence, there is no strong theoretical 
backup to pursue a global optimality. From a computational point of view, the gradient with respect to the 
importance sampling parameter θ involves two terms ∇θ(V (θ) + W (θ, ξ)) = ∇θV (θ) + ∇θW (θ, ξ), where 
the second term costs extra for sure. Since the ultimate interest lies in the estimation of the expectation 
E[Ψ(U)], not in the variance reduction parameter search for minimizers θ∗ and ξ∗, the relative priority on 
the parameter search should be kept lower.

3. Algorithms

We are now in a position to construct our algorithms, which are meant to be easy-to-implement and of 
all-purpose type. To this end, we prepare the notation for relevant key elements.

Let {Tk}k∈N0 and {Xk}k∈N0 be F0-measurable sequence of non-expanding compact convex subsets, 
respectively, of Θ2 and Rd, that is, Tk+1 ⊆ Tk ⊂ Θ2 and Xk+1 ⊆ Xk ⊂ Rd for all k ∈ N0. The compact 
sets Tk and Xk indicate the domains, respectively, where θk and ξk are allowed to reside in. We assume 
that each is large enough to contain the corresponding minimizer: θ∗ ∈ ∩k∈N0Tk and ξ∗ ∈ ∩k∈N0Xk. The 
F0-measurable randomness of the search domains {Tk}k∈N0 and {Xk}k∈N0 , as well as the initial point θ0
correspond to the usual practice that the prior knowledge F0 is employed for algorithm design.

Hereafter, we reserve the notation n ∈ N for the available computing budget, that is, the maximum total 
number of iterations. Let τ be an (Fk)k∈N0 -stopping time taking non-negative integer values and define its 
truncation τn := τ∧n by the given computing budget n. We define the σ-field Fτn at the (Fk)k∈N0 -stopping 
time τn, that is, Fτn := {B ∈ F : B ∩ {τn ∈ {0, 1, · · · , k}} ∈ Fk for all k ∈ {0, 1, · · · , n}}. Clearly, 
the tail {Uk}k∈{τn+1,··· } of the sequence is independent of the σ-field Fτn , while the truncated sequence 
{Uk}k∈{1,··· ,τn} is Fτn-measurable. The stopping time τn here represents the time point until which one is 
allowed to conduct the pilot run to decide on the relevant problem parameters, such as the learning rates 
{γk}k∈N0 and {εk}k∈N0 as well as the auxiliary parameter {λk}k∈N0 . In particular, the pilot run may be 
prohibited by suppressing the stopping time (τn = 0). Let {λk}k∈N0 be an (Fk)k∈N0 -adapted sequence 
of random vectors, corresponding to the auxiliary parameter, in a compact subset Λ0 of the domain Θ1, 
satisfying θ0 ∈ int(Λ0), with λ� := λτn , corresponding to the argument λ in the expressions (2.10) and 
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(2.11). In what follows, we will call λ� the long-run auxiliary parameter. The superscript “	” is given to the 
long-run auxiliary parameter λ� here, instead of “∗”, to emphasize the difference that the optimal important 
sampling parameter θ∗ is deterministic, while the long-run auxiliary parameter λ� is generally random.

3.1. Stochastic approximation

The algorithm we propose consists of the following five concurrent lines (A)-(E), along with possibly one 
more line (not to be specified here) for the auxiliary parameter {λk}k∈N0 . Recall that for a compact set B, 
we define 

∏
B [x] := argminz∈B ‖x − z‖ the metric projection of x onto the compact set B.

(A) Adaptive empirical mean throughout:

μ(k) := 1
k

[
k∧τn∑
l=1

R(Ul;θ0) +
k∑

l=τn+1

R(Ul;θ
l−1
τn , ξ

l−1
τn )

]
, k ∈ {1, · · · , n}. (3.1)

(B) Importance sampling parameter search throughout by stochastic approximation:

θk :=
∏

Tk

[
θk−1 − γk−1∇θN(Uk;θk−1,λ(k−1)∧τn)

]
, k ∈ {1, · · · , n− 1}. (3.2)

(C) Successive averaging of the parameter of the line (B), starting from the stopping time τn:

θ
k

τn :=
k∑

l=τn

γl∑k
t=τn

γt
θl, k ∈ {τn, · · · , n− 1}.

(D) Control variates parameter search throughout by stochastic approximation:

ξk :=
∏

Xk

[
ξk−1 − εk−1∇ξS(Uk;θk−1, ξk−1,λ(k−1)∧τn)

]
, k ∈ {1, · · · , n− 1}, ξ0 := 0d. (3.3)

(E) Successive averaging of the parameter of the line (D), starting from the stopping time τn:

ξ
k

τn :=
k∑

l=τn

εl∑k
t=τn

εt
ξl, k ∈ {τn, · · · , n− 1}. (3.4)

For the sake of clarity, we summarize the algorithm in Table 2; random number generation, the integrand, 
the five concurrent lines, and the auxiliary parameter, all on the event {τn = m}. The iterations until the 
stopping time τn provide some time for a pilot run to collect relevant knowledge for setting unspecified 
quantities, such as the learning rate (Section 4.1) and the long-run auxiliary parameter. In order to secure 
a reasonable amount of such knowledge, it is rather necessary to set the stopping time τn wisely, since, as 
discussed in Section 2.4, the recursions (3.2) and (3.3) may not make an actual update for a long time if 
the gradients there tend to be zero too often.

3.2. Sample average approximation

The second approach, not quite an algorithm on its own, is the so-called sample average approximation. 
Let {�a(k)}k∈N and {�b(k)}k∈N be sequences of F0-measurable random variables taking values in {0, 1}, 
representing the update timings of respective parameters. We impose 

∑
k∈N �a(k) = +∞ and 

∑
k∈N �b(k) =

+∞ to ensure that the parameters will be updated infinitely often. In light of the formulas (2.15) and (2.16), 
starting with θ̃0 = θ0 and ξ̃0 = 0d, we iterate for k ∈ N:
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Table 2
Random number generation, integrand, (A), (B), (C), the auxiliary parameter, (D) and (E), on the event {τn = m}. The symbol 
“×” indicates “not defined”, while the symbol, say, “×(λ�)” indicates that “we apply the parameter λ�, which is available without 
computing”.

iteration (k) 0 1 · · · m − 1 {τn = m} m + 1 · · · n − 1 n

U(0, 1)d × U1 Um−1 Um Um+1 Un−1 Un

integrand R(U1; θ0) · · · R(Um−1; θ0) R(Um; θ0) R(Um+1; θ
m

m
, ξ

m

m
) R(Un−1; θ

n−2
m

, ξ
n−2
m

) R(Un; θn−1
m

, ξ
n−1
m

)
(A) μ(1) · · · μ(m − 1) μ(m) μ(m + 1) · · · μ(n − 1) μ(n)

(B) ×(θ0 ∈ F0) θ1 θm−1 θm θm+1 θn−1
(C) × × × × (θm

m
= θm) θ

m+1
m

θ
n−1
m

auxiliary λ0 λ1 · · · λm−1 λ�(= λτn
) ×(λ�) · · · ×(λ�) ×

(D) × (ξ0 = 0d) ξ1 ξm−1 ξm ξm+1 ξn−1
(E) × × · · · × × (ξm

m
= ξm) ξ

m+1
m

· · · ξ
n−1
m

×

(F) Adaptive empirical mean throughout:

μ(k) := 1
k

k∑
l=1

R(Ul; θ̃l−1, ξ̃l−1). (3.5)

(G) Importance sampling parameter search via sample average approximation:

θ̃k ←

⎧⎪⎪⎨⎪⎪⎩
argmin
θ∈Θ2

1
k

k∑
j=1

N(Uj ;θ,λ(k−1)∧τn), if �a(k) = 1,

θ̃k−1, if �a(k) = 0.

(H) Control variates parameter search via sample average approximation:

ξ̃k ←

⎧⎪⎪⎨⎪⎪⎩
−121

k

k∑
j=1

Q(Uj ; θ̃k,λ(k−1)∧τn), if �b(k) = 1,

ξ̃k−1, if �b(k) = 0.
(3.6)

The line (H) can be implemented with elementary operations only, without external optimization tools, 
unlike the line (G). Given that the implementation of the line (G) has been thought of as a serious bottleneck 
of the adaptive importance sampling framework by sample average approximation [9], the further addition 
of the line (H) can safely be considered computationally almost free of charge in comparison.

3.3. Theoretical variance of empirical mean

Recall that in the algorithm (A)-(E) of Section 3.1, there exist two phases transiting from one to the 
other at the stopping time τn (unless τn = 0). In particular, as can be seen in the “integrand” row of Table 2, 
the algorithm applies no variance reduction methods until this stopping time. As will be seen shortly in 
Section 4.1, this stopping time is incorporated into the algorithm so as to make use of the Fτn-measurable 
information to enhance the implementation of the remaining iterations. From a theoretical point of view, 
this stopping time can be made implicit in the expression (3.1), by re-defining the parameters as follows:

θ̃k :=
{
θ0, if k ∈ {0, 1, · · · , τn − 1},
θ
k

τn , if k ∈ {τn, τn + 1, · · · , n− 1},
ξ̃k :=

{
0d, if k ∈ {0, 1, · · · , τn − 1},
ξ
k

τn , if k ∈ {τn, τn + 1, · · · , n− 1},
(3.7)

both of which clearly remain adapted to the filtration (Fk)k∈N0 . Then, for the both algorithms by stochastic 
approximation (Section 3.1) and by sample average approximation (Section 3.2), the empirical means (3.1)
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and (3.5) at the computing budget n can be expressed in the following unified way, as well as we define the 
corresponding empirical variance σ2(n) by

μ(n) = 1
n

n∑
k=1

R(Uk; θ̃k−1, ξ̃k−1),

σ2(n) = 1
n

n∑
k=1

[
N(Uk; θ̃k−1,λ(k−1)∧τn) + S(Uk; θ̃k−1, ξ̃k−1,λ(k−1)∧τn)

]
− μ2(n). (3.8)

As long as the random sequences {Uk}k∈N , {θ̃k}k∈N0 and {ξ̃k}k∈N0 , as well as {λk}k∈N0 are adapted to 
the filtration (Fk)k∈N0 , the empirical mean and variance (3.8) satisfy the following ideal properties [11, 
Proposition 2.5].

Proposition 3.1. Let {θ̃k}k∈N0 , {ξ̃k}k∈N0 and {λk}k∈N0 be (Fk)k∈N0-adapted sequences of random vectors 
defined in either Section 3.1 with (3.7) or Section 3.2. It then holds P0-a.s. that for each n ∈ N,

E0[μ(n)] = μ, nVar0 (μ(n)) = 1
n

n∑
k=1

E0

[
V (θ̃k−1) + W (θ̃k−1, ξ̃k−1)

]
− μ2,

E0
[
σ2(n)

]
= (n− 1)Var0(μ(n)).

4. Convergence analysis

We conduct convergence analysis of the algorithms developed in Sections 3.1 and 3.2. We prepare some 
notation for presentation of the results. First, we define a sequence {αk}k∈N0 of non-negative random 
variables, clearly representing the strong convexity parameter, by

αk := argmax
α≥0

{
V (θ∗) ≥ V (θ) + 〈∇θV (θ),θ∗ − θ〉 + α

2 ‖θ∗ − θ‖2
, for all θ ∈ Tk

}
, (4.1)

which is guaranteed to exist since Tk ⊆ T0 ⊆ Θ2 for all k ∈ N0. Note that although the second moment 
V (θ) is deterministic, the convexity parameters αk may contain randomness because the search domains Tk

may be random, yet F0-measurable. Since the search domains are non-increasing with successive dominance 
Tk+1 ⊆ Tk, the convexity parameters αk are non-decreasing.

4.1. Finite computing budget: stochastic approximation with constant learning rates

Here, we focus on the algorithm by stochastic approximation (Section 3.1) when the computing budget 
n is fixed and cannot be increased progressively afterwards. For each computing budget n ∈ N and strictly 
positive constant learning rates γ and ε, define

Υ(n; γ, ε) := Υa(n; γ) + Υb(n; ε) + Υc(n) + Υd(n), (4.2)

where the four terms are defined by

Υa(n; γ) := 1
2nγE0

[
diam2(Tτn)

n−τn∑
k=1

k−1

]
− 1

2nE0

[
ατndiam2(Tτn)

n−τn∑
k=1

k−1

]

+ γ
E0

[
L2(Tτn ;λ�)(n− τn)

]
,
2n
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Υb(n; ε) := 1
2nεE0

[
diam2(Xτn)

n−τn∑
k=1

k−1

]
− 1

12nE0

[
diam2(Xτn)

n−τn∑
k=1

k−1

]

+ ε

2nE0
[
J2(Tτn ,Xτn ;λ�)(n− τn)

]
,

Υc(n) := 2E0

[
1
n

n∑
k=τn+1

1
k − τn

k∑
l=τn+1

〈
ξ∗ − ξl−1,W0(θl−1) −W0(θ∗)

〉]
,

Υd(n) := 2E0

[
1
n

n∑
k=τn+1

〈
ξ
k−1
τn ,W0(θ

k−1
τn ) −W0(θ∗)

〉]
,

where W0(θ) :=
∫
(0,1)d R(u; θ)(u−1d/2)du(=

∫
(0,1)d Q(u; θ, λ)du), which represents the optimal parameter 

ξ (up to a negative constant), based on (2.15) and (2.16). Here, the quantity Υ(n; γ, ε) represents an upper 
bound for the excess of the (scaled) theoretical variance nVar0(μ(n)) from the variance at the destination 
(θ∗, λ∗) when the computing budget n is fixed and the learning rates are set constant (γk, εk) ≡ (γ, ε). 
With computing budget n fixed, we find the constant learning rates (γ, ε) that minimizes this upper bound 
Υ(n; γ, ε). Note that the numerical computation of the upper bound Υ(n; γ, ε) is not required for implemen-
tation.

We are now in a position to present the theoretical background of the algorithm by stochastic approxi-
mation with a finite computing budget and constant learning rates, which is deemed the most appropriate 
in practice. The constant learning rates we employ are given as follows: for each fixed computing budget n,

γ(n) :=
(
E0[diam2(Tτn)

∑n−τn
k=1 k−1]

E0[L2(Tτn ;λ�)(n− τn)]

)1/2

, ε(n) :=
(

E0[diam2(Xτn)
∑n−τn

k=1 k−1]
E0[J2(Tτn ,Xτn ;λ�)(n− τn)]

)1/2

, (4.3)

where the functionals L(·; λ) and J(·, ·; λ) are defined on compact subsets T and X , respectively, of Θ2
and Rd by

L2(T ;λ) := sup
θ∈T

∫
(0,1)d

‖∇θN(u;θ,λ)‖2
du, (4.4)

J2(T ,X ;λ) := sup
(θ,ξ)∈T ×X

∫
(0,1)d

‖∇ξS(u;θ, ξ,λ)‖2
du, (4.5)

for λ ∈ Λ0.

Theorem 4.1. Let {θ̃k}k∈N0 , {ξ̃k}k∈N0 and {λk}k∈N0 be (Fk)k∈N0-adapted sequences of random vectors 
defined in Section 3 with (3.7).

(i) With arbitrary constant learning rates γk ≡ γ(> 0) and εk ≡ ε(> 0), it holds that for each n ∈ N,

nVar0(μ(n)) ≤
(
V (θ∗) + W (θ∗, ξ∗) − μ2) + (V (θ0) − (V (θ∗) + W (θ∗, ξ∗))) E0[τn]

n
+ Υ(n; γ, ε). (4.6)

The constants γ(n) and ε(n) of (4.3) are the unique joint minimizer of Υ(n; γ, ε), that is, Υ(n; γ(n), ε(n)) ≤
Υ(n; γ, ε) for all (γ, ε) ∈ (0, +∞)2.

(ii) If no control variates is performed, then the function Υ(n; γ, ε) in (4.6) is to be replaced by Υa(n; γ), 
of which the constant γ(n) given in (4.3) remains the unique minimizer of Υa(n; γ). If τn = oP0(n), then 
Υa(n; γ(n)) = O(

√
ln(n)/n).

(iii) Suppose control variates is performed. If lim infn↑+∞ αk > 0 and τn = oP0(n), then it holds P0-a.s.
that Υ(n; γ(n), ε(n)) = O( 4

√
ln(n)/n).



14 R. Kawai / J. Math. Anal. Appl. 483 (2020) 123608
In the upper bound (4.6), the first chunk (V (θ∗) +W (θ∗, ξ∗) −μ2) is the minimal variance one wishes to 
attain in our framework. The second chunk describes how much reduction of variance we are missing out on 
average in exchange for waiting until the stopping time τn, that is, the maximum reduction of variance (the 
crude variance V (θ0) − μ2 minus the desired optimum V (θ∗) + W (θ∗, ξ∗) − μ2) multiplied by the relative 
inactive time E0[τn]/n. The constant learning rates (4.3) may not be optimal in reducing the estimator 
variance in the proposed framework. As stated in Theorem 4.1, those are the unique joint minimizer of 
the right hand side of the inequality (4.6), which is merely an upper bound for the (scaled) theoretical 
estimator variance nVar0(μ(n)), or equivalently that of the (scaled) mean empirical variance E0[σ2(n)], in 
view of Proposition 3.1. Still, the constant learning rates (4.3) are a reasonable choice in the sense that, as 
Theorem 4.1 (ii) and (iii) assert, the minimized upper bound (4.6) decays to zero if the finite computing 
budget n is set large at the outset. It is worth emphasizing that Theorem 4.1 (ii) and (iii) are not asymptotic 
results in the usual sense [18]. In the present context, the implementation of the algorithm is not supposed 
to be incremental in computing budget n, that is, with a larger budget m(> n), we obtain the minimized 
upper bound Υ(m; γ(m), ε(m)) only if the algorithm runs with the constant learning rates (γ(m), ε(m))
from the outset, not as a continuation from a shorter run with a smaller budget n and its corresponding 
constant learning rates (γ(n), ε(n)).

This result is a proper superset of the existing result [11, Theorem 4.1] (without control variates), as it is 
fully recovered in Theorem 4.1 (ii). With control variates performed (Theorem 4.1 (iii)), however, the proof 
of convergence demands significantly more delicate treatments, mainly because the function V (θ) +W (θ, ξ)
is not jointly convex in two arguments (θ, ξ), and thus the intended point (θ∗, ξ∗) is generally not be globally 
optimal, as we will illustrate in Appendix B.3.

4.2. Infinite computing budget

We next turn to the case where the computing budget is unlimitedly available. The availability of infinite 
computing budget is not very realistic, and such requirement contradicts the essential concept of variance 
reduction, where one wishes to terminate iterations sooner. Hence, rather than constructing algorithms 
exclusively for the case of infinite computing budget, we focus on deriving sufficient conditions for the 
proposed algorithms (Sections 3.1 and 3.2) to achieve the following convergences for the purpose of Monte 
Carlo simulation:

μ(n) → μ, a.s., (4.7)

σ2(n) → V (θ∗) + W (θ∗, ξ∗) − μ2, (4.8)
√
n
μ(n) − μ

σ(n)
L→ N (0, 1), (4.9)

as n ↑ +∞, under the probability measure P0. The mode of the convergence (4.8) is left unspecified at 
the moment on purpose, since we derive its L1(Ω, F , P0) and almost sure convergences respectively for the 
algorithms by stochastic approximation (Theorem 4.2) and by sample average approximation (Theorem 4.3).

We first address the algorithm by stochastic approximation (Section 3.1). This problem has long been 
investigated under many different problem settings (such as [1–3,10,13,14,17]). From a practical point of 
view, stochastic approximation with decreasing learning rates is not necessarily the most ideal form of its 
implementation, since then the extreme performance sensitivity to the choice of learning rates comes back 
in question.

Theorem 4.2. (Stochastic Approximation with Decreasing Learning Rates) Let {θ̃k}k∈N0 , {ξ̃k}k∈N0 and 
{λk}k∈N0 be (Fk)k∈N0-adapted sequences of random vectors defined in Section 3.1 with (3.7).

(i) The almost sure convergence (4.7) holds.



R. Kawai / J. Math. Anal. Appl. 483 (2020) 123608 15
(ii) Assume {γk}k∈N0 and {εk}k∈N0 are in �2 \ �1; sup(θ,λ)∈T0×Λ0

∫
(0,1)d H(u; λ, θ0)|H(u; θ, θ0)|2 ×

|Ψ(u)|4du < +∞; limn↑+∞ τn/n = 0; and lim infk↑+∞ αk > 0, P0-a.s. Then, the convergence (4.8) holds in 
L1(Ω, F , P0).

(iii) If moreover inf(θ,ξ)∈T0×X0(V (θ) + W (θ, ξ)) > μ2 and supθ∈T0

∫
(0,1)d |H(u; θ, θ0)|q−1|Ψ(u)|qdu <

+∞ for some q > 2, then the weak convergence (4.9) holds.

We have pointed out a possible existence of a point (θ	, ξ	), that outperforms the proposed framework in 
the sense of V (θ	) +W (θ	, ξ	) < V (θ∗) +W (θ∗, ξ∗). It is worth adding here that the limiting value of the 
convergence result (ii) cannot be such a strictly smaller estimator variance V (θ	) +W (θ	, ξ	) −μ2, because 
the sequence {θ̃k}k∈N0 converges necessarily to θ∗ since the stochastic approximation algorithm (3.2) runs 
on the basis of the convex function V (θ) alone, without interference from the control variates parameter ξ. 
Then, due to the definition (2.15), the minimizer ξ∗ is unique as soon as θ∗ is given.

The convergence result (ii) is given in the L1(Ω, F , P0) mode, since its derivation follows quite naturally 
from the proof of Theorem 4.1, as well as the L1(Ω, F , P0) convergence is enough for the subsequent result
(iii).

The condition inf(θ,ξ)∈T0×X0(V (θ) + W (θ, ξ)) > μ2 in (iii) means that perfect variance reduction is 
impossible in any way. It is possible to come up with such problem settings (Appendix B.3), whereas perfect 
variance reduction seems possible merely artificially. In practice, verifiability of this condition however 
requires no serious attention for the reason that one would be happier with perfect variance reduction than 
with the theoretical result (iii).

We next turn to the algorithm by sample average approximation (Section 3.2). The only essential dif-
ference from Theorem 4.2 is the almost sure mode of the convergence (iii), which can be derived relatively 
easily from the preceding almost sure convergence of the parameter sequences (i), whereas this difference 
in the mode of convergence is not directly relevant in the context of variance reduction.

Theorem 4.3. (Sample Average Approximation) Let {θ̃k}k∈N0 , {ξ̃k}k∈N0 and {λk}k∈N0 be (Fk)k∈N0-adapted 
sequences of random vectors defined in Section 3.2.

(i) The almost sure convergence (θ̃n, ̃ξn) → (θ∗, ξ∗) holds, as n ↑ +∞.
(ii) The almost sure convergence (4.7) holds.
(iii) If sup(θ,λ)∈T0×Λ0

∫
(0,1)d H(u; λ, θ0)|H(u; θ, θ0)|2|Ψ(u)|4du < +∞, then the convergence (4.8) holds 

P0-a.s.
(iv) If moreover inf(θ,ξ)∈T0×X0(V (θ) + W (θ, ξ)) > μ2 and supθ∈T0

∫
(0,1)d |H(u; θ, θ0)|q−1|Ψ(u)|qdu <

+∞ for some q > 2, then the weak convergence (4.9) holds.

The results above may be made more precise, such as the asymptotic Gaussianity of the parameter 
sequence 

√
n((θ̃n, ̃ξn) − (θ∗, ξ∗)), in a similar manner to the preceding work [11]. In the present work, we 

do not go into this direction, again as our primary interest is not in the parameter search but mainly in the 
estimator convergence (4.7) and the asymptotic Gaussianity of the estimator sequence (4.9).

5. Numerical illustrations

We have constructed adaptive Monte Carlo variance reduction algorithms in Section 3, by the stochastic 
approximation (Section 3.1) and the sample average approximation (Section 3.2), and have justified the 
relevance of the proposed framework and algorithms in Section 4, on the basis of finite computing budget 
(Section 4.1) and infinite computing budget (Section 4.2). We close this study with a high-dimensional 
example to support our theoretical findings and illustrate the effectiveness of the proposed framework and 
algorithms, adopting the problem setting from [11, Section 6.2] for direct comparison purposes, where control 
variates is absent (that is, ξ = 0d).
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Let Z := (Z1, · · · , Zd) be a standard normal random vector in Rd with independent components. Consider 
the random variable

F (Z) = e−rT max
[

1
d

d∑
n=1

S0 exp
[

n∑
k=1

((
r − 1

2σ
2
)

T

d
+

√
σ2T

d
Zk

)]
−K, 0

]
,

whose expected value is then equipped with the proposed variance reduction techniques as follows:

μ = E [F (Z)] = E
[
e−〈θ,Z〉−‖θ‖2/2F (Z + θ) + 〈ξ,Φd(Z) − 1d/2〉

]
,

where the rightmost term is derived by first applying importance sampling and then control variates as in 
the progression (2.2). Here, we let Φd denote the componentwise standard normal cumulative distribution 

function on Rd, and Φ−1
d is its componentwise inverse on (0, 1)d, so that Φd(Z) L= U and Φ−1

d (U) L= Z for 
Z ∼ N (0, Id) and U ∼ U(0, 1)d. The same random variable F (Z) was examined in [6, Section 6], but there 
with the raw normal random vector as simple linear control variates 〈ξ, z〉, as opposed to the nonlinear 
control variates 〈ξ, Φd(z) − 1d/2〉 here, since the underlying vector in our context is u(= Φd(z) − 1d/2) on 
the unit hypercube. The importance sampling parameter θ is chosen to minimize the second moment of the 
first term, as of (2.10):

V (θ) = E
[
e−〈θ+λ,Z〉+‖θ‖2/2−〈θ,λ〉−‖λ‖2/2 |F (Z + λ)|2

]
,

which is certainly independent of the auxiliary parameter λ. The control variates component as of (2.12) is 
then given by

W (θ, ξ) = 2
〈
ξ,E0

[
e−〈λ,Z〉−‖λ‖2/2F (Z + λ) (Φd(Z + λ− θ) − 1d/2)

]〉
+ 1

12‖ξ‖
2,

which is also independent of the auxiliary parameter λ. All those formulas remain within the scope of the 
original formulation (1.1) with u = Φd(z), z = Φ−1

d (u) and F (z) = Ψ(Φd(z)) on D = Rd.

5.1. Finite computing budget

The finite-budget approach (Theorem 4.1) provides an objective way by stochastic approximation to 
address its extreme performance sensitivity to the choice of decreasing learning rates. We fix S0 = 50, 
r = 0.05, T = 0.5, d = 16, σ = 0.10 and K = 55, and then we have the mean μ = 2.445 × 10−2 and the 
crude estimator variance V (0d) −μ2 = 3.960 × 10−2. With d = 16, the variance reduction parameters θ and 
ξ are both 16-dimensional as well. Here, to focus on the effectiveness of the additional control variates, we 
suppress various problem parameters. For instance, we fix the parameter search domains Xk ≡ [−0.1, 0.6]16
and Tk ≡ [−0.06, 0.02]16, and disable both a pilot run and the auxiliary parameter throughout by setting 
τn = 0 and λk ≡ θ0(= 0d). The quantities L2(Tτn ; λ�) and J2(Tτn , Xτn ; λ�) in (4.4) and (4.5) and, 
consequently, the constant learning rates γ(n) and ε(n) in (4.3) are now all deterministic. We conduct the 
supremums within the quantities L2(T0; θ0) and J2(T0, X0; θ0) numerically using MATLAB’s ‘fmincon’ 
function, as the integrals (4.4) and (4.5) do not seem to have particular geometric structures, such as 
convexity, concavity and monotonicity. We refer the reader to the preceding work [9–11] for some strategic 
setting of those problem parameters. Let us recall that the convexity parameter αk defined in (4.1) improves 
the upper bound (4.6) for the estimator variance if it is strictly positive, whereas it is not required for 
implementation at all.

Unlike in the existing study of stochastic approximation algorithms, our primary focus is more on reduc-
tion of the estimator variance nVar0(μ(n)), than on improvements on the convergence to the (sub)optimal 
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Table 3
Estimator variances nVar0(μ(n)) (×10−3) with a variety of finite computing budgets and constant learning rates, estimated using 
5000 iid replications of the adaptive empirical mean μ(n). The numbers outside parentheses represent estimator variances with 
both importance sampling and control variates, while the numbers inside parentheses are estimator variances with importance 
sampling alone (with ξk ≡ 0d fixed). The crude estimator variance is V (0d) − μ2 = 39.60 × 10−3.

n
c 0.1 0.2 0.5 1 2 5 10

5000 6.962 (8.667) 4.156 (5.393) 2.974 (3.898) 2.268 (3.014) 1.961 (2.643) 2.056 (2.645) 2.292 (2.775)
10000 5.307 (7.075) 3.039 (4.253) 2.112 (3.053) 1.606 (2.323) 1.405 (1.994) 1.468 (2.054) 1.741 (2.278)
15000 4.516 (6.062) 2.613 (3.708) 1.794 (2.660) 1.415 (2.101) 1.166 (1.684) 1.211 (1.765) 1.485 (2.033)
20000 4.356 (5.982) 2.267 (3.383) 1.566 (2.296) 1.249 (1.857) 1.021 (1.563) 1.100 (1.634) 1.349 (1.898)
25000 3.866 (5.425) 2.114 (3.117) 1.435 (2.150) 1.105 (1.718) 0.9535 (1.501) 0.9822 (1.529) 1.223 (1.775)
30000 3.228 (4.991) 1.917 (2.925) 1.349 (2.060) 1.046 (1.687) 0.9374 (1.456) 0.9566 (1.495) 1.168 (1.718)

point (θ∗, ξ∗). With this in mind, we present in Table 3 estimator variances nVar0(μ(n)), estimated using 
5000 iid replications of the adaptive empirical mean μ(n), with a variety of constant learning rates, up to 
the constant multiple c in common on both constant learning rates cγ(n) and cε(n). It is certainly possible 
and more realistic that such miscomputation occurs differently to two (for instance, 2γ(n) and 0.1ε(n)), but 
we do not go into such exhaustive presentation. The 42 (= 7 × 6) experiments are conducted separately for 
each finite computing budget n and miscomputation multiple c.

The proposed algorithm is built to seek a better application of variance reduction techniques adaptively, 
rather than to run Monte Carlo simulation with optimized variance reduction techniques applied from 
the outset. The set of the results here suggests that the best, or nearly best, possible variance ratios 
in this problem setting with both importance sampling and control variates applied is as large as 42.24
(= (V (0d) − μ2)/(nVar0(μ(n)))) gained with n = 30000 and c = 2. Remarkably, even starting from no 
information θ0 = ξ0 = 0d, a right choice of constant learning rates leads us to well reduced estimator 
variance at an early stage. For instance, with n = 5000 and c = 1, the proposed algorithm reaches the 
following high variance ratios:

39.60 × 10−3

2.268 × 10−3 = 17.46, 39.60 × 10−3

3.014 × 10−3 = 13.14,

respectively, if both importance sampling and control variates are applied or if control variates is suppressed 
(with ξk ≡ 0d fixed), relative to the crude Monte Carlo simulation (with θk = ξk ≡ 0d fixed). It is 
encouraging that the addition of control variates contributes to reduce a lot more estimator variance with 
a little additional computing effort, without an exception.

Observe also that the experiments with c = 2 (that is, constant learning rates are doubly miscomputed) 
produce the smallest estimator variance across all computing budgets. This is not very surprising in the 
sense that the constant learning rates (4.3) are derived by minimizing an upper bound for the estimator 
variance (4.6), not the estimator variance itself. It is more essential that the performance is not very sensitive 
to the learning rates as long as those are not too far from the formulas (4.3).

To better illustrate how the proposed algorithm achieves a well reduced estimator variance even at an 
early stage, we plot in Fig. 1 typical trajectories of the successive averaging of the variance reduction 
parameters {θk−1

τn }k∈{τn+1,··· ,n} and {ξk−1
τn }k∈{τn+1,··· ,n}, as well as histograms (normalized as probability 

density functions) of 5000 iid replications of the empirical mean μ(n) with both importance sampling and 
control variates (blue), importance sampling alone with ξk ≡ 0d fixed (red), and no variance reduction 
techniques with θk = ξk ≡ 0d fixed (grey), where the computing budget is either n = 5000 or n = 20000. 
In view of the formulas (4.3) with τn = 0 and λ� = θ0 fixed, we have the ratio of two sizes with different 
computing budgets:

γ(5000)
γ(20000) = ε(5000)

ε(20000) =
(

1
5000

∑5000
k=1 k−1

1 ∑20000
k−1

)1/2

= 1.863,

20000 k=1
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Fig. 1. Numerical results with constant learning rates γ(n) and ε(n). Figures (a), (b) and (c) correspond to the computing budget 
n = 5000, while figures (d), (e) and (f) the computing budget n = 20000. Figures (a), (b), (d) and (e) plot typical trajectories of 
the 16 components of {θk−1

τn
}k∈{τn+1,··· ,n} and {ξk−1

τn
}k∈{τn+1,··· ,n}. Figures (c) and (f) are histograms of 5000 iid replications 

of the empirical mean μ(n) with both important sampling and control variates (blue), importance sampling alone (red), and no 
variance reduction techniques applied (grey). (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

that is, the learning rates of the stochastic approximation algorithms (3.2) and (3.3) are both roughly 
twice as fast with n = 5000 as with n = 20000. As can be seen in Fig. 1 (a) and (b), even with such 
a small computing budget n = 5000, the 16 components seem to get stable at an early stage (as early as 
around 1000 steps), and then the remaining 4000 steps (= 5000 −1000) can run Monte Carlo simulation with 
well-tuned variance reduction techniques. For illustration purpose, we attach the Gaussian density functions 
(dashed lines) based on the corresponding empirical mean and variances. Although we have no such limiting 
Gaussianity of the empirical mean μ(n) at any finite computing budget, the rightmost histograms (c) and 
(f) indicate that the law is fairly close to Gaussian (even at a small finite budget n = 5000), which is an 
encouraging outcome for constructing confidence intervals.

5.2. Infinite computing budget

We next turn to the case where the computing budget is progressively and unlimitedly available. We 
carry over the problem setting of S0 = 50, r = 0.05, T = 0.5, d = 16, σ = 0.10 and K = 55, and set 
n = 5 × 104 iterations, which can be well considered infinite. As earlier, we disable a pilot run and the 
auxiliary parameter by setting τn = 0 and λk ≡ θ0(= 0d), and thus λ� = θ0 as well. We again fix the 
parameter search domains Xk ≡ X0 = [−0.1, 0.6]16 and Tk ≡ T0 = [−0.06, 0.02]16.

In accordance with Theorem 4.2, we let the learning rates be decreasing as γk = εk = (k + 1)−0.6. 
We plot in Fig. 2 typical trajectories of the adaptive empirical mean {μ(k)}k∈{1,··· ,n} of the line (A), 
the successive averaging of importance sampling parameters {θk−1

τ }k∈{τn+1,··· ,n} of the line (C), and the 

n
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Fig. 2. Numerical results by stochastic approximation with decreasing learning rates γk = εk = (k + 1)−0.6 for k ∈ N0. In the 
leftmost figure, the dash-dot line (yellow) is a typical trajectory of the crude Monte Carlo simulation (with θk = ξk ≡ 0d fixed), 
the dashed line (blue) corresponds to the Monte Carlo simulation with importance sampling alone (that is, with ξk ≡ 0d fixed), 
whereas the sold line (red) indicates the Monte Carlo simulation with both importance sampling and control variates employed.

successive averaging of importance sampling parameters {ξk−1
τn }k∈{τn+1,··· ,n} of the line (E). In each of the 

middle and rightmost figures, the 16 trajectories correspond to the 16 components of the parameters θ and 
ξ, respectively. The 16 components of the parameter vectors {θk−1

τn }k∈{τn+1,··· ,n} and {ξk−1
τn }k∈{τn+1,··· ,n}

of Fig. 2 (C) and (E) seem to move towards quite distinct values from each other, distinct enough not 
to project the 16-dimensional vector onto one degree of freedom (that is, θ = θ1d [9, Section 5]). With 
all these 16 components kept free, a frequent search for the minimizer θ∗ on a 16-dimensional space (or 
the joint sub-optimum (θ∗, ξ∗) without convexity on a 32(= 2 × 16)-dimensional space) by sample average 
approximation (Theorem 4.3) is often computationally prohibitive, which warrants the choice of stochastic 
approximation (Section 3.1) over sample average approximation (Section 3.2). As has long been widely 
known, however, the performance depends on the choice of the decreasing learning rates {γk}k∈N0 and 
{εk}k∈N0 , which is essentially arbitrary as long as the �2 \ �1-condition is satisfied. Let us add that the 
performance depends largely on the random seed chosen for experiments as well.

6. Concluding remarks

We have advanced an adaptive variance reduction framework in such a way that both importance sampling 
and control variates can be applied in parallel. We have derived convergence rates of an upper bound for the 
theoretical estimator variance towards its minimum as a fixed computing budget increases, when stochastic 
approximation runs with optimal constant learning rates. We have also proved that the proposed algorithm 
attains the minimal estimator variance in the limit by stochastic approximation with decreasing learning 
rates or by sample average approximation, when computing budget is unlimitedly available. We close this 
study by highlighting additional practical considerations and future directions of research stemming from 
this work.

First, we have kept the problem setting as general as possible, rather than developing a tailor-made 
methodology for a specialized problem class, such as the rare event simulation. A natural question is how 
far the proposed framework can be specialized for performance improvements if the problem setting is more 
focused. One such approach is a non-linearization of the variates (Section B.2), which however would cost 
us significantly more intricate proofs for convergence results. Specialization of the problem setting may also 
guide us as to the choice of the bypass distribution, which is currently exponential or normal distribution 
for easy and light computation.

Next, despite that the proposed algorithm runs and the convergence results hold true in their current 
form no matter how large the problem dimension is in theory with almost no additional coding effort, 
a serious increase of computational complexity in high-dimensional problems is a crucial matter from a 
practical point of view. As is clear, parametrizing every component of θ and ξ (just like Section 5) would 
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not reduce the variance relative to the increased computing cost required for implementation, such as (say, 
if d = 106) computing 106-dimensional gradients, projecting and averaging 106-dimensional vectors ((B)-(E)
of Section 3.1) and optimizing over a 106-dimensional parameter domain ((G) of Section 3.2) at every step, 
whereas such explosive complexity would never pay off. A possible evasion is to adopt the simple averaging
(H) (rather than (D)-(E)) for the control variates component so as to skip many computation steps, such 
as metric projection and optimization. Another and more straightforward one is a direct projection of the 
parameter vectors (the most extreme one is onto scaler as mentioned in Section 5.2, that is, θ = θ1d and 
ξ = ξ1d), which can directly lower the vector dimensions in the lines (B)-(E) of Section 3.1 and (G)-(H) of 
Section 3.2.

Last but not least, we are still left to fix criteria for designing the auxiliary parameter, the stopping time, 
and the shrinking parameter domains. In particular, the supremums (4.4) and (4.5) require an additional 
optimization procedure, which could potentially stand as a fatal bottleneck, especially in high-dimensional 
problems. Relevant difficulties here may be mitigated somehow by forcing the algorithm to make a decision 
on such components at predetermined timings, for instance, through batching of the run, which would be 
an interesting direction of research towards improvements in both performance and implementation.

Appendix A. Proofs

We collect all proofs here with main focus on additional intricate derivations due to the lack of joint 
convexity of the sum V (θ) +W (θ, ξ) with respect to the parameter (θ, ξ). To avoid overloading the paper, 
we skip nonessential details of somewhat routine nature in some instance, particularly where the existing 
results on the stochastic programming [18] and on the importance sampling term V (θ) alone [11] can be 
applied.

Proof of Theorem 4.1. Throughout, we fix n ∈ N and let m ∈ {0, 1, · · · , n} and l ∈ {m + 1, · · · , n}. On the 
event Am := {τn = m}, we have λ(l−1)∧τn = λ(l−1)∧m = λm = λ� for all l ∈ {m + 1, · · · , n}.

(i) First, as for the second moment function V (θ) on the importance sampling component, we employ 
the upper bounds derived in the preceding work [11]:

E0

[
V (θk−1

m )1(Am)
]
≤ V (θ∗)P0(Am)

+
(1 − αmγm)diam2(Tm)P0(Am) + E0[L2(Tm;λ�)1(Am)]

∑k
l=m+1 γ

2
l−1

2
∑k

t=m+1 γt−1
,

(A.1)

and

E0

[
1
n

n∑
k=τn+1

V (θk−1
τn )

]
≤ V (θ∗)

(
1 − E0[τn]

n

)
+ E0

[
diam2(Tτn) 1

2n

n∑
k=τn+1

1 − ατnγτn∑k
t=τn+1 γt−1

]

+ E0

[
L2(Tτn ;λ�) 1

2n

n∑
k=τn+1

∑k
l=τn+1 γ

2
l−1∑k

t=τn+1 γt−1

]
. (A.2)

To avoid a simple repetition, we refer the reader to [11, Appendix A] for their derivation.
Next, we derive an upper bound for n−1E0[

∑n
k=τn+1 W (θk−1

τn , ξ
k−1
τn )]. Observe that the function W (θ, ξ)

is strongly convex in the second argument with parameter 1/6:

W (θ, ξ∗) = W (θ, ξ) + 〈ξ∗ − ξ,∇ξW (θ, ξ)〉 + (1/6) ‖ξ∗ − ξ‖2
, (ξ, ξ∗) ∈ Rd ×Rd. (A.3)
2
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Fix l ∈ {m + 1, · · · , n} and k ∈ {l, · · · , n}. It holds that, on the event Am,

‖ξl − ξ∗‖2 =
∥∥∥∏

Xl

(
ξl−1 − εl−1∇ξS(Ul;θl−1, ξl−1,λ

�)
)
−

∏
Xl

(ξ∗)
∥∥∥2

≤
∥∥ξl−1 − εl−1∇ξS(Ul;θl−1, ξl−1,λ

�) − ξ∗
∥∥2

=
∥∥ξl−1 − ξ∗

∥∥2 + ε2l−1
∥∥∇ξS(Ul;θl−1, ξl−1,λ

�)
∥∥2 − 2εl−1

〈
ξl−1 − ξ∗,∇ξS(Ul;θl−1, ξl−1,λ

�)
〉

=
∥∥ξl−1 − ξ∗

∥∥2 + ε2l−1
∥∥∇ξS(Ul;θl−1, ξl−1,λ

�)
∥∥2 − 2εl−1

〈
ξl−1 − ξ∗,∇ξS(Ul;θ∗, ξl−1,λ

�)
〉

− 4εl−1
〈
ξl−1 − ξ∗, Q(Ul;θl−1,λ

�) −Q(Ul;θ∗,λ�)
〉
.

Taking conditional expectation El−1 yields

El−1

[
‖ξl − ξ∗‖2

]
≤

∥∥ξl−1 − ξ∗
∥∥2 + ε2l−1

∫
(0,1)d

∥∥∇ξS(u;θl−1, ξl−1,λ
�)
∥∥2

du

− 2εl−1
〈
ξl−1 − ξ∗,∇ξW (θ∗, ξl−1)

〉
− 4εl−1

〈
ξl−1 − ξ∗,W0(θl−1) −W0(θ∗)

〉
.

Combining this with the strong convexity (A.3) yields

2εl−1
(
W (θ∗, ξl−1) −W (θ∗, ξ∗)

)
≤ −εl−1

6
∥∥ξl−1 − ξ∗

∥∥2 −
(
El−1

[
‖ξl − ξ∗‖2

]
−

∥∥ξl−1 − ξ∗
∥∥2

)
+ ε2l−1

∫
(0,1)d

∥∥∇ξS(u;θl−1, ξl−1,λ
�)
∥∥2

du − 4εl−1
〈
ξl−1 − ξ∗,W0(θl−1) −W0(θ∗)

〉
,

where both θl−1 and ξl−1 are Fl−1-measurable, while the random vector Ul is independent of the σ-field 
Fl−1. Recall the convex combination (3.4), and again the strong convexity (A.3). We multiply the inequality 
above by the Fl−1-measurable indicator 1(Am), divide by the strictly positive constant 

∑k
t=m+1 εt−1, and 

take conditional expectation E0, which overall yields

E0

[
W (θ∗, ξ

k−1
m )1(Am)

]
≤ E0

[
k∑

l=m+1

εl−1∑k
t=m+1 εt−1

W (θ∗, ξl−1)1(Am)
]

≤ W (θ∗, ξ∗)P0(Am) + 1 − εm/6
2
∑k

t=m+1 εt−1
P0(Am)diam2(Xm)

+ 1
2

k∑
l=m+1

ε2l−1∑k
t=m+1 εt−1

J2(Tm,Xm;λ�)P0(Am)

− 2
k∑

l=m+1

εl−1∑k
t=m+1 εt−1

E0
[〈
ξl−1 − ξ∗,W0(θl−1) −W0(θ∗)

〉
1(Am)

]
, (A.4)

due to the assumptions (b) and (f). Moreover, applying the identity

E0

[
W (θk−1

m , ξ
k−1
m )1(Am)

]
= E0

[
W (θ∗, ξ

k−1
m )1(Am)

]
+ 2E0

[〈
ξ
k−1
m ,W0(θ

k−1
m ) −W0(θ∗)

〉
1(Am)

]
,

(A.5)

and taking double summation n−1 ∑n ∑n , we get
m=0 k=m+1
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E0

[
1
n

n∑
k=τn+1

W (θk−1
τn , ξ

k−1
τn )

]
≤ W (θ∗, ξ∗)

(
1 − E0[τn]

n

)
+ 1

2nE0

[
diam2(Xτn)

n∑
k=τn+1

1 − ετn/6∑k
t=τn+1 εt−1

]

+ 1
2nE0

[
J2(Tτn ,Xτn ;λ�)

n∑
k=τn+1

∑k
l=τn+1 ε

2
l−1∑k

t=τn+1 εt−1

]

− 2E0

[
1
n

n∑
k=τn+1

k∑
l=τn+1

εl−1∑k
t=τn+1 εt−1

〈
ξl−1 − ξ∗,W0(θl−1) −W0(θ∗)

〉]

+ 2E0

[
1
n

n∑
k=τn+1

〈
ξ
k−1
τn ,W0(θ

k−1
τn ) −W0(θ∗)

〉]
. (A.6)

Next, by combining two inequalities (A.2) and (A.6) and setting arbitrary (yet strictly positive) constant 
learning rates γk ≡ γ(> 0) and εk ≡ ε(> 0), we obtain the inequality (4.6). Note that all random vectors 
θ
k−1
τn and ξ

k−1
τn in the function Υd(n) above are independent of the constant learning rates γ and ε, since 

then θ
k−1
τn =

∑k−1
l=τn

γ∑k−1
t=τn

γ
θl = 1

k−τn

∑k−1
l=τn

θl and ξ
k−1
τn =

∑k−1
l=τn

ε∑k−1
t=τn

ε
ξl = 1

k−τn

∑k−1
l=τn

ξl. Also, note 

however that the expectation in the line (A.6) cannot be replaced with Υd(n) as of yet, since the learning 
rates are generally not constant at the stage of (A.6). Hence, regarding the minimization, it suffices to 
examine the first two terms Υa(n; γ) and Υb(n; ε), and moreover separately. First, it holds that for every 
n ∈ N and γ > 0,

Υa(n; γ) ≥ 1
n

(
E0

[
diam2(Tτn)

n−τn∑
k=1

k−1

]
E0

[
L2(Tτn ;λ�)(n− τn)

])1/2

− 1
2nE0

[
ατndiam2(Tτn)

n−τn∑
k=1

k−1

]
= Υa(n; γ(n)), (A.7)

where the inequality holds true uniformly in γ(> 0) with equality uniquely with the constant γ(n) given by 
(4.3). In a similar manner, it holds that for every n ∈ N and ε > 0,

Υb(n; ε) ≥ 1
n

(
E0

[
diam2(Xτn)

n−τn∑
k=1

k−1

]
E0

[
J2(Tτn ,Xτn ;λ�)(n− τn)

])1/2

− 1
12nE0

[
diam2(Xτn)

n−τn∑
k=1

k−1

]
= Υb(n; ε(n)), (A.8)

where the inequality holds true uniformly in ε > 0 with equality uniquely with the constant ε(n) given in 
(4.3). It is now straightforward from the expressions (A.7) and (A.8) that Υa(n; γ(n)) = O(

√
ln(n)/n) and 

Υb(n; ε(n)) = O(
√

ln(n)/n), as n ↑ +∞.
(ii) It suffices to set εk ≡ 0, which yields W (θk−1

τn , ξ
k−1
τn ) = W (θk−1

τn , 0d) = 0, P0-a.s.
(iii) It remains to derive the convergence of the two terms Υc(n) and Υd(n) to zero as n ↑ +∞. To this 

end, we prepare some auxiliary results. Recall (Assumption 2.1 (g)) that the function G(z; θ) is Lipschitz 
(in θ) on every compact subset Tk of Θ2, uniformly in z (on D). Hence, there exists c > 0 such that for 
every k ∈ {0, 1, · · · , n} and θ ∈ Tk,

‖W0(θ) −W0(θ∗)‖2 =

∥∥∥∥∥∥∥
∫

d

Ψ(u)
(
G(G−1(u;θ0);θ) −G(G−1(u;θ0);θ∗)

)
du

∥∥∥∥∥∥∥
2

(0,1)
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≤
∫

(0,1)d

|Ψ(u)|2
∥∥G(G−1(u;θ0);θ) −G(G−1(u;θ0);θ∗)

∥∥2
du ≤ c2V (θ0) ‖θ − θ∗‖2

,

where the first inequality holds by the Cauchy-Schwarz inequality. Moreover, due to the assumption 
lim infk↑+∞ αk > 0, there exist α̃ > 0 and k0 ∈ N such that for all k ≥ k0, (α̃/2)‖θ− θ∗‖2 ≤ V (θ) − V (θ∗)
on the compact set Tk. It thus holds that for all θ ∈ T0,

‖W0(θ) −W0(θ∗)‖2 ≤ c2V (θ0) ‖θ − θ∗‖2

≤ 2c2V (θ0)
α̃

(V (θ) − V (θ∗))1(θ ∈ Tk0) + c2V (θ0) ‖θ − θ∗‖2
1(θ /∈ Tk0), (A.9)

which further yields

E0

[
1
n

n∑
k=τn+1

1
k − τn

k∑
l=τn+1

‖W0(θl−1) −W0(θ∗)‖2
]

≤ 2c2V (θ0)
α̃

E0

[
1
n

n∑
k=τn+1

1
k − τn

k∑
l=τn+1

(V (θl−1) − V (θ∗))1(θl−1 ∈ Tk0)
]

+ c2V (θ0)E0

[
1
n

n∑
k=τn+1

1
k − τn

k∑
l=τn+1

‖θl−1 − θ∗‖2
1(θl−1 /∈ Tk0)

]

� 2c2V (θ0)
α̃

E0

[
1
n

n∑
k=τn+1

1
k − τn

k∑
l=τn+1

(V (θl−1) − V (θ∗))
]

≤ 2c2V (θ0)
α̃

Υa(n; γ(n)),

where we have applied the inequalities (A.1), (A.2) and (A.9) with the constant learning rate γ(n) and the 
second inequality holds asymptotically as n ↑ +∞, up to a constant due to the fact θl−1 ∈ Tl−1. Moreover, 
it holds that for each n ∈ N,

E0

[
1
n

n∑
k=τn+1

1
k − τn

k∑
l=τn+1

∥∥ξl−1 − ξ∗
∥∥2

]
≤ 12E0

[
1
n

n∑
k=τn+1

1
k − τn

k∑
l=τn+1

(
W (θ∗, ξl−1) −W (θ∗, ξ∗)

)]

≤ 12 (Υb(n; ε(n)) + 2Υc(n)) ,

where we have applied the inequalities (A.4), (A.5) and (A.6) with the constant learning rate ε(n), and 
the strong convexity (1/12)‖ξ − ξ∗‖2 ≤ W (θ∗, ξ) − W (θ∗, ξ∗). On the whole, with θl−1 ∈ Tk0 for all 
l ∈ {k0, · · · , n}, it holds that

|Υc(n)|2 ≤ E0

[
1
n

n∑
k=τn+1

1
k − τn

k∑
l=τn+1

‖W0(θl−1) −W0(θ∗)‖2
]
E0

[
1
n

n∑
k=τn+1

1
k − τn

k∑
l=τn+1

∥∥ξl−1 − ξ∗
∥∥2

]

� 24c2V (θ0)
α̃

Υa(n; γ(n)) (Υb(n; ε(n)) + Υc(n)) ,

where we have applied the Cauchy-Schwarz inequality for the first inequality. With the aid of Υa(n; γ(n)) =
O(

√
ln(n)/n) and Υb(n; ε(n)) = O(

√
ln(n)/n), this yields |Υc(n)| = o(

√
ln(n)/n). Similarly, using the 

inequality (A.9) with an additional convexity argument, it holds P0-a.s. that
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∥∥∥W0(θ
k−1
τn ) −W0(θ∗)

∥∥∥2

≤ c2V (θ0)
∥∥∥θk−1

τn − θ∗
∥∥∥2

≤ c2V (θ0)
k − τn

k∑
l=τn+1

‖θl−1 − θ∗‖2

≤ c2V (θ0)
k − τn

k∑
l=τn+1

[
2
α̃

(V (θl−1) − V (θ∗))1(θl−1 ∈ Tk0) + ‖θl−1 − θ∗‖2
1(θl−1 /∈ Tk0)

]
,

which yields

|Υd(n)|2 ≤ E0

[
1
n

n∑
k=τn+1

∥∥∥W0(θ
k−1
τn ) −W0(θ∗)

∥∥∥2
]
E0

[
1
n

n∑
k=τn+1

∥∥∥ξk−1
τn

∥∥∥2
]

� 2c2V (θ0)diam2(X0)
α̃

(
1 − E0[τn]

n

)
Υa(n; γ(n)).

Hence, |Υd(n)| = O( 4
√

ln(n)/n), as n ↑ +∞. �
As is clear from the presence of the convexity parameter ατn in the second term of the minimized upper 

bound (A.7), on the one hand, a strong convexity of the expected value function V (θ) contributes to lower 
the upper bound. The proposed algorithm allows one to enjoy this contribution free of charge, in the sense 
that the prior knowledge of the convexity parameter α is not required for implementation. On the other 
hand, the second term of the minimized upper bound (A.8) is due to the strong convexity of the function 
W (θ, ξ) in ξ with parameter 1/6. The strong convexity benefit in the both terms (A.7) and (A.8) decay in the 
order O(ln(n)/n), that is, quadratically as fast as the respective first leading terms of order O(

√
ln(n)/n). 

Hence, the more computing budget, the more prominent the first O(
√

ln(n)/n)-order terms will be.
It is worth mentioning that the inequality (4.6) holds true even when the second moment function V (θ)

is not strongly convex. Moreover, as desired, the two minimized terms Υa(n; γ(n)) and Υb(n; ε(n)) of the 
upper bound (4.6) tend to zero, again without strong convexity of V (θ). The strong convexity of V (θ) is only 
employed for the convergences of the remaining two residual terms Υc(n) and Υd(n), more precisely, for the 
inequality (A.9). In the absence of a particular structure of the function W0(θ) (in particular, this function 
is far from convex/concave), we have not been able to place appropriate upper bounds for the remaining 
two residual terms Υc(n) and Υd(n) without the strong convexity requirement as of yet. Nevertheless, as 
we have observed through numerical results (Section 5), the constant learning rates γ(n) and ε(n) seem to 
realize a very low estimator variance, in fact, fairly close to the intended minimum V (θ∗) +W (θ∗, ξ∗) −μ2, 
given a relatively large yet fixed computing budget. The strong convexity requirement is indeed sufficient to 
lead the upper bound to attain the intended minimum (Theorem 4.1 (iii)), whereas we conjecture that, in 
practice, this requirement is not necessary for the actual estimator variance (not its upper bound) to attain 
the intended minimum.

Proof of Theorem 4.2. The derivation of those results entails somewhat repetitive algebraic work similar 
to the proof of Theorem 4.1 and, for instance, [9, Theorem 3.4]. To avoid overloading the paper, we omit 
nonessential details from place to place.

(i) Define φk := R(Uk; ̃θk−1, ̃ξk−1) −μ, which forms a martingale difference sequence with respect to the fil-
tration (Fk)k∈N0 . The stochastic process {

∑n
k=1 φk : n ∈ N} is a square integrable martingale with respect 

to the filtration (Fn)n∈N , where the second moment of each summand is bounded by sup(θ,ξ)∈T0×X0
(V (θ) +

W (θ, ξ)) < +∞. Moreover, we have n−1 ∑n
k=1 Ek−1[|φk|2] = n−1 ∑n

k=1(V (θ̃k−1) + W (θ̃k−1, ̃ξk−1)) − μ2, 
whose limit superior in n is almost surely finite by the standing assumption. Therefore, we obtain the desired 
convergence n−1 ∑n

φk = μ(n) − μ → 0, P0-a.s.
k=1
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(ii) Define ηa,k := N(Uk; ̃θk−1, λ(k−1)∧τn) − V (θ̃k−1) and ηb,k := S(Uk; ̃θk−1, ̃ξk−1, λ(k−1)∧τn) −
W (θ̃k−1, ̃ξk−1), each of which forms a martingale difference sequence with respect to the filtration (Fk)k∈N0 , 
so that

σ2(n) = 1
n

n∑
k=1

ηa,k + 1
n

n∑
k=1

ηb,k + 1
n

n∑
k=1

[
V (θ̃k−1) + W (θ̃k−1, ξ̃k−1)

]
− μ2(n). (A.10)

We first show the first two terms in (A.10) converge P0-a.s. to zero. Using the notation

S0(θ, ξ,λ) :=
∫

(0,1)d

(S(u;θ, ξ,λ))2 du = 4
〈
ξ,

∫
(0,1)d

(Q(u;θ,λ))⊗2du ξ

〉
+ ‖ξ‖2

6 W (θ, ξ) − ‖ξ‖4

144 ,

observe that for each n ∈ N,

1
n

n∑
k=1

Ek−1
[
|ηak |2

]
+ 1

n

n∑
k=1

Ek−1
[
|ηbk|2

]

= 1
n

n∑
k=1

⎡⎢⎣ ∫
(0,1)d

H(u;λ(k−1)∧τn ,θ0)
∣∣∣H(u; θ̃k−1,θ0)

∣∣∣2 |Ψ(u)|4du + S0(θ̃k−1, ξ̃k−1,λ(k−1)∧τn) − (V (θ̃k−1))2

− (W (θ̃k−1, ξ̃k−1))2

⎤⎥⎦ ,

where the (averaged) first term here is almost surely finite in the limit by the standing assump-
tion, the (averaged) second term inside is finite since sup(θ,ξ,λ)∈T0×X0×Λ0

|S0(θ, ξ, λ)| < +∞ due to 
|〈ξ, 

∫
(0,1)d(Q(u; θ, λ))⊗2duξ〉| ≤ cd‖ξ‖2 ∫

(0,1)d H(u; λ, θ0)|Ψ(u)|2du and the assumption (2.8) with Λ0 ⊆ Θ1, 
for a suitable positive constant cd depending on the dimension d. The (averaged) last two terms are finite 
in the limit as well by the standing assumption. Hence, it suffices to show that n−1 ∑n

k=1(V (θ̃k−1) +
W (θ̃k−1, ̃ξk−1)) → V (θ∗) + W (θ∗, ξ∗) in L1(Ω, F , P0).

The importance sampling component is rather straightforward, with the aid of the proof of Theorem 4.1. 
Using the definition of the minimizer θ∗, that is, V (θ) ≥ V (θ∗) on the domain Θ2, it holds that

E0

[∣∣∣∣∣ 1n
n∑

k=1

V (θ̃k−1) − V (θ∗)

∣∣∣∣∣
]

= E0

[
1
n

n∑
k=1

V (θ̃k−1)
]
− V (θ∗)

≤ (V (θ0) − V (θ∗)) E0[τn]
n

+ E0

[
diam2(Tτn) 1

2n

n∑
k=τn+1

1 − 2ατnγτn∑k
t=τn+1 γt−1

]

+ E0

[
L2(Tτn ;λ�) 1

2n

n∑
k=τn+1

∑k
l=τn+1 γ

2
l−1∑k

t=τn+1 γt−1

]
→ 0,

as n ↑ +∞, due to the inequality (A.2). Note that the second and third terms tend to zero faster than the 
case with constant learning rates of Theorem 4.1.

The control variates component needs to be dealt with separately for its positive and negative parts, as 
the value W (θ∗, ξ∗) may not be the joint global minimum of the function W (θ, ξ) on the domain Θ2 ×Rd. 
For the positive part, observe that
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E0

[
1
n

n∑
k=1

W (θ̃k−1, ξ̃k−1) −W (θ∗, ξ∗)
]

= E0

[
1
n

n∑
k=τn+1

W (θk−1
τn , ξ

k−1
τn ) −W (θ∗, ξ∗)

]

≤ −W (θ∗, ξ∗)E0[τn]
n

+ 1
2nE0

[
diam2(Xτn)

n∑
k=τn+1

1 − ετn/6∑k
t=τn+1 εt−1

]

+ 1
2nE0

[
J2(Tτn ,Xτn ;λ�)

n∑
k=τn+1

∑k
l=τn+1 ε

2
l−1∑k

t=τn+1 εt−1

]

− 2E0

[
1
n

n∑
k=τn+1

k∑
l=τn+1

εl−1∑k
t=τn+1 εt−1

〈
ξl−1 − ξ∗,W0(θl−1) −W0(θ∗)

〉]

+ 2E0

[
1
n

n∑
k=τn+1

〈
ξ
k−1
τn ,W0(θ

k−1
τn ) −W0(θ∗)

〉]
→ 0,

due to the inequality (A.6), while for the negative part,

E0

[
1
n

n∑
k=1

W (θ̃k−1, ξ̃k−1) −W (θ∗, ξ∗)
]

= E0

[
1
n

n∑
k=1

(
W (θ̃k−1, ξ̃k−1) −W (θ∗, ξ̃k−1)

)]

+ E0

[
1
n

n∑
k=1

(
W (θ∗, ξ̃k−1) −W (θ∗, ξ∗)

)]

≥ E0

[
1
n

n∑
k=1

(
W (θ̃k−1, ξ̃k−1) −W (θ∗, ξ̃k−1)

)]

= E0

[
1
n

n∑
k=τn+1

〈
ξ
k−1
τn ,W0(θ

k−1
τn ) −W0(θ∗)

〉]
→ 0,

due to the definition (2.16) of the minimizer ξ∗, where both convergences hold true in a similar manner to, 
and again faster than, the case with constant learning rates of Theorem 4.1.

(iii) It suffices to verify the Lindeberg condition for the martingale central limit theorem, due to the 
rewriting

√
n
μ(n) − μ

σ(n) =
√
n

n−1 ∑n
k=1 φk

(n−1 ∑n
k=1 Ek−1[|φk|2])1/2

(
n−1 ∑n

k=1 Ek−1[|φk|2]
σ2(n)

)1/2

.

First, by applying the Minkowski inequality twice, we obtain that for each k ∈ N,

Ek−1 [|φk|q]1/q ≤

⎛⎜⎝ ∫
(0,1)d

∣∣∣R(u; θ̃k−1)
∣∣∣q du

⎞⎟⎠
1/q

+
√
d‖ξ̃k−1‖

2 + |μ|.

By the Hölder inequality and the Markov inequality, it holds that for each ε > 0,

1
n

n∑
Ek−1

[
|φk|21

(
|φk| > ε

√
n
)]
k=1
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≤ 1
n

n∑
k=1

Ek−1 [|φk|q]2/q
(
Pk−1

(
|φk| > ε

√
n
))1−2/q

≤ 1
n

n∑
k=1

⎡⎢⎢⎣
⎛⎜⎝ ∫

(0,1)d

∣∣∣R(u; θ̃k−1)
∣∣∣q du

⎞⎟⎠
1/q

+
√
d‖ξ̃k−1‖

2 + |μ|

⎤⎥⎥⎦
2 (

Ek−1[|φk|2]
ε2n

)1−2/q

≤ 1
(ε2n)1−2/q sup

(θ,ξ)∈T ×X
(V (θ) + W (θ, ξ) − μ2)1−2/q

× 1
n

n∑
k=1

⎡⎢⎢⎣
⎛⎜⎝ ∫

(0,1)d

∣∣∣H(u; θ̃k−1,θ0)
∣∣∣q−1

|Ψ(u)|qdu

⎞⎟⎠
1/q

+
√
d‖ξ̃k−1‖

2 + |μ|

⎤⎥⎥⎦
2

,

which converges P0-a.s. to zero as n ↑ +∞, due to 1 − 2/q > 0. �
Proof of Theorem 4.3. We focus on (i) and (iii), as the proof of Theorem 4.2 (i) and (iii) directly applies, 
respectively, to (ii) and (iv) here.

(i) The almost sure convergence θ̃k → θ∗ holds true along the subsequence {k ∈ N : �a(k) = 1}, just 
as proved in [9, Theorem 3.3], irrespective of the presence of the control variates component, as {λk}k∈N0

remains adapted to the filtration (Fk)k∈N0 . Therefore, in light of the iteration (3.6), it suffices to show 
that k−1 ∑k

j=1 Q(Uj ; θ, λ(k−1)∧τn) converges P0-a.s., along the subsequence {k ∈ N : �b(k) = 1}, to ∫
(0,1)d Q(u; θ, λ�)du uniformly in θ on a neighborhood of the (deterministic) limiting point θ∗. Let A

be a compact subset of Θ2 with θ∗ ∈ A and fix θ ∈ A. It holds P0-a.s. that for every k > τn,

1
k

k∑
j=1

Q(Uj ;θ,λ(k−1)∧τn) = 1
k

k∑
j=1

Q(Uj ;θ,λ�) = 1
k

τn∑
j=1

Q(Uj ;θ,λ�) + k − τn
k

1
k − τn

k∑
j=τn+1

Q(Uj ;θ,λ�)

→
∫

(0,1)d

Q(u;θ,λ�)du =
∫

(0,1)d

Ψ(u)(G(G−1(u;θ0);θ) − 1d/2)du =: ς(θ),

(A.11)

where the convergence holds true by the random sum strong law of large numbers since τn is bounded by n
and the tail {Uj}j>τn is independent of the Fτn-measurable stopped point λ�. Next, it holds P0-a.s. that 
for every k > τn,

sup
ζ∈A∩Bε[θ]

∥∥∥∥∥∥1
k

k∑
j=1

Q(Uj ;θ,λ(k−1)∧τn) − 1
k

k∑
j=1

Q(Uj ; ζ,λ(k−1)∧τn)

∥∥∥∥∥∥
≤ 1

k

k∑
j=1

sup
ζ∈A∩Bε[θ]

‖Q(Uj ;θ,λ�) −Q(Uj ; ζ,λ�)‖

→
∫

(0,1)d

sup
ζ∈A∩Bε[θ]

‖Q(u;θ,λ�) −Q(u; ζ,λ�)‖ du

=
∫

d

|Ψ(u)| sup
ζ∈A∩Bε[θ]

∥∥G(G−1(u;θ0);θ) −G(G−1(u;θ0); ζ)
∥∥ du
(0,1)
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≤ εcε

∫
(0,1)d

|Ψ(u)|du,

where the convergence holds true as k ↑ +∞ by the random sum strong law of large numbers, the equality 
holds true by a change of variables, and the last inequality holds by Assumption 2.1 (g) with a suitable 
positive constant cε, which is non-increasing as ε ↓ 0.

Hence, there exist a finite number of points {θ(l)}l=1,··· ,m in the compact set A and respec-
tive neighborhoods {Al}l=1,··· ,m, with A ⊆ ∪l=1,··· ,mAl, such that for sufficiently large k(> τn), 
supζ∈Al

‖k−1 ∑k
j=1 Q(Uj ; θ(l), λ

�) −k−1 ∑k
j=1 Q(Uj ; ζ, λ�)‖ < ε, P0-a.s., as well as supζ∈Al

‖ς(θ(l)) −ς(ζ)‖ <
ε, for every l = 1, · · · , m and q = 0, 1, 2, thanks to the continuity of the deterministic function ς(θ) in θ. 
Moreover, the result (A.11) asserts that for sufficiently large k(> τn), ‖k−1 ∑k

j=1 Q(Uj ; θ(l), λ
�) − ς(θ(l))‖ <

ε, P0-a.s., and thus overall, for sufficiently large k(> τn), supθ∈A ‖k−1 ∑k
j=1 Q(Uj ; θ, λ�) − ς(θ)‖ < 3ε, 

P0-a.s. This asserts the desired almost sure uniform convergence of k−1 ∑k
j=1 Q(Uj ; θ, λ(k−1)∧τn) to the 

deterministic function ς(θ) on a neighborhood of the optimal point θ∗. Hence, the continuous mapping 
theorem yields the joint almost sure convergence (θ̃k, ̃ξk) → (θ∗, ξ∗).

(iii) The convergence to μ follows directly from (ii). For the remainder, as we have shown in the proof of 
Theorem 4.2 (ii), it suffices to show the almost sure convergence n−1 ∑n

k=1(V (θ̃k−1) + W (θ̃k−1, ̃ξk−1)) →
V (θ∗) + W (θ∗, ξ∗). The convergence to V (θ∗) is rather straightforward since Vn(θ) := n−1 ∑n

k=1 V (θ)
(which is, in fact, V (θ) itself irrespective of n) is uniformly convergent to V on a neighborhood of θ∗ by 
Proposition 2.2, as well as due to the convergence result (i). To show the convergence to W (θ∗, ξ∗), observe 
first that

1
n

n∑
k=1

W (θ̃k−1, ξ̃k−1) −W (θ∗, ξ∗) = 1
n

n∑
k=1

(
W (θ̃k−1, ξ̃k−1) −W (θ∗, ξ̃k−1)

)

+
[

1
n

n∑
k=1

W (θ∗, ξ̃k−1) −W (θ∗, ξ∗)
]
,

where the second term on the righthand side clearly tends to zero P0-a.s. due to its simple quadratic 
structure (2.7) in ξ, as well as due to the convergence result (i). The first term tends to zero as well, since 
|n−1 ∑n

k=1(W (θ̃k−1, ̃ξk−1) − W (θ∗, ̃ξk−1))| ≤ cn−1 ∑n
k=1 ‖ξ̃k−1‖‖θ̃k−1 − θ∗‖ → 0, for a suitable positive 

constant c, due to Assumption 2.1 (g). �
Appendix B. Technical notes

We collect some relevant technical details, which are important complements to the development and 
analysis in the main body.

B.1. Importance sampling first, or control variates first?

As is clear from the progression (2.2), we apply change of measure first, and then introduce the control 
variates term without being influenced by the first change of measure. A natural question here is what if 
the control variates term was introduced first and then change of underlying measure, that is,

μ =
∫

(0,1)d

H(u;θ,θ)
(
Ψ

(
G(G−1(u;θ);θ0)

)
+

〈
ξ, G(G−1(u;θ);θ0) − 1d/2

〉)
du, (B.1)

whose estimator variance is then given by
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(
V (θ) + W (θ, ξ) − μ2) +

〈
ξ,

∫
(0,1)d

(H(u;θ,θ0) − 1) (u − 1d/2)⊗2
duξ

〉
, (B.2)

where the rightmost term (quadratic in ξ) indicates the difference from the estimator variance (2.5). It 
seems unclear, without numerical experiments, which expression, (2.2) or (B.1), reduces more variance, or 
more precisely, whether the rightmost term of (B.2) is positive or negative. The estimator variance (B.2) is 
much more demanding from both computational and theoretical standpoints, due to the additional integral, 
involving the likelihood ratio H(u; θ, θ0), in the quadratic term. As our primary interest is not only the 
resulting performance (how much variance can be reduced), but also the ease of implementation, we adopt 
the original approach (2.2) and do not treat the alternative approach (B.1) in the present work.

B.2. Nonlinear variates

The control variates we have adopted is one of the simplest forms and can be generalized in various ways. 
For instance, the linear variates 〈ξ, u − 1d/2〉 in the integrand (2.2) may be replaced with, for instance, 
a more general form 〈ξ, C(u)〉, where C : (0, 1)d → Rdc , 

∫
(0,1)d C(u)du = 0dc

and ξ ∈ Rdc for a suitable 

dimension dc, provided that the variance-covariance matrix 
∫
(0,1)d(C(u))⊗2du ∈ Rdc×dc is known (or, at 

least readily computable with high accuracy). However, given that our focus is the integrand Ψ(u) in the 
most general form (1.1), we adopted the simple linear variates 〈ξ, u− 1d/2〉 with a view towards a general 
integrand Ψ(u), rather than a general nonlinear variates 〈ξ, C(u)〉 for a specialized integrand.

B.3. Joint suboptimality and perfect variance reduction

As a simple one-dimensional example for illustration purpose, consider Ψ(u) = uq for some q > −1, with 
the expectation μ =

∫ 1
0 Ψ(u)du = (1 +q)−1 and the crude second moment V (θ0) =

∫ 1
0 (Ψ(u))2du = (1 +2q)−1. 

(At the moment, we let θ0 only represent no importance sampling.) To emphasize that the problem setting 
is one-dimensional, we make the letters u, θ and ξ unbold throughout this example.

First, we employ the exponential bypass distribution g(z; θ) = θe−θz, G(z; θ) = e−θz, and G−1(u; θ) =
−θ−1 ln(u), with θ0 = 1. Based on the representations (2.6) and (2.7), we have

V (θ) =
∫

(0,1)

(R(u; θ))2 du =
∫

(0,1)

1
θ
u1+2q−θdu = 1

θ(2 + 2q − θ) ≥ 1
(1 + q)2 = V (θ∗),

where the minimum is attained uniquely at θ∗ = 1 + q. We have V (θ∗) = μ2, which indicates perfect 
importance sampling is achieved, that is, one condition in Theorem 4.2 (iii) is violated. In fact, we have

W (θ, ξ) = 2ξ
∫

(0,1)

R(u; θ) (u− 1/2) du + 1
12ξ

2 = 2ξ
∫

(0,1)

uq
(
uθ − 1/2

)
du + 1

12ξ
2

= 2ξ
(

1
θ + 1 + q

− 1
2(1 + q)

)
+ 1

12ξ
2,

which yields W (θ∗, ξ) = W (1 + q, ξ) = ξ2/12 and thus ξ∗ = 0. Indeed, no control variates is needed. It 
is however not necessarily true that the optimal value (in this case, V (θ) + W (θ, ξ) = μ2) is attainable 
uniquely at (θ∗, ξ∗). For illustration, fix q = 1, that is, μ = 1/2, V (θ) = (θ(4 − θ))−1, and W (θ, ξ) =
2ξ((θ + 2)−1 − 1/4) + ξ2/12, where perfect importance sampling is achieved at the point (θ∗, ξ∗) = (2, 0), 
as we have just derived. In this case, since the estimator is linear Φ(u) = u, perfect control variates is 
possible as well, V (1) +W (1, −1)(= V (θ0) +W (θ0, −1)) = μ2. This perfect control variates is independent 
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of the choice of bypass distribution, that is, no importance sampling is needed. Hence, there exist two 
distinct points (θ∗, ξ∗) = (2, 0) and (θ, ξ) = (1, −1), both of which achieve perfect variance reduction 
V (2) + W (2, 0) = V (1) + W (1, −1) = μ2. Since the function V (θ) + W (θ, ξ) is not flat on the line segment 
joining those two points (2, 0) and (1, −1), the function V (θ) + W (θ, ξ) is not convex jointly in the two 
variables (θ, ξ).

Next, we demonstrate that there can exist a distinct point (θ	, ξ	), which strictly outperforms the point 
(θ∗, ξ∗), where the latter is considered optimal in the proposed framework. Fix q = 1 again for the sake of 
simplicity, and employ a different bypass distribution g(z; θ) = φ(z−θ), G(z; θ) = Φ(z−θ), and G−1(u; θ) =
θ + Φ−1(u), with θ0 = 0. Based on the representation (2.6) and (2.7), we have

V (θ) =
∫

(0,1)

(R(u; θ))2 du =
∫
R

e−θz+θ2/2|Φ(z)|2φ(z)dz,

W (θ, ξ) = 2ξ
∫

(0,1)

R(u; θ) (u− 1/2) du + 1
12ξ

2 = 2ξ
∫
R

Φ(z)
(

Φ(z − θ) − 1
2

)
φ(z)dz + 1

12ξ
2,

with ξ∗ = −12 
∫
R Φ(z)(Φ(z − θ∗) − 1/2)φ(z)dz. Note that V (θ0) = 1/3 and W (θ0, ξ) = (ξ2 + 2ξ)/12, so 

V (θ0) + W (θ0, −1) = μ2, that is, perfect control variates is possible without importance sampling, just as 
described before. By numerical approximation, we obtain θ∗ = 0.55072, ξ∗ = −0.010723, V (θ∗) = 0.26434, 
and W (θ∗, ξ∗) = −9.5818 × 10−6. That is, we have V (θ∗) + W (θ∗, ξ∗) − μ2 = 0.014326, compared to the 
crude variance V (θ0) −μ2 = 0.083333. The proposed framework at the point (θ∗, ξ∗) reduces a large portion 
(around 83%) of the estimator variance, whereas it cannot achieve perfect variance reduction, which is indeed 
possible at the point (θ	, ξ	) = (θ0, −1). Let us stress again that although we have just seen a few ways of 
perfect variance reduction, the examples examined here are highly artificial to demonstrate the possibility 
of perfect variance reduction. In reality, there is effectively no point in worrying about such peculiar perfect 
variance reduction.

Appendix C. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .jmaa .
2019 .123608.
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