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The aim of this paper is to study the full K−moment problem for measures 
supported on some particular non-linear subsets K of an infinite dimensional vector 
space. We focus on the case of random measures, that is K is a subset of all non-
negative Radon measures on Rd. We consider as K the space of sub-probabilities, 
probabilities and point configurations on Rd. For each of these spaces we provide 
at least one representation as a generalized basic closed semi-algebraic set to apply 
the main result in Infusino et al. (2014) [20]. We demonstrate that this main result 
can be significantly improved by further considerations based on the particular 
chosen representation of K. In the case when K is a space of point configurations, 
the correlation functions (also known as factorial moment functions) are easier to 
handle than the ordinary moment functions. Hence, we additionally express the 
main results in terms of correlation functions.

© 2019 Elsevier Inc. All rights reserved.

Introduction

The classical full d−dimensional K−moment problem (d−KMP) asks whether a multi-sequence of real 
numbers m = (mα)α∈Nd

0
is actually the moment sequence associated to a non-negative Radon measure 

whose support is contained in a fixed closed subset K of Rd (here d ∈ N). If such a measure exists, it 
is said to be a K−representing measure for m. Already at an early stage of its history, the d−KMP was 
generalized to the case when K is a subset of an infinite dimensional vector space. We refer to this problem 
as the infinite dimensional K−moment problem (∞−KMP). A general treatment of the full ∞−KMP has 
been given e.g. in [1], [3, Chapter 5, Section 2], [6], [8], [16], [17], [18], [19], [42, Section 12.5], [44]. Special 
infinite dimensional supports, particularly useful in applications, have been considered e.g. in [20], [36], [37], 
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(see also [9], [29], [31], [32], [33] for the truncated case, i.e. when the starting m consists of finitely many 
elements).

In this article we focus on the full ∞−KMP for some specific non-linear subsets K of the space of 
non-negative Radon measures on Rd, namely the set of all sub-probabilities, probabilities and point config-
urations on Rd. In probabilistic language these KMPs correspond to the full moment problem for random 
sub-probabilities, probabilities, random point processes or point fields, respectively. The choice of Rd as 
underlying space is just for simplicity and the results can be easily extended for example to differentiable 
manifolds.

The main distinguishing feature of this paper, in contrast to the aforementioned ones, is that specific 
properties of the considered K are exploited to get solvability conditions for the KMP which are much 
weaker than the ones directly obtainable from general results.

In order to have a joint convenient framework we consider all these K as subsets of the vector space 
D ′(Rd) of all generalized functions on Rd, which has favourable properties as dual of the space C∞

c (Rd) of 
all infinitely differentiable functions with compact support in Rd (for example, the n−th moment m(n) of 
a measure on D ′(Rd) can be considered as a generalized function in D ′(Rdn)). The starting point of our 
investigation is the observation that all the supports K considered here can be determined by (infinitely 
many) polynomial constraints on D ′(Rd). In the following we will refer to a subset of D ′(Rd) having this 
property as a generalized basic closed semi-algebraic set (g.b.c.s.s.). Clearly, such a subset K of D ′(Rd)
can have more than one representation as g.b.c.s.s.. Polynomials on D ′(Rd) are real valued functions which 
are reduced to usual polynomials when restricted to any finite dimensional subspace of D ′(Rd). We denote 
by P the set of all these polynomials on D ′(Rd) such that any homogeneous polynomial η �→ P (η) of degree 
n can be written as the pairing of η⊗n with an element from C∞

c (Rdn). Hence, we do not only consider 
linear combinations of n−fold products of linear functionals on D ′(Rd), but also their limits in a suitable 
topology and so the completion of the tensor algebra w.r.t. to such a topology. This gives us a much higher 
flexibility in the description of g.b.c.s.s..

Characterization of measures via moments are generally built up out of five different types of conditions:
I. positivity conditions on the moment sequence;

II. conditions on the asymptotic behaviour of the moment sequence as the order goes to infinity;
III. conditions on the support K of the representing measure;
IV. regularity properties of the moments as generalized functions;
V. growth properties of the moments as generalized functions.

Conditions of type IV and V are only relevant for the infinite dimensional moment problem. The general 
aim in moment theory is to obtain characterizations of the solutions to a given KMP which are as weak as 
possible w.r.t. some combination of the above different types of conditions, since it seems unfeasible to get 
a result which is optimal in all types simultaneously.

In this paper, we exploit III to weaken the conditions of the other types. Our results are based on 
[20, Theorem 2.3], which is a general criterion to solve the ∞−KMP for g.b.c.s.s. K of D ′(Rd). Here we 
derive improved results exploiting the special structure of the K’s under consideration. The solvability 
conditions in [20, Theorem 2.3] do not include either any condition of type III beside K being a g.b.c.s.s. of 
D ′(Rd) nor any conditions of type IV and V except the n−th moment m(n) being a generalized function. 
However, the essential conditions required are the positive semi-definiteness of the putative moment sequence 
(m(n))n∈N0 and of some shifted versions of it (i.e. conditions of type I) and a growth condition of Carleman 
type on certain bounds of the m(n)’s (so a condition of type II). Note that the positivity conditions in 
[20, Theorem 2.3] depend on the chosen representation of the K’s as g.b.c.s.s.. In the following we derive 
properties of the moments directly from a convenient representation of K as g.b.c.s.s. without using the 
existence of a K−representing measure. In this way we can in some cases weaken the conditions of type I
and II given in [20, Theorem 2.3], showing nevertheless the existence of a representing measure. Each 
of the cases considered here demonstrate the use of a different technique to improve the conditions of 
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[20, Theorem 2.3]. On the one hand these examples, interesting in its own right, show the power of the 
method developed in [20]. On the other hand, they pose further challenges and point at potential for further 
development beyond the general theory.

Let us describe our results in more details following the structure of the paper.
In Section 1, we introduce some basic notions and formulate the KMP for K ⊆ D ′(Rd). In Subsection 2.1

we recall our previous result in [20], which combines techniques from the finite and the infinite dimensional 
moment theory (see reference therein), in particular [3], [6], [34] and [43]. The case where K is the space of 
sub-probabilities is treated in Subsection 2.2. Inspired by the results in [43], we are able to directly derive 
from the positive semi-definiteness assumptions a bound on the sequence of moments, which guarantees its 
determinacy. Any measure supported on the sub-probabilities gives rise indeed to a determined moment 
sequence. However, the catch here is that we establish this bound without using the existence of a repre-
senting measure. Hence, we get a theorem solving the moment problem for random sub-probabilities which 
essentially only involves conditions of type I, namely of positive semi-definite type, but not of type II. This 
is possible for a carefully chosen representation of the space of sub-probabilities as a g.b.c.s.s.. To treat the 
case where K is the space of probabilities, we show in Subsection 2.3 that it is necessary and sufficient 
to add a single extra condition containing only the moments of order zero and one. In Subsection 2.4 we 
consider the space of point configurations as the set K. The polynomials we use to represent this space as 
a g.b.c.s.s. are well-known and give rise to the so-called factorial moment measures in the theory of point 
processes, also known as correlation functions in statistical mechanics. To the best of our knowledge, it 
was not known before that the non-negativity of polynomials of this class with non-negative coefficients 
characterizes the space of point configurations. We also study the case of simple point configurations, i.e. 
point configurations which have at most one point at the same position. As an extra condition we introduce 
here that the second moment function on the diagonal coincides with the first one. Surprisingly, in this 
case the number of conditions of type I can be reduced to only considering shifts of the putative moment 
sequence by polynomials of degree at most 2 instead of all degrees. Note that these positive semi-definiteness 
conditions are not sufficient to represent the space of simple point configurations as a g.b.c.s.s..

The determining condition in all these cases can be weakened to a Stieltjes type growth condition on the 
m(n)’s which requires only a bound of the form B

(
Cn2 ln(n)2

)n for some constant B, C ≥ 0. This had been 
already proved by A. Lenard [35] for the case of point configurations. Positive semi-definite type solvability 
conditions for the moment problem for point processes were given before only under determining conditions 
of the type B (Cn ln(n))n and additional positivity or regularity assumptions, cf. [4] and [25], whereas the 
classical Ruelle bound corresponds to a growth of type Cn in our notation. There exist models with strong 
clustering where the Stieltjes type condition is achieved, cf. [24].

The solvability conditions for KMP for point processes and point random fields are frequently formulated 
in terms of correlation functions instead of moment functions. Therefore, in Section 3 we rewrite our results 
of the previous sections in terms of correlation functions. To this aim we need to extend the “harmonic 
analysis” on point configuration spaces in [25] to D ′(Rd). Though this was already used in the past, we 
are not aware of a systematic exposition as in Subsection 3.1. In Subsection 3.2 we show that the sequence 
of putative correlation functions fulfills the Stieltjes determining condition if and only if the sequence of 
associated usual moments fulfills the Stieltjes determining condition together with an extra mild assumption. 
Moreover, one can show that a sufficient solvability condition is the positive semi-definiteness of a shifted 
sequence of correlation functions with some of its arguments fixed (see Theorem 3.13 vs (43)). Certain 
technical proofs and remarks are moved to the appendix.

Let us briefly state some related results on the ∞−KMP for the special supports considered here, which 
are based on positive semi-definiteness. (Results for the ∞−KMP holding for generic K have been mentioned 
in the first paragraph of this introduction.) The case of random measures, that is K is the cone of all 
non-negative Radon measures, has been treated in [45] where the cone structure is used to improve the 
conditions of type II. The case when K is the set of all sub-probabilities can be treated using the general 
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result in [16] (see Appendix A.2). The moment problem for point processes and point random fields has a 
rich and long history starting with A. Lenard showing an analogue of Riesz-Haviland’s result in [36]. In the 
same period K. Krickeberg [30] characterizes point processes via restrictions of moment functions to the 
diagonals. Beside the results in [4] and [25] mentioned before, solutions to the moment problem on point 
configuration spaces using positive semi-definiteness have been formulated also in terms of the generating 
function of the correlation functions, the so-called Bogoliubov functional, see e.g. [26] for a result under 
L1−analyticity. The case of random discrete measures treated in [27] cannot be treated via g.b.c.s.s. as 
the required support is not even closed. All these works resolve in different ways the balancing among the 
conditions I to V but the solvability conditions they provide are not comparable with the ones in this article, 
in the sense that one cannot show the equivalence of the two sets of conditions without using that each of 
them guarantees the existence of a representing measure.

1. Preliminaries

In this section we state the full ∞−KMP for K closed subset of the space of all generalized functions on 
Rd according to the notation used in [20].

Let us start by recalling some preliminary notations and definitions. For Y ⊆ Rd, we denote by B(Y )
the Borel σ-algebra on Y , by C∞

c (Y ) the space of all real valued infinitely differentiable functions on Rd

with compact support contained in Y and by C+,∞
c (Y ) the cone consisting of all non-negative functions in 

C∞
c (Y ). We denote by 1Y the indicator function for Y and by N0 the space of all non-negative integers. 

For any r = (r1, . . . , rd) ∈ Rd and α = (α1, . . . , αd) ∈ Nd
0 one defines rα := rα1

1 · · · rαd

d . Moreover, for any 

β ∈ Nd
0 the symbol Dβ denotes the weak partial derivative ∂|β|

∂r
β1
1 ···∂rβd

d

where |β| :=
∑d

i=1 βi.

The classical topology considered on C∞
c (Rd) is the inductive topology τind, given by the standard 

construction of this space as the inductive limit of spaces of smooth functions with supports lying in an 
increasing sequence of compact subsets of Rd (see e.g. [47, Chapter 13, Example II], [20, Definition 5.9]). 
We denote by Dind(Rd) the space C∞

c (Rd) equipped with τind. In this paper, we consider instead C∞
c (Rd)

endowed with the projective topology τproj defined as follows (see [2, Chapter I, Section 3.10] for more 
details).

Definition 1.1. Let I be the set of all k = (k1, k2(r)) such that k1 ∈ N0, k2 ∈ C∞(Rd) with k2(r) ≥ 1 for all 
r ∈ Rd. For each k = (k1, k2(r)) ∈ I, consider the weighted Sobolev space W k

2 defined as the completion of 
C∞
c (Rd) w.r.t. the following weighted norm

‖ϕ‖Wk
2

:=

⎛⎜⎜⎜⎝ ∑
β∈Nd

0
|β|≤k1

∫
Rd

∣∣(Dβϕ)(r)
∣∣2 k2(r)dr

⎞⎟⎟⎟⎠
1
2

.

Then we define

D(Rd) := proj lim
k∈I

W k
2 ,

and we denote by τproj the projective limit topology induced by this construction.

As a set D(Rd) coincides with C∞
c (Rd) (see [2, Chapter I, Theorem 3.9]). The space D(Rd) is a locally 

convex vector space which is also nuclear (see e.g. [2, Chapter I, Theorem 3.9] for a proof of this result 
and [5, Chapter 14, Sections 2.2–2.3] for more details about general nuclear spaces). We denote by D ′(Rd)
the topological dual space of D(Rd) and by 〈f, η〉 the duality pairing between η ∈ D ′(Rd) and f ∈ D(Rd)
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(see e.g. [2,3,5] for more details). When we assume more regularity on η, we tacitly extend the dual pairing 
to larger classes of test functions f (e.g. if η is a Radon measure on Rd, then we consider 〈f, η〉 for any 
measurable function f on Rd). We equip D ′(Rd) with the weak topology τprojw , that is, the smallest topology 
such that the mappings η �→ 〈f, η〉 are continuous for all f ∈ D(Rd).

Let us introduce now the main objects involved in the K−moment problem for subsets K of D ′(Rd). A 
generalized process on D ′(Rd) is a non-negative Radon measure μ defined on the Borel σ−algebra on D ′(Rd). 
Moreover, we say that a generalized process μ is concentrated on a measurable subset K ⊆ D ′(Rd) if 
μ 
(
D ′(Rd) \K

)
= 0.

Definition 1.2 (n−th local moment). Given n ∈ N, a generalized process μ on D ′(Rd) has n−th local moment
(or local moment of order n) if for every f ∈ C∞

c (Rd) we have∫
D′(Rd)

|〈f, η〉|nμ(dη) < ∞.

If in addition the functional f �→
∫

D′(Rd) |〈f, η〉|nμ(dη) is continuous on D(Rd), then we say that μ has 
continuous n−th local moment.

If a generalized process μ on D ′(Rd) has continuous n−th local moment, then it is easy to show that 
there exist a k ∈ I and C > 0 such that

⎛⎜⎝ ∫
D′(Rd)

|〈f, η〉|nμ(dη)

⎞⎟⎠
1
n

≤ C‖f‖Wk
2
, ∀f ∈ D(Rd).

By using Hölder’s inequality, this in turn implies that∣∣∣∣∣∣∣
∫

D′(Rd)

〈f1, η〉 · · · 〈fn, η〉μ(dη)

∣∣∣∣∣∣∣ ≤ Cn
n∏

i=1
‖fi‖Wk

2
, ∀f1, . . . , fn ∈ D(Rd).

This together with the nuclearity of D(Rd) allows us to apply the generalized version of the Kernel Theorem 
in [5, Vol II, Chapter 14, Theorem 6.2] in order to get that there exist j ∈ I and a unique symmetric 

m
(n)
μ ∈

(
W−j

2

)⊗n

(and so m(n)
μ ∈ D ′(Rdn)) such that

〈f1 ⊗ · · · ⊗ fn,m
(n)
μ 〉 =

∫
D′(Rd)

〈f1, η〉 · · · 〈fn, η〉μ(dη), ∀f1, . . . , fn ∈ D(Rd). (1)

We also have that m(n)
μ ∈ D ′

ind(Rdn) as τind is finer than τproj . Moreover, by [14, Corollary II.2.5] the 
map f (n) �→

∫
D′

ind(Rdn)〈f (n), η⊗n〉μ(dη) is also in D ′
ind(Rdn). Since this map coincides with m(n)

μ on a dense 
subset by (1), we have that

〈f (n),m(n)
μ 〉 =

∫
D′(Rd)

〈f (n), η⊗n〉μ(dη), ∀f (n) ∈ D(Rdn). (2)

This justifies the following definition.
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Definition 1.3 (n−th generalized moment function). Given n ∈ N and a generalized process μ on D ′(Rd)
with continuous n−th local moment, its n−th generalized moment function in the sense of D ′(Rd) is the 
symmetric generalized function m(n)

μ ∈ D ′(Rdn) such that (2) holds. By convention, m(0)
μ := μ(D ′(Rd)).

As described above to a generalized process μ can be associated the corresponding generalized moment 
functions given by (2). The moment problem, which in an infinite dimensional context is often called the 
realizability problem, addresses exactly the inverse question.

Problem 1.4 (Moment problem on K ⊆ D ′(Rd) (or KMP)). Let K be a closed subset of D ′(Rd), N ∈
N0∪{+∞} and m = (m(n))Nn=0 such that each m(n) ∈ D ′(Rdn) is a symmetric functional. Find a generalized 
process μ with generalized moment functions (in the sense of D ′(Rd)) of any order and concentrated on K

such that

m(n) = m(n)
μ for n = 0, . . . , N,

i.e. m(n) is the n−th generalized moment function of μ for n = 0, . . . , N .

If such a measure μ does exist we say that m = (m(n))Nn=0 is realized by μ on K or equivalently that μ is 
a K−representing measure for the sequence m. Note that the definition requires that one finds a measure 
concentrated on K and not only on D ′(Rd). In the case N = ∞ one speaks of the “full KMP”, otherwise of 
the “truncated KMP”. In the following we are going to focus only on the full case and so we address to it 
just as the moment problem.

To simplify the notation from now on we denote by M∗(K) the collection of all non-negative Radon 
measures concentrated on a measurable subset K of D ′(Rd) (i.e. generalized processes) with continuous 
local moment of any order and by F (D ′) the collection of all infinite sequences (m(n))n∈N0 such that each 
m(n) ∈ D ′(Rdn) is a symmetric functional of its n variables.1

Let us introduce the version of the classical Riesz functional for Problem 1.4. Denote by P the set of all 
polynomials on D ′(Rd) of the form

P (η) :=
N∑
j=0

〈p(j), η⊗j〉,

where p(0) ∈ R and p(j) ∈ C∞
c (Rdj), j = 1, . . . , N with N ∈ N.

Definition 1.5. Given m ∈ F (D ′), we define its associated Riesz functional Lm as

Lm : P → R

P (η) =
N∑

n=0
〈p(n), η⊗n〉 �→ Lm(P ) :=

N∑
n=0

〈p(n),m(n)〉.

When the sequence m is realized by μ ∈ M∗(K), a direct calculation shows that for any P ∈ P we get

Lm(P ) =
∫
K

P (η)μ(dη).

Hence, an obvious property of type I which is necessary for an element in F (D ′) to be the moment 
sequence of some measure on D ′(Rd) is the following.

1 The choice of the notation F
(
D′) is motivated by the similarity with the classical symmetric Fock space.
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Definition 1.6 (Positive semi-definite sequence). A sequence ξ ∈ F (D ′) is said to be positive semi-definite if

Lξ(h2) ≥ 0, ∀h ∈ P.

This is a straightforward generalization of the classical notion of positive semi-definiteness of the Han-
kel matrices considered in the finite dimensional moment problem, that is equivalent to require that the 
associated Riesz functional is non-negative on squares of polynomials.

2. Realizability of Radon measures in terms of moment functions

2.1. Previous results

In [20, Theorem 2.3], we derived necessary and sufficient conditions for the solvability of Problem 1.4 in 
the full case when K is a generalized basic closed semi-algebraic (g.b.c.s.s.), namely when it can be written 
as

K =
⋂
i∈I

{
η ∈ D ′(Rd)| Pi(η) ≥ 0

}
, (3)

where I is an index set and Pi ∈ P. Note that the index set I is not necessarily countable. When I is finite, 
this definition agrees with the classical one of basic closed semi-algebraic subset. Denote by PK the set of 
all the polynomials Pi’s defining K. Then w.l.o.g. we can assume that 0 ∈ I and that P0 is the constant 
polynomial P0(η) = 1 for all η ∈ D ′(Rd).

In this paper we are going to consider some well-known subsets of the infinite dimensional space R(Rd)
of all non-negative Radon measures on Rd for which we will provide a representation as g.b.c.s.s. Recall
that R(Rd) is the space of all non-negative Borel measures that are finite on compact subsets of Rd and it 
is itself a g.b.c.s.s. of D ′(Rd) (see [20, Example 4.8]). As mentioned in [20], using a result due to S.N. Šifrin 
about the infinite dimensional moment problem on dual cones in nuclear spaces (see [45]), it is possible 
to obtain a version of [20, Theorem 2.3] for the case when K is a g.b.c.s.s. of R(Rd) (the latter is in fact 
the dual cone of C+,∞

c (Rd)). Before stating this result, let us introduce a growth condition on a generic 
ξ ∈ F (D ′) which will turn out to be sufficient for the uniqueness of the representing measure for ξ on such 
subsets of R(Rd).

Definition 2.1 (Stieltjes determining sequence). A sequence ξ ∈ F (D ′) is said to be Stieltjes determining if 
and only if there exists a total subset E of C∞

c (Rd) and a sequence (ξn)n∈N0 of real numbers such that

ξ0 =
√
|ξ(0)| and ξn ≥

√
sup

f1,...,f2n∈E
|〈f1 ⊗ · · · ⊗ f2n, ξ(2n)〉|, ∀n ≥ 1.

and the class C{
√
ξn} is quasi-analytic.

Note that the classical Stieltjes condition 
∑∞

n=1 ξ
− 1

2n
n = ∞ is sufficient for the class C{

√
ξn} being 

quasi-analytic. For discussions about the choice of E see [20, Lemma 4.5.].
We are ready now to state the result mentioned above about the KMP for K g.b.c.s.s. in R(Rd).

Theorem 2.2. Let m ∈ F (D ′) be a Stieltjes determining sequence and K ⊆ R(Rd) be a generalized basic 
closed semi-algebraic set of the form (3). Then m is realized by a unique μ ∈ M∗(K) if and only if the 
following hold

Lm(h2) ≥ 0, Lm(Pih
2) ≥ 0 , ∀h ∈ P, ∀i ∈ I. (4)
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Condition (4) is equivalent to require that the functional Lm is non-negative on the quadratic module 
Q(PK) associated to the representation (3) of K, i.e.

Q(PK) :=
⋃
I0⊂I

|I0|<∞

{∑
i∈I0

QiPi : Qi ∈ Σ
}
,

where Σ is the set of all sum of squares of polynomials in P.
The connection between Theorem 2.2 and [16, Theorem 1.1] is discussed in Appendix A.2.
In this paper, we assume more regularity on the putative moment functions, that is, we require that they 

are all non-negative symmetric Radon measures, i.e. the starting sequence belongs to F (R). This is actually 
the case in most of applications. One of the advantage of this additional assumption is that it allows us to 
rewrite the Stieltjes determinacy condition as follows.

Definition 2.3. A sequence ξ ∈ F (R) satisfies the weighted generalized Stieltjes condition if for each n ∈ N

there exists a function k(n)
2 ∈ C∞(Rd) with k(n)

2 (r) ≥ 1 for all r ∈ Rd such that

∞∑
n=1

1√√√√ sup
z∈Rd

‖z‖≤n

sup
x∈[−1,1]d

√
k̃

(n)
2 (z + x) 4n

√∫
R2nd

ξ(2n)(dr1,...,dr2n)∏2n
l=1 k

(2n)
2 (rl)

= ∞, (5)

where k̃(n)
2 ∈ C∞(Rd) such that k̃(n)

2 (r) ≥
∣∣∣(Dκk

(n)
2 )(r)

∣∣∣2 for all |κ| ≤ �d+1
2 �.

As suggested by the name, the condition (5) is an infinite-dimensional weighted version of the classical 
Stieltjes condition, which ensures the uniqueness of the solution to the one dimensional moment problem 
on R+ (see [10,46]). Condition (5) is sufficient for the sequence ξ being Stietljes determining in the sense of 
Definition 2.1. Using the weighted generalized Stieltjes condition, as already discussed in [20, Section 4.2], 
it is possible to prove the following corollary of Theorem 2.2.

Corollary 2.4. Let m ∈ F (R) fulfill the weighted generalized Stieltjes condition in (5) and let K ⊆ R(Rd)
be a g.b.c.s.s. of the form (3). Then m is realized by a unique μ ∈ M∗(K) if and only if the following hold

Lm(h2) ≥ 0, Lm(Pih
2) ≥ 0, ∀h ∈ P, ∀i ∈ I,

and for any n ∈ N0 we have ∫
R2nd

m(2n)(dr1, . . . , dr2n)∏2n
l=1 k

(2n)
2 (rl)

< ∞. (6)

In the rest of this section, we are going to present different applications of Theorem 2.2 and Corollary 2.4, 
giving concrete necessary and sufficient condition to solve the full Problem 1.4 for any starting sequence 
m ∈ F (R) and for some well-known subset K of R(Rd).

2.2. The moment problem on the space of sub-probabilities Rsub(Rd)

We first provide a representation as g.b.c.s.s. of the set Rsub(Rd) of all sub-probabilities on Rd, which 
can be defined as Rsub(Rd) := {η ∈ R(Rd) : η(Rd) ≤ 1}. From now on for any function f ∈ Cc(Rd) we 
denote by ‖f‖∞ the supremum norm of f , i.e. ‖f‖∞ := supx∈Rd |f(x)|.
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Proposition 2.5. The set Rsub(Rd) is a g.b.c.s.s. of D ′(Rd). More precisely, we get

Rsub(Rd) =
⋂

ψ∈C+,∞
c (Rd)

{
η ∈ D ′(Rd) : Φψ(η) ≥ 0

}
∩

⋂
ϕ∈C+,∞

c (Rd)
‖ϕ‖∞≤1

{
η ∈ D ′(Rd) : Υϕ(η) ≥ 0

}
, (7)

where Φψ(η) := 〈ψ, η〉 and Υϕ(η) := 1 − 〈ϕ, η〉2.

Proof. Let us preliminarily recall that the set of all non-negative Radon measures on Rd can be represented 
as a g.b.c.s.s. of D ′(Rd) as follows (for a proof see [20, Example 4.8]).

R(Rd) =
⋂

ψ∈C+,∞
c (Rd)

{
η ∈ D ′(Rd) : Φψ(η) ≥ 0

}
.

Hence, the desired equality (7) can be simply rewritten as

Rsub(Rd) = R(Rd) ∩
⋂

ϕ∈C+,∞
c (Rd)

‖ϕ‖∞≤1

{
η ∈ D ′(Rd) : Υϕ(η) ≥ 0

}
. (8)

Let η ∈ Rsub(Rd). Then for any ϕ ∈ C+,∞
c (Rd) with ‖ϕ‖∞ ≤ 1 we have 0 ≤ 〈ϕ, η〉 ≤ 1, which implies 

Υϕ(η) ≥ 0.
Conversely, let η be an element of the right-hand side of (8). Then clearly η ∈ R(Rd) and for any 

ϕ ∈ C+,∞
c (Rd) with ‖ϕ‖∞ ≤ 1 we easily get that

0 ≤ 〈ϕ, η〉 ≤ 1. (9)

To prove η ∈ Rsub(Rd), it remains to show that η(Rd) = 〈1Rd , η〉 ≤ 1.
For any positive real number R let us define a function χR such that

χR ∈ C+,∞
c (Rd) and χR(r) :=

{
1 if |r| ≤ R

0 if |r| ≥ R + 1.
(10)

Note that the function 1Rd can be approximated pointwise by the increasing sequence of functions 
{χR}R∈R+ ⊂ C+,∞

c (Rd) whose elements are s.t. ‖χR‖∞ = 1. Hence, by using the monotone convergence 
theorem and (9), we have that

η(Rd) = 〈1Rd , η〉 = 〈 lim
R→∞

χR, η〉 = lim
R→∞

〈χR, η〉 ≤ 1. �
Applying Corollary 2.4 for the case K = Rsub(Rd) and exploiting the representation (7), we are able to 

drop the conditions (5) and (6) to obtain the following result.

Theorem 2.6. A sequence m ∈ F (R) is realized by a unique μ ∈ M∗(Rsub(Rd)) if and only if the following 
inequalities hold

Lm(h2) ≥ 0, ∀h ∈ P, (11)

Lm(Φψh
2) ≥ 0, ∀h ∈ P, ∀ψ ∈ C+,∞

c (Rd), (12)

Lm(Υϕh
2) ≥ 0, ∀h ∈ P, ∀ϕ ∈ C+,∞

c (Rd)with ‖ϕ‖∞ ≤ 1, (13)

where Φψ(η) := 〈ψ, η〉 and Υϕ(η) := 1 − 〈ϕ, η〉2.
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Proof. (Sufficiency) Assume that (11), (12) and (13) are fulfilled and let us show that (5) and (6) hold for 
the function k(n)

2 ≡ 1, ∀n ∈ N. In fact, for any n ∈ N and for any ϕ ∈ C+,∞
c (Rd) with ‖ϕ‖∞ ≤ 1, we can 

apply (13) to h(η) = 〈ϕ, η〉(n−1). This implies that

Lm(〈ϕ, η〉2n) = Lm(〈ϕ, η〉2(n−1)〈ϕ, η〉2) ≤ Lm(〈ϕ, η〉2(n−1)),

and iterating, we get that

Lm(〈ϕ, η〉2n) ≤ Lm(1).

Consequently, for any real positive constant R, if we take in the previous inequality ϕ = χR as defined in 
(10) then we have that

∫
R2nd

2n∏
i=1

χR(ri)m(2n)(dr1, . . . , dr2n) = Lm(〈χR, η〉2n) ≤ Lm(1).

Therefore, using the monotone convergence theorem as R → ∞, we obtain∫
R2nd

m(2n)(dr1, . . . , dr2n) ≤ Lm(1) = m(0) < ∞.

Then, the conditions (6) and (5) hold for k(n)
2 ≡ 1, ∀n ∈ N. Hence, by Corollary 2.4 the sequence m is 

realized by a unique μ ∈ F(Rsub(Rd)).
(Necessity) The necessity of (11), (12) and (13) follows by the simple observation that integrals of 

non-negative functions w.r.t. a non-negative measure are always non-negative. �
This proof was inspired by the results in [43] about the moment problem on a compact basic closed 

semi-algebraic subset of Rd. In fact, the set Rsub(Rd) is a compact subset of R(Rd) w.r.t. the vague 
topology (see Corollary A2.6.V in [12]). However, the technique in [43] does not apply straightforwardly to 
the moment problem on Rsub(Rd), because it only applies to classical basic closed semi-algebraic sets (i.e. 
defined by finitely many polynomials), which is not a natural situation in the infinite dimensional case we 
are considering in this paper.

For a discussion about the relation between Theorem 2.6 and [16, Theorem 1.1] see Appendix A.2.
The representation (7) is not unique. It is indeed possible to give other representations of Rsub(Rd) as 

g.b.c.s.s. using slight modifications in the proof of Proposition 2.5. For instance, we can get

Rsub(Rd) =
⋂

ϕ∈C+,∞
c (Rd)

‖ϕ‖∞≤1

{
η ∈ D ′(Rd) : 〈ϕ, η〉 − 〈ϕ, η〉2 ≥ 0

}
,

or also

Rsub(Rd) =
⋂

ϕ∈C+,∞
c (Rd)

{
η ∈ D ′(Rd) : 〈ϕ, η〉 ≥ 0

}
∩

⋂
ϕ∈C+,∞

c (Rd)
‖ϕ‖∞≤1

{
η ∈ D ′(Rd) : 1 − 〈ϕ, η〉 ≥ 0

}
. (14)

Depending on the choice of the representation, we get different versions of Corollary 2.4 for Rsub(Rd).
For instance, using the representation (14) in Corollary 2.4, we obtain:
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Corollary 2.7. Let m ∈ F (R) fulfill (5) and let Rsub(Rd) be represented as in (14). Then m is realized by a 
unique μ ∈ M∗(Rsub(Rd)) if and only if (11), (12), (6) and the following hold:

Lm(Θϕh
2) ≥ 0, ∀h ∈ P, ∀ϕ ∈ C+,∞

c (Rd)with ‖ϕ‖∞ ≤ 1, (15)

where Θϕ(η) := 1 − 〈ϕ, η〉.

Note that here we did not manage to drop (5) and (6), because the trick used in the proof of Theorem 2.6
does not work for the representation (14).

The conditions (11), (12) and (15) can be rewritten more explicitly in terms of moment measures as∑
i,j

〈h(i) ⊗ h(j), m(i+j)〉 ≥ 0,

∑
i,j

〈h(i) ⊗ h(j) ⊗ ψ, m(i+j+1)〉 ≥ 0,

∑
i,j

〈h(i) ⊗ h(j), m(i+j)〉 −
∑
i,j

〈h(i) ⊗ h(j) ⊗ ϕ, m(i+j+1)〉 ≥ 0,

for all h(i) ∈ C∞
c (Rid), ψ ∈ C+,∞

c (Rd) and ϕ ∈ C+,∞
c (Rd) with ‖ϕ‖∞ ≤ 1.

In particular, if each m(n) has a density α(n) ∈ L1(Rdn, λ) w.r.t. the Lebesgue measure λ on Rdn, then 
(11), (12) and (15) respectively mean that (α(n))n∈N0 is positive semi-definite and for λ−almost all y ∈ Rd

the sequence (α(n+1)(·, y))n∈N0 and (α(n)(·) − α(n+1)(·, y))n∈N0 are positive semi-definite.
This reformulation makes clear the analogy with the Hausdorff moment problem as treated in [13], where 

[0, 1] is represented like

[0, 1] = {x ∈ R : x ≥ 0} ∩ {x ∈ R : 1 − x ≥ 0}

and so necessary and sufficient conditions to solve the [0, 1]−moment problem for a sequence of reals 
(mn)n∈N0 are that (mn)n∈N0 , (mn+1)n∈N0 and (mn − mn+1)n∈N0 are positive semi-definite. Also in this 
case we get different conditions on (mn)n∈N0 depending on the representation we choose for [0, 1] as basic 
closed semi-algebraic subset of the real line (see [7]).

2.3. The moment problem on the space of probabilities Rprob(Rd)

The set Rprob(Rd) of all probabilities, i.e. Rprob(Rd) := {η ∈ R(Rd) : η(Rd) = 1}, can be also represented 
as a g.b.c.s.s. of D ′(Rd) defined by three infinite families of polynomials in P. Hence, one can apply 
Corollary 2.4 for K = Rprob(Rd). In this subsection we instead treat Rprob(Rd) as a subset of Rsub(Rd)
and apply Theorem 2.6. This together with an additional trick brings the advantage that we can replace 
the infinitely many conditions coming from the third family mentioned above with a single condition (19).

Theorem 2.8. A sequence m ∈ F (R) is realized by a unique μ ∈ M∗(Rprob(Rd)) if and only if the following 
inequalities hold

Lm(h2) ≥ 0 , ∀h ∈ P, (16)

Lm(Φψh
2) ≥ 0 , ∀h ∈ P, ∀ψ ∈ C+,∞

c (Rd), (17)

Lm(Υϕh
2) ≥ 0 , ∀h ∈ P, ∀ϕ ∈ C+,∞

c (Rd)with ‖ϕ‖∞ ≤ 1, (18)

m(1)(Rd) = m(0), (19)

where Φψ(η) := 〈ψ, η〉, Υϕ(η) := 1 − 〈ϕ, η〉2.
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Proof. (Necessity) W.l.o.g. we can assume that the sequence m is realized by a probability μ concentrated 
on Rprob(Rd). This means that m(0) = 1. Moreover, m is also realized on Rsub(Rd) ⊃ Rprob(Rd) by μ. Hence, 
Theorem 2.6 implies that (16), (17) and (18) hold. The condition (19) easily follows from the assumption of 
the realizability of m by approximating 1Rd with the increasing sequence of functions {χR}R∈R+ ⊂ C+,∞

c (Rd)
defined in (10).

(Sufficiency) Due to Theorem 2.6, the assumptions (16), (17) and (18) imply that there exists a unique 
μ ∈ M∗(Rsub(Rd)) representing m. Since μ is finite, we can assume w.l.o.g. that it is a probability on 
Rsub(Rd). It remains to prove that actually μ is concentrated on Rprob(Rd), i.e.

μ(Rprob(Rd)) = 1. (20)

On the one hand, as η ∈ Rsub(Rd), we get

1 − 〈1Rd , η〉 ≥ 0. (21)

On the other hand, approximating pointwisely the function 1Rd by an increasing sequence of functions 
{χR}R∈R+ ⊂ C+,∞

c (Rd) with ‖χR‖∞ = 1 (see (10) for the definition of χR) and using the monotone 
convergence theorem together with the fact that μ is an Rsub(Rd)−representing measure for m, we have 
that: ∫

Rsub(Rd)

(1 − 〈1Rd , η〉)μ(dη) = 1 −m(1)(Rd) = 0,

where in the last equality we used (19). Since μ is non-negative and by (21) the integrand is also non-negative 
on Rsub(Rd), the previous equation implies that μ−a.s. in Rsub(Rd) we have 1 − 〈1Rd , η〉 = 0, which is 
equivalent to (20). �
2.4. The moment problem on point configuration spaces

Let us preliminarily give a brief introduction to point configuration spaces (see [25]). For any subset 
Y ∈ B(Rd) and for any n ∈ N0, we define the space of multiple n−point configurations in Y as

Γ̈(n)
0 (Y ) := {δx1 + · · · + δxn

|xi ∈ Y }, ∀n ∈ N

and Γ̈(0)
0 (Y ) as the set containing only the null-measure on Y . To better understand the structure of Γ̈(n)

0 (Y )
we may use the following natural mapping:

symn
Y : Y n → Γ̈(n)

0 (Y ), (22)

(x1, . . . , xn) �→ δx1 + · · · + δxn
.

Then it is clear that we can identify the space of multiple n−point configurations Γ̈(n)
0 (Y ) with the sym-

metrization of Y n w.r.t. the permutation group over {1, . . . , n} and endow it with the natural quotient 
topology.

We define the space of finite multiple configurations in Y as

Γ̈0(Rd) := �
n∈N0

Γ̈(n)
0 (Rd)

equipped with the topology of disjoint union.
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When we consider finite point configurations in Y having in each site at most one point, we speak about 
finite simple point configurations in Y . More precisely, for any n ∈ N0, we define the space of simple n−point 
configurations in Y as

Γ(n)
0 (Y ) := {η ∈ Γ̈(n)

0 (Y ) | η({x}) ≤ 1, ∀ x ∈ Y }, ∀n ∈ N

and Γ(0)
0 (Y ) as the set containing only the null-measure on Y . Therefore, using the mapping in (22), we 

can identify the space of simple n−point configurations Γ(n)
0 (Y ) with the symmetrization of Ỹ n w.r.t. the 

permutation group over {1, . . . , n}, where

Ỹ n := { (x1, . . . , xn) ∈ Y n| xk �= xj if k �= j} .

Using the following identification

n∑
i=1

δxi
←→ {x1, . . . , xn},

we can also represent Γ(n)
0 (Y ) as a family of subsets of Y , that is,

Γ(n)
0 (Y ) = {η ⊂ Y | |η| = n}, ∀n ∈ N (23)

and Γ(0)
0 (Y ) = {∅}.

The space of finite simple configurations in Y is then defined by

Γ0(Y ) := �
n∈N0

Γ(n)
0 (Y )

and can be equipped with the topology of disjoint union.
We are going to consider now the case of locally finite configurations of points in Rd and also in this case 

we will distinguish between multiple and simple configurations. Let us denote by Bc(Rd) the system of all 
sets in B(Rd) which are bounded and hence have compact closure.

We define the space of multiple point configurations in Rd as the set of all Radon measures on Rd taking 
as values either a non-negative integer or infinity, i.e.

Γ̈(Rd) :=
{
η ∈ R(Rd)| η(B) ∈ N0, ∀B ∈ Bc(Rd)

}
.

Any η ∈ Γ̈(Rd) can be written as η =
∑

i∈I δxi
where (xi)i∈I is such that xi ∈ Rd with I either N or a 

finite subset of N and if I = N then the sequence (xj)i∈I has no accumulation points in Rd (see [12]). This 
correspondence is one-to-one modulo relabelling of the points. The requirement that the sequence (xi)i∈I

has no accumulation points in Rd corresponds to the condition that η is a Radon measure on Rd. The space 
Γ̈(Rd) is equipped with the vague topology τv, i.e. the weakest topology such that all the following functions 
are continuous

Γ̈(Rd) → R

η �→
∫

f(x)η(dx), ∀ f ∈ Cc(Rd).

The space of simple point configurations in Rd

Γ(Rd) := {η ∈ Γ̈(Rd)| ∀ x ∈ Rd, η({x}) ∈ {0, 1}}

is considered with the relative vague topology induced by (Γ̈(Rd), τv).
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From those definitions, it is then clear that point configurations in Rd are subsets of D ′(Rd) equipped 
with the weak topology.

There is also in this case a natural representation of Γ(Rd) as a set of subsets in Rd, i.e.

Γ(Rd) =
{
η ⊂ Rd

∣∣ |η ∩ Λ| < ∞ ∀Λ ∈ Bc(Rd)
}
.

Indeed, any η =
∑

i∈I δxi
∈ Γ̈(Rd) corresponds to {xi}i∈I . One advantage of defining point configurations 

as Radon measures is the ease of defining their powers, which is particularly convenient in the analysis of 
the moment problem on such spaces.

2.4.1. The moment problem on the set of multiple point configurations Γ̈(Rd)

The space of multiple point configurations of Rd is also a g.b.c.s.s., namely we have the following repre-
sentation.

Proposition 2.9. The set of multiple point configurations Γ̈(Rd) on Rd is a generalized basic closed semi-
algebraic subset of D ′(Rd). More precisely, we get that

Γ̈(Rd) =
⋂
k∈N

⋂
ϕ∈C+,∞

c (Rd)

{
η ∈ D ′(Rd) : 〈ϕ⊗k, η
k〉 ≥ 0

}
. (24)

The power η
k of a generalized function η ∈ D ′(Rd) is called factorial power and it is defined as follows. 
For any f (n) ∈ C∞

c (Rdn) and for any n ∈ N

〈f (n), η
n〉 :=
n∑

k=1

(−1)n−k

k!
∑

n1,...,nk∈N

n1+...+nk=n

n!
n1 · . . . · nk

〈Tn1,...,nk
f (n), η⊗k〉, (25)

where

Tn1,...,nk
f (n)(x1, . . . , xk) := f (n)(x1, . . . , x1︸ ︷︷ ︸

n1 times

, . . . , xk, . . . , xk︸ ︷︷ ︸
nk times

). (26)

The definition in (25) shows that for any n ∈ N and for any f (n) ∈ C∞
c (Rdn) the factorial power 〈f (n), η
n〉 ∈

P. Note that when f (n) = f⊗n with f ∈ C∞
c (Rd) we have

Tn1,...,nk
f⊗n(x1, . . . , xk) = fn1(x1) · · · fnk(xk). (27)

For example, in the cases n = 1 and n = 2 the previous definition gives

〈f⊗1, η
1〉 = 〈f, η〉 and 〈f⊗2, η
2〉 = 〈f, η〉2 − 〈f2, η〉.

The name “factorial power” comes from the fact that for any η ∈ R(Rd) and for any measurable set A

〈1⊗n
A , η
n〉 = η(A)(η(A) − 1) · · · (η(A) − n + 1).

Note that the definition of factorial power is very natural for point configurations in Γ̈(Rd) (see [32]). In 
fact, using the representation η =

∑
δxi

for the elements in Γ̈(Rd), (25) becomes
i∈I
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〈f⊗n, η
n〉 =
′∑

i1,...,in∈I

f(xi1) · · · f(xin), (28)

where 
∑′ denotes a sum over distinct indices.

Proof of Proposition 2.9. Let η ∈ D ′(Rd) such that for any k ∈ N and for any ϕ ∈ C+,∞
c (Rd)

〈ϕ⊗k, η
k〉 ≥ 0. (29)

In particular, the case k = 1 implies that η ∈ R(Rd). Moreover, by a density argument, the condition (29)
also holds for ϕ = 1A with A ∈ Bc(Rd), i.e.

0 ≤ 〈1⊗k
A , η
k〉 = η(A)(η(A) − 1) · · · (η(A) − k + 1), ∀k ∈ N, ∀A ∈ Bc(Rd).

Hence, for any A ∈ Bc(Rd) we get that η(A) ∈ N0 ∪ {+∞}.
The other inclusion trivially follows from (28). �
Using the representation (24) and Theorem 2.2, we have the following.

Corollary 2.10. Let m ∈ F (R) be a Stieltjes determining sequence. Then the sequence m is realized by a 
unique μ ∈ M∗(Γ̈(Rd)) if and only if the following hold:

Lm(h2) ≥ 0, ∀h ∈ P,

Lm(Φϕ,kh
2) ≥ 0, ∀h ∈ P, ∀ϕ ∈ C+,∞

c (Rd), ∀ k ∈ N, (30)

where Φϕ,k(η) := 〈ϕ⊗k, η
k〉.

2.4.2. The moment problem on the set of simple point configurations Γ(Rd)

The condition (30) involves infinitely many polynomials of arbitrarily large degree. However, we can show 
an analogue of Corollary 2.10 for the full Γ(Rd)−moment problem by requiring (30) only for polynomials 
of at most second degree and by adding a single extra condition (34).

Corollary 2.11. Let m ∈ F (R) be a Stieltjes determining sequence. Then the sequence m is realized by a 
unique μ ∈ M∗(Γ(Rd)) if and only if the following hold

Lm(h2) ≥ 0, ∀h ∈ P, (31)

Lm(Φϕ,1h
2) ≥ 0, ∀h ∈ P, ∀ϕ ∈ C+,∞

c (Rd), (32)

Lm(Φϕ,2h
2) ≥ 0, ∀h ∈ P, ∀ϕ ∈ C+,∞

c (Rd), (33)

m(2)(diag(Λ × Λ)) = m(1)(Λ), ∀Λ ∈ B(Rd) compact, (34)

where Φϕ,1(η) = 〈ϕ, η〉, Φϕ,2(η) = 〈ϕ⊗2, η
2〉 = 〈ϕ, η〉2 − 〈ϕ2, η〉 and diag(Λ × Λ) := {(x, x) | x ∈ Λ}.

Remark 2.12. By Theorem 2.2, the conditions (31), (32), (33) are necessary and sufficient for the existence 
of a unique K̃−representing measure μ for the Stieltjes determining sequence m, where

K̃ :=
⋂

ϕ∈C+,∞
c (Rd)

{
η ∈ D ′(Rd) : 〈ϕ, η〉 ≥ 0

}
∩

⋂
ϕ∈C+,∞

c (Rd)

{
η ∈ D ′(Rd) : 〈ϕ⊗2, η
2〉 ≥ 0

}
.

Note that K̃ is not the required support in Corollary 2.11 as it is strictly larger than Γ(Rd).
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Proof. (Sufficiency) Let K̃ be as in Remark 2.12. By Theorem 2.2 there exists a unique K̃−representing 
measure μ for m. W.l.o.g. we can suppose that μ is a probability on K̃. Hence, it remains to show that μ
is actually concentrated on Γ(Rd). Let η ∈ K̃. Then for any ϕ ∈ C+,∞

c (Rd) we have:

〈ϕ, η〉 ≥ 0 and 〈ϕ⊗2, η
2〉 ≥ 0.

On the one hand, by a density argument, the previous conditions also hold for ϕ = 1A where A ∈ B(Rd)
bounded, i.e. {

η(A) ≥ 0
η(A)(η(A) − 1) ≥ 0.

The latter relations imply that η(A) ∈ {0} ∪ [1, +∞]. Hence, for any η ∈ K̃ there exist I ⊆ N, xi ∈ Rd and 
real numbers ai ≥ 1 (i ∈ I) such that

η =
∑
i∈I

aiδxi
, (35)

where I is either N or a finite subset of N and if I = N then the sequence (xi)i∈I has no accumulation 
points in Rd.2

On the other hand, using (34), the fact that μ is a K̃-representing measure for m and that K̃ is a subset 
of Radon measures, we get via approximation arguments that for any Λ ⊂ Rd measurable and compact

0 = m(2)(diag(Λ × Λ)) −m(1)(Λ) =
∫
K̃

(〈1diag(Λ×Λ), η
⊗2〉 − 〈1Λ, η〉)μ(dη).

As the integrand is non-negative on K̃, it follows that 〈1diag(Λ×Λ), η⊗2〉 −〈1Λ, η〉 = 0 μ−a.e. and so by (35)

0 =
∑
i,j∈I

xi=xj∈Λ

aiaj −
∑
i∈I

xi∈Λ

ai =
∑
i∈I

xi∈Λ

ai

⎛⎜⎝ ∑
j∈I

xj=xi

aj − 1

⎞⎟⎠ .

Since ai ≥ 1 for all i ∈ I, we necessarily have that 
∑
j∈I

xj=xi

aj − 1 = 0, namely

ai − 1 +
∑
j �=i∈I
xj=xi

aj = 0.

The latter implies that

∀i ∈ I, ai = 1 and ∀j, i ∈ I with j �= iwe have xj �= xi.

Hence, we got that for μ− almost all η ∈ K

η =
∑
i∈I

δxi
and η({x}) ∈ {0, 1}

2 In fact, suppose that supp(η) is not discrete then ∃y ∈ supp(η) accumulation point. This means that there exists a compact 
neighbourhood Λ of y containing an infinite sequence {yi}i∈N of points in supp(η). Hence, η(Λ) = ∑∞

i=1 η(yi) = ∞ since η(yi) ≥ 1
(η(yi) cannot be zero because it yi in the support).
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where I is either N or a finite subset of N and if I = N then the sequence (xi)i∈I has no accumulation 
points in Rd. This means that μ(Γ(Rd)) = 1.

(Necessity) By Remark 2.12, it only remains to show the condition (34). Recall that for any η ∈ Γ(Rd)
there exist I ⊆ N and xi ∈ Rd such that

η =
∑
i∈I

δxi
and η({x}) ∈ {0, 1}.

Therefore, for any Λ ⊂ Rd measurable and compact

〈1diag(Λ×Λ), η
⊗2〉 − 〈1Λ, η〉 =

∑
i,j∈I

1diag(Λ×Λ)(xi, x) −
∑
i∈I

1Λ(xi) = 0.

Hence, using approximation arguments and that μ is Γ(Rd)−representing for m, we get (34). �
3. Realizability of Radon measures in terms of correlation functions

To simplify the notations in this section we will use the following abbreviations Γ0 := Γ0(Rd), Γ := Γ(Rd), 
Γ̈0 := Γ̈0(Rd), Γ̈ := Γ̈(Rd).

3.1. Harmonic analysis on generalized functions

As already mentioned in the introduction, we will need in the following some concepts from the so-called 
harmonic analysis on configuration spaces developed in [25]. However, since we aim to apply such notions 
to measures whose support is only a priori known to be contained in D ′(Rd), we are going to provide a 
generalization of these concepts to our context.

Definition 3.1 (n−th generalized correlation function). Given n ∈ N and a generalized process μ on D ′(Rd)
with continuous n−th local moment, its n−th generalized correlation function in the sense of D ′(Rd) is the 
symmetric generalized function ρ(n)

μ ∈ D ′(Rdn) such that

〈f (n), ρ(n)
μ 〉 =

∫
D′(Rd)

〈f (n), η
n〉μ(dη), ∀ f (n) ∈ C∞
c (Rdn).

By convention, ρ(0)
μ := μ(D ′(Rd)).

In the previous definition the only change w.r.t. Definition 1.3 is that we consider a different basis for P, 
that is, we take 1

n! 〈f (n), η
n〉 instead of 〈f (n), η⊗n〉. This basis is different from the system of the Charlier 
polynomials commonly used in Poissonian analysis (see e.g. [11,21,28,39,40] and [26] for a detailed overview). 
Any polynomial in P can be written as:

P (η) = 1
j!

N∑
j=0

〈g(j), η
j〉,

where g(0) ∈ R and g(j) ∈ C∞
c (Rdj), j = 1, . . . , N with N ∈ N. W.l.o.g. each g(j) can be assumed to 

be a symmetric function of its j variables in Rd. These symmetric coefficients are uniquely determined 
by P . One may introduce the following mapping which associates to a sequence of coefficients (g(j))Nj=0
the corresponding polynomial P . For convenience, we denote by Ff (C∞

c ) the collection of all sequences 
G = (g(j))∞j=0 where g(j) ∈ C∞

c (Rdj) is a symmetric function of its j variables in Rd and g(j) �= 0 only for 
finitely many j’s.
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Definition 3.2 (K−transform). For any G = (g(j))∞j=0 ∈ Ff (C∞
c ), we define the K−transform of G as the 

function KG on D ′(Rd) given by

(KG)(η) :=
∞∑
j=0

1
j! 〈g

(j), η
j〉, ∀ η ∈ D ′(Rd).

The K−transform is well defined, because only finite many summands are different from 0. One can give 
a more direct description of the K−transform whenever η =

∑
i∈I δxi

∈ Γ̈ (see Section 2.4). Indeed, by 
using (28), we have that

(KG)(η) =
∞∑
j=0

1
j!

∑
i1,...,ij∈I

i1 
=···
=ij

g(j)(xi1 , . . . , xij ) =
∞∑
j=0

∑
i1,...,ij∈I

i1<···<ij

g(j)(xi1 , . . . , xij ).

If η ∈ Γ then one can also use the representation of Γ as subsets given in (23) to obtain the following 
representation

(KG)(η) =
∞∑
j=0

∑
ξ⊂η

|ξ|=j

G̃(ξ) =
∑
ξ⊂η

|ξ|<∞

G̃(ξ), (36)

where G̃ : Γ0 → R is defined as follows. Any ξ ∈ Γ̈0 is of the form ξ := {y1, . . . , yn} for some n ∈ N and 
yi ∈ Rd (this representation is unique up to the relabelling of the yi’s) then for such ξ we define

G̃ : Γ0 → R

ξ = {y1, . . . , yn} �→ G̃(ξ) := g(n)(y1, . . . , yn)

By convention, G̃(∅) = g(0). The expression in (36) is what is used in [25] as definition of K−transform.

Definition 3.3 (Convolution �). The convolution � : Ff (C∞
c ) ×Ff (C∞

c ) → Ff (C∞
c ) is defined as follows. For 

any G, H ∈ Ff (C∞
c ), we define G � H :=

(
(G � H)(j)

)∞
j=0 ∈ Ff (C∞

c ) to be such that for any j ∈ N

(G � H)(j)(xJ) =
∑

J1,J2⊂J

J1∪J2=J

G(|J1|)(xJ1)H(|J2|)(xJ2),

where J := {1, . . . , j} and, for any I ⊆ J , xI := (xi)i∈I ∈ (Rd)|I|. Note that xI is the equivalence class of 
all |I|−tuples with the same elements up to a relabelling.

Let us prove here the analogous of Proposition 3.3 in [25].

Proposition 3.4. Let G, H ∈ Ff (C∞
c ). Then K (G � H) = KG ·KH.

Proof. Due to the polarization identity, it suffices to consider the case G = (g⊗j)∞j=0 and H = (h⊗j)∞j=0
with g, h ∈ C∞

c (Rd). By using (25) and (27) one easily get that for any G = (g⊗j)∞j=0 the following holds

KG(η) =
∞∑ 1

j! 〈g
⊗j , η
j〉 = e〈ln(1+g),η〉.
j=0
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Then we have

KG(η) ·KH(η) = e〈ln(1+g+h+gh),η〉 (37)

=
∞∑
j=0

1
j! 〈(g + h + gh)⊗j , η
j〉

=
∞∑
j=0

1
j!

∑
j1+j2+j3=j

j!
j1!j2!j3!

〈g⊗j1⊗̂(gh)⊗j2⊗̂h⊗j3 , η
j〉,

where ⊗̂ denotes the symmetric tensor product. Let us observe that

∑
j1+j2+j3=j

j!
j1!j2!j3!

g⊗j1⊗̂(gh)⊗j2⊗̂h⊗j3(x1, . . . , xj) (38)

=
∑

j1+j2+j3=j

1
j1!j2!j3!

∑
π∈Sj

j1+j2∏
i=1

g(xπ(i))
j∏

i=j1+1
h(xπ(i))

=
∑

I1,I2⊂J

I1∪I2=J

G(|I1|)(xI1)H(|I2|)(xI2)

= (G � H)(j)(x1, . . . , xj)

where Sj denotes the symmetric group on {1, . . . , j} and for any π ∈ Sj we set J := {π(1), . . . , π(j)}.
Then using (37) and (38) together with Definition 3.2 we get the conclusion. �
Proposition 3.4 shows that K is a R−algebra isomorphism between (Ff (C∞

c ), �) and (PC∞
c

(D ′), ·).
Given a sequence ρ := (ρ(n))n∈N ∈ F(D ′(Rd), we define the linear functional L̃ρ on PC∞

c
(D ′)

by L̃ρ(〈f (n), η
n〉) := 〈f (n), ρ(n)〉, ∀ n ∈ N0, ∀f (n) ∈ C∞
c (Rdn), ∀η ∈ D ′(Rd). If ρ is realized by 

μ ∈ M∗ (D ′(Rd)
)
, then, by Definition 3.1, we have

L̃ρ(〈f (n), η
n〉) =
∫

D′(Rd)

〈f (n), η
n〉μ(dη).

Remark 3.5. To any ρ := (ρ(n))n∈N ∈ F(D ′(Rd) we can always associate the sequence m = (m(n))n∈N ∈
F(D ′(Rd) such that

〈f (n),m(n)〉 := L̃ρ(〈f (n), η⊗n〉).

In other words, Lm = L̃ρ on PC∞
c

(D ′).
For convenience, let us explicitly express m in terms of ρ:

〈f (n),m(n)〉 =
n∑

k=1

1
k!

∑
n1,...,nk∈N

n1+...+nk=n

n!
n1! · . . . · nk!

〈Tn1,...,nk
f (n), ρ(k)〉

where Tn1,...,nk
f (n) is defined as in (26).
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3.2. The moment problem on the set of point configurations in Rd

The positivity conditions in Corollaries 2.10 and 2.11 are of the form

Lm

(
〈ϕ⊗n, η
n〉h2(η)

)
≥ 0, ∀h ∈ P, ∀ϕ ∈ C+,∞

c (Rd). (39)

We aim to express (39) in terms of correlation functions instead of moment functions. Given a sequence 
ρ = (ρ(j))j∈N ∈ F(D ′(Rd)), we can always associate to it a sequence m ∈ F(D ′(Rd)) as in Remark 3.5. 
Then for any h ∈ P and any ϕ ∈ C+,∞

c (Rd) we get

Lm(〈ϕ⊗n, η
n〉h2(η)) = L̃ρ(〈ϕ⊗n, η
n〉h2(η)).

It remains to consider under which conditions the Stieltjes determining property of a sequence ρ (cf. Defi-
nition 2.1) is inherited by the associated m.

Lemma 3.6. Assume that a sequence ρ = (ρ(j))j∈N ∈ F(D ′(Rd)) is Stieltjes determining. Then there exists 
a total subset E of C∞

c (Rd) such that the class C{ 4
√
ρ2n} is quasi-analytic, where the sequence (ρn)n∈N0 of 

real numbers is defined as

ρ0 := |ρ(0)| and ρn := sup
f1,...,fn∈E

|〈f1 ⊗ · · · ⊗ fn, ρ
(n)〉|, ∀n ≥ 1. (40)

If the set E is closed under multiplication and the sequence 
(
ρn

n!
)
n∈N is almost-increasing (i.e. the exists 

C > 1 s.t. ρn

n! ≤ Cs
(
ρs

s!
)

for any n ≤ s), then the sequence m associated to ρ as in Remark 3.5 is also 
Stieltjes determining.

The notion of almost-increasing sequence here introduced is weaker than the usual definition given e.g. 
in [38].

Proof. The existence of E and the quasi-analytic of the class C{ 4
√
ρ2n} directly follows from Definition 2.1

applied to ρ = (ρ(j))j∈N .
Let m = (m(j))j∈N be associated to ρ as in Remark 3.5 and let

mn :=
√

sup
f1,...,f2n∈E

|〈f1 ⊗ · · · ⊗ f2n,m(2n)〉|, ∀n ≥ 1.

W.l.o.g. we can assume that mn ≥ 1 for all n ≥ k for some k ∈ N (otherwise it is clear that 
∑∞

n=1 m
− 1

2n
n = ∞

holds and so that m = (m(j))j∈N is Stieltjes determining). Then for any g1, . . . , g2n ∈ E and any n ≥ 1 we 
have:

√
|〈g1 ⊗ · · · ⊗ g2n,m(2n)〉| ≤

√√√√√ 2n∑
k=1

1
k!

∑
n1,...,nk∈N

n1+...+nk=2n

(2n)!
n1! . . . nk!

|〈Tn1,...,nk
(g1 ⊗ · · · ⊗ g2n), ρ(k)〉|

≤

√√√√√ 2n∑
k=1

1
k!

∑
n1,...,nk∈N

n1+...+nk=2n

(2n)!
n1! . . . nk!

ρk ≤

√√√√ 2n∑
k=1

k2n ρk
k!

≤
√

(2n)(2n)2nC2n ρ2n

(2n)! ≤
√

(2eC)2n√
π

ρ2n,
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where the constant C is the one appearing in the almost increasing assumption and in the last step we have 
made use of the Stirling formula.

Hence, we get mn ≤
√

(2eC)2n√
π

ρ2n and so the quasi-analyticity of the class C{ 4
√
ρ2n} implies that C{√mn}

is quasi-analytic, i.e. m = (m(j))j∈N is Stieltjes determining. �
Remark 3.7. As we have already showed in [20, Section 2], the determining condition becomes very concrete 
whenever one can explicitly construct the set E. The statements in [20, Lemma 2.5 and Remark 2.6] hold 
when replacing each m(n) with ρ(n). There we showed that a preferable choice for E is when supf∈E ‖f‖H

k(n)

grows as little as possible and we provided an example for such an E. The difference in the context of corre-
lations is that Lemma 3.6 requires an E which has the additional property to be closed under multiplication. 
Along the same lines of the proof of [20, Lemma 2.5], we introduce below in Lemma 3.8 a concrete example 
of E fulfilling all the requirements in Lemma 3.6 and such that supf∈E ‖f‖H

k(n) has the same growth as in 
[20, Lemma 2.5]. For convenience, we consider here only the case when E ⊂ C∞

c (R). The higher dimensional 
case follows straightforwardly.

Let (dn)n∈N0 be a positive sequence which is not quasi-analytic, then there exists a non-negative infinite 
differentiable function ϕ with support [−1, 1] such that for all x ∈ R and n ∈ N0 holds | dn

dxnϕ(x)| ≤ dn
(see [41]).

Lemma 3.8. Let (dn)n∈N0 be a log-convex positive sequence which is not quasi-analytic, let ϕ be as above. 
Define

E0 := {fy,p,j(·) := ϕj(· − y)eip· | y, p ∈ Q, j ∈ N}.

Then for any y, p ∈ Q and for any j, n ∈ N0 we get

‖fy,p,j‖H
k(n) ≤ Ck

(n)
1

p d
k
(n)
1

sup
x∈[−1,1]

√
k

(n)
2 (y + x),

where Cp :=
√

2(1 + |p|) and E0 is total in D(R).

Proof. (See Appendix A.1.) �
Combining Lemma 3.6 with Corollary 2.10 we get:

Theorem 3.9. Let ρ ∈ F (R) be a Stieltjes determining sequence s.t. the corresponding 
(
ρn

n!
)
n∈N is almost-

increasing (see (40) for the definition of ρn). Then ρ is realized by a unique μ ∈ M∗(Γ̈(Rd)) if and only if 
the following hold.

L̃ρ(h2) ≥ 0, ∀h ∈ P, (41)

L̃ρ(Φϕ,n(η)〉h2(η)) ≥ 0, ∀h ∈ P, ∀ϕ ∈ C+,∞
c (Rd),∀n ∈ N, (42)

where Φϕ,n(η) := 〈ϕ⊗n, η
n〉.

Also, combining Lemma 3.6 with Corollary 2.11 we get:

Theorem 3.10. Let ρ ∈ F (R) be a Stieltjes determining sequence s.t. the corresponding 
(
ρn

n!
)
n∈N is almost-

increasing (see (40) for the definition of ρn). Then ρ is realized by a unique μ ∈ M∗(Γ(Rd)) if and only if
the following inequalities hold
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L̃ρ(h2) ≥ 0, ∀h ∈ P,

L̃ρ(Φϕ,1h
2) ≥ 0, ∀h ∈ P, ∀ϕ ∈ C+,∞

c (Rd),

L̃ρ(Φϕ,2h
2) ≥ 0, ∀h ∈ P, ∀ϕ ∈ C+,∞

c (Rd),

ρ(2)(diag(Λ × Λ)) = 0, ∀Λ ∈ B(Rd) compact,

where diag(Λ × Λ) := {(x, x) | x ∈ Λ}, Φϕ,1(η) = 〈ϕ, η〉 and Φϕ,2(η) = 〈ϕ⊗2, η
2〉.

Clearly the previous results also hold when ρ = (ρ(j))j∈N ∈ F (R) fulfills (5) and if the corresponding (
ρn

n!
)
n∈N is almost-increasing (see (40) for the definition of ρn).

We can easily see that the conditions (41) and (42) can be interpreted as that the sequence ρ = (ρ(n))n∈N0

and all its shifted versions Φϕ,n
ρ are positive semi-definite in the sense of Definition 1.6 by just using the 

following shift.

Definition 3.11. Given a sequence ρ ∈ F (R) and a polynomial P ∈ P of the form P (η) :=
∑N

j=0〈p(j), η
j〉, 
we define the sequence Pρ =

(
(P ρ)(n))

n∈N0
in F (D ′) as follows

∀Q ∈ P, L̃
P ρ(Q) := L̃ρ(PQ).

We intend now to understand more concretely the action of this shift. First of all, let us observe the 
following property whose proof is postponed to Appendix A.1.

Lemma 3.12. For any k, n ∈ N and any ϕ ∈ C+,∞
c (Rd), let h(k) ∈ C∞

c (Rkd) and Φϕ,n(η) defined as above. 
Then we have:

〈h(k), (Φϕ,n
ρ)(k)〉 =

n∧k∑
l=0

n!k!
(n− l)!l!(k − l)!

〈[
h(k) (ϕ⊗l⊗̂1⊗k−l

)]
⊗̂ϕ⊗n−l, ρ(n−l+k)

〉
.

Let us take any polynomial h(η) :=
∑∞

j=0
1
j! 〈h(j), η⊗j〉 ∈ P and let us denote by H the sequence 

of coefficients of h, i.e. H := (h(j))∞j=0 ∈ Ff (C∞
c ). Then by using the definition and the properties of 

K−transform together with Lemma 3.12, we get:

L̃ρ(Φϕ,n(η)h2(η)) = L̃Φϕ,nρ(K(H �H))

=
∞∑
k=0

1
k!

n∧k∑
l=0

n!k!
(n− l)!l!(k − l)! 〈

(
(H �H)(k)ϕ⊗l⊗̂1⊗k−l

)
⊗̂ϕ⊗n−l, ρ(n−l+k)〉,

=
∞∑
i=0

1
i! 〈

n∑
l=0

n!
(n− l)!l!

(
(H �H)(i+l)1⊗i⊗̂ϕ⊗l

)
⊗̂ϕ⊗n−l, ρ(i+n)〉,

where in the last step we used the change of variables i = k − l. Hence, the condition

L̃ρ(Φϕ,n(η)h2(η)) ≥ 0, ∀h ∈ P,

becomes:

∞∑ 1
i! 〈

n∑ n!
(n− l)!l!

(
(H �H)(i+l)ϕ⊗l⊗̂1⊗i

)
⊗̂ϕ⊗n−l, ρ(i+n)〉 ≥ 0, ∀H ∈ Ff (C∞

c ). (43)

i=0 l=0
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In the following we would like to rewrite this positive semi-definite condition in a new way which separates 
the action of ϕ from the one of H in order to make the condition more effective in some concrete cases of 
interest in applications (see e.g. Example 3.14).

Let us first observe that the test function in the pairing can be rewritten as:

n∑
l=0

n!
(n− l)!l!

(
(H �H)(i+l)1⊗i⊗̂ϕ⊗l

)
⊗̂ϕ⊗n−l(y1, . . . , yi, x1, . . . , xn) = (44)

= (H̃x1,...,xn
� H̃x1,...,xn

)(i)(y1, . . . , yi)ϕ⊗n(x1, . . . , xn)

where for any s ∈ N we have set:

H̃(s)
x1,...,xn

(y1, . . . , ys) :=
∑

J⊂{1,...,n}
H(s+|J|)(y1, . . . , ys, xJ) (45)

(see Appendix A.1 for a proof of this rewriting).
This suggests that the condition

∞∑
i=0

1
i! 〈(H �H)(i)⊗̂ϕ⊗n, ρ(i+n)〉 ≥ 0, ∀H ∈ Ff (C∞

c )

may imply (43). This is the case whenever each ρ(k) is absolutely continuous with respect to σ⊗k for some 
σ ∈ R(Rd). Indeed, we have the following weaker version of Theorem 3.9 and 3.10.

Theorem 3.13. Let ρ ∈ F (R) be a Stieltjes determining sequence s.t. each ρ(k) is absolutely continuous with 
respect to σ⊗k for some σ ∈ R(Rd) and the corresponding 

(
ρn

n!
)
n∈N is almost-increasing (see (40)).

(a) If the following holds for all n ∈ N0, for σ-a.a. x1, . . . , xn ∈ Rd and for all H ∈ Ff (C∞
c ):

∞∑
i=0

1
i!

∫
Rid

(H �H)(i)(y1, . . . , yi)
dρ(i+n)

dσi+n
(x1, . . . , xn, y1, . . . , yi)σ(dy1) . . . σ(dyi) ≥ 0, (46)

then ρ is realized by a unique μ ∈ M∗(Γ̈(Rd)).
(b) If σ is non-atomic and (46) holds for n = 0, 1, 2, for σ-a.a. x1, . . . , xn ∈ Rd and for all H ∈ Ff (C∞

c ), 
then ρ is realized by a unique μ ∈ M∗(Γ(Rd)).

Proof. First let us observe that, since each ρ(k)’s is absolutely continuous w.r.t. σ⊗k, (46) for n = 0 always 
holds by just applying the definition of the Radon-Nikodym derivative, i.e.

∞∑
i=0

1
i! 〈(H �H)(i), ρ(i)〉 ≥ 0, ∀H ∈ Ff (C∞

c ),

always holds and so (41) holds.
Let n ∈ N. By applying the assumption (46) for H(i) = (H̃x1,...,xn

)(i), we get for σ-a.a. x1, . . . , xn ∈ Rd

that the following holds

∞∑
i=0

1
i!

∫
Rid

(H̃x1,...,xn
� H̃x1,...,xn

)(i)(y1, . . . , yi)
dρ(i+n)

dσi+n
(x1, . . . , xn, y1, . . . , yi)σ(dy1) . . . σ(dyi) ≥ 0,

where H̃x1,...,xn
is defined as in (45). Hence, for any ϕ ∈ C+,∞

c (Rd) multiplying the integrand by the 
non-negative function ϕ⊗n and integrating w.r.t. σ⊗n we obtain that:
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∞∑
i=0

1
i!

∫
Rdn

(H̃x1,...,xn
� H̃x1,...,xn

)(i)(y1, . . . , yi)ϕ⊗n(x1, . . . , xn)ρ(i+n)(dy1, . . . , dyi, dx1, . . . , dxn) ≥ 0

By (44), this exactly gives (43), which is equivalent to (42) as we have showed above. Then the conclusion 
(a) is a consequence of Theorem 3.9, while (b) of Theorem 3.10 considering that ρ(2)(diag(Λ × Λ)) = 0
follows from the fact that ρ(2) is absolutely continuous w.r.t. σ⊗2 and σ is non-atomic. �

Let us present now an application of this theorem which illustrates a concrete use of this rewriting of the 
realizability conditions.

Example 3.14. Let σ be a non-negative Radon measure on Rd. The Poisson measure μσ on D ′(Rd) is defined 
as the unique measure on D ′(Rd) which has σ⊗n as correlation function ρ(n). Using Minlos theorem one 
can easily see that μσ is the unique measure on D ′(Rd) with this property, since the infinite dimensional 
Laplace-Fourier transform associated to μσ is given by

exp

⎛⎝∫
Rd

(eϕ(x) − 1)σ(dx)

⎞⎠ ,

which is continuous and positive semi-definite. The latter is a direct consequence of the positive semi-
definiteness of the function y �→ ez(e

y−1) on R for z ≥ 0, see e.g. Subsections III.4.2 and 4.3 in [15] and 
[23,22]. It is less easy to see without an explicit construction that μσ is supported on the Γ̈(Rd). However, by 
Theorem 3.13 we can conclude that μσ is supported on Γ̈(Rd) and even on Γ(Rd) whenever σ is non-atomic. 
Indeed, as the i−th correlation function ρ(i) of the Poisson measure μσ is given by the product measure σ⊗i, 
the Radon-Nykodym derivative is just equal to 1. Hence, condition (46) is in this case independent of n, 
which means that the positive semi-definiteness of all the shifted sequences (ρ(i+n))i∈N for all n ∈ N follows 
just by the positive semi-definiteness of ρ. The latter is a direct consequence of the positive semi-definiteness 
of the Laplace-Fourier transform.
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Appendix A

For the convenience of the reader, we collect in this appendix some technical proofs of auxiliary results 
used throughout this article and a comparison with [16].

A.1. Proofs of some auxiliary results

Let us first give a proof of Lemma 3.8 which provides the construction of a total subset of C∞
c (R) closed 

under multiplication.
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Proof of Lemma 3.8. For any y, p ∈ Q we have that

(‖fy,p,j‖H
k(n) )

2 ≤
k
(n)
1∑

k=0

∫
R

∣∣∣∣ dk

dxk
ϕj(x− y)eipx

∣∣∣∣2 k(n)
2 (x)dx

≤
k
(n)
1∑

k=0

∫
R

⎛⎝ ∑
n0+···+nj=k

k!
n0! · · ·nj !

∣∣∣∣ dn0

dxn0
eipx

∣∣∣∣ j∏
i=1

∣∣∣∣ dni

dxni
ϕj(x− y)

∣∣∣∣
⎞⎠2

k
(n)
2 (x)dx.

W.l.o.g. we can always assume that the log-convex sequence (dl)l is monotone increasing with d0 = 1. Using 
the bound for derivative of ϕ and the properties the sequence (dl)l we get

(‖fy,p,j‖H
k(n) )

2 ≤
k
(n)
1∑

k=0

∫
R

⎛⎝ ∑
n0+···+nj=k

k!
n0! · · ·nj !

|p|n0

j∏
i=1

dni

⎞⎠2

k
(n)
2 (x)dx

≤
k
(n)
1∑

k=0

∫
R

⎛⎝ ∑
n0+···+nj=k

k!
n0! · · ·nj !

|p|n0dk−n0d0

⎞⎠2

k
(n)
2 (x)dx

≤ d2
k1(n)

k
(n)
1∑

k=0

∫
R

⎛⎝ ∑
n0+···+nj=k

k!
n0! · · ·nj !

|p|n0

⎞⎠2

k
(n)
2 (x)dx

≤ d2
k1(n)

k
(n)
1∑

k=0

(j + |p|)2k
∫

[−1,1]

k
(n)
2 (x + y)dx

≤ d2
k1(n)(j + |p|)k

(n)
1 k1

(n) sup
x∈[−1,1]

|k(n)
2 (x + y)|

The totality of E0 in D(R) is given by the second part of the proof of [20, Lemma 2.5]. �
We prove now the form of the shift introduced in Definition 3.11 and stated in Lemma 3.12.

Proof of Lemma 3.12. We set G := (g(j))j∈N ∈ Ff (C∞
c ) to be such that g(j) = 0 for all j �= n and g(n) = ϕ⊗n

and H := (h(j))j∈N ∈ Ff (C∞
c ) to be such that h(j) = 0 for all j �= k.

〈h(k), (Φϕ,n
ρ)(k)〉 = L̃Φϕ,nρ(〈h(k), η⊗k〉) = L̃ρ(Φϕ,n(η)〈h(k), η⊗k〉)

= L̃ρ(n!KG(η) · k!KH(η))

= L̃ρ

⎛⎝ ∞∑
j=0

n!k!
j! 〈(G � H)(j), η⊗j〉

⎞⎠ =
∞∑
j=0

n!k!
j! 〈(G � H)(j), ρ(j)〉. (47)

Now let us observe that for all j ≥ n ∨ k we have:

(G � H)(j)(xJ) =
∑

J1,J2⊂J
J1∪J2=J

|J1|=n,|J2|=k

G(n)(xJ1)H(k)(xJ2)

=
∑

I1,I2,I3⊂J
I1∪I2∪I3=J,Is∩It=∅,s 
=t

ϕ⊗j−k(xI1)ϕ⊗n+k−j(xI2)h(k)(xI2∪I3)
|I1|=j−k,|I2|=n+k−j,|I3|=j−n
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=
∑

I1,I2,I3⊂J
I1∪I2∪I3=J,Is∩It=∅,s 
=t

|I1|=j−k,|I2|=n+k−j,|I3|=j−n

ϕ⊗j−k ⊗
(
(ϕ⊗n+k−j ⊗ 1⊗j−n)h(k)

)
(xI1∪I2∪I3)

= j!
(j − k)!(n + k − j)!(j − n)!ϕ

⊗j−k⊗̂
(
(ϕ⊗n+k−j⊗̂1⊗j−n)h(k)

)
(xJ) (48)

Using (48) in (47), we get

〈h(k), (Φϕ,n
ρ)(k)〉 =

n+k∑
j=n∨k

n!k!
(j − k)!(n + k − j)!(j − n)! 〈h

(k) (ϕ⊗n+k−j⊗̂1⊗j−n
)
⊗̂ϕ⊗j−k, ρ(j)〉

The result follows using the change of variables l = n + k − j. �
In conclusion, we give the details for the rewriting of the realizability conditions introduced at the end 

of Section 3.

Proof of (44).

n∑
l=0

n!
(n− l)!l!

(
(H �H)(i+l)1⊗i⊗̂ϕ⊗l

)
⊗̂ϕ⊗n−l(y1, . . . , yi, x1, . . . , xn) =

=
n∑

l=0

n!
(n− l)!l! (H �H)(i+l)(y1, . . . , yi, x1, . . . , xl)ϕ⊗l(x1, . . . , xl)ϕ⊗n−l(xl+1, . . . , xn)

=
∑

J⊂{1,...,n}

∑
Y1,Y2⊂{1,...,k}
Y1∪Y2={1,...,k}

∑
J1,J2⊂J
J1∪J2=J

H(|Y1|+|J1|)(yY1 , xJ1)H(|Y2|+|J2|)(yY2 , xJ2)ϕ⊗|J|(xJ)ϕ⊗n−|J|(x{1,...,n}\J)

=
∑

Y1,Y2⊂{1,...,i}
Y1∪Y2={1,...,i}

∑
J1⊂{1,...,n}

H(|Y1|+|J1|)(yY1 , xJ1)
∑

J2⊂{1,...,n}
H(|Y2|+|J2|)(yY2 , xJ2)ϕ⊗n(x1, . . . , xn)

= (H̃x1,...,xn
� H̃x1,...,xn

)(i)(y1, . . . , yi)ϕ⊗n(x1, . . . , xn) �
A.2. Comparison with [16]

A result similar to Theorem 2.2 can be obtained by applying [16, Theorem 1.1] for V = C∞
c (Rd) endowed 

with the projective topology τproj and M = Q(PK), keeping in mind that P is algebraically isomorphic to 
the symmetric tensor algebra S(V ). In this way one gets that the conditions in (4) are necessary and sufficient 
to solve the KMP for m under the assumption that Lm is τproj-continuous, where τproj is the natural 
extension of τproj to P considered in [16]. By [16, Remark (9)-(10)], it is clear that the τproj-continuity of 
Lm implies that m is a Stieltjes determining sequence. Note that this continuity assumption also forces the 
support of the representing measure to be contained in a compact subset of K. Also Theorem 2.6 can be 
obtained by using [16, Theorem 1.1] applied for V = C∞

c (Rd) endowed with the projective topology τproj, but 
we need to take M to be the quadratic module in P generated by the family {Φψ : ψ ∈ C+,∞

c (Rd)} ∪{Υϕ :
ϕ ∈ C+,∞

c (Rd), ‖ϕ‖∞ ≤ 1}, where Φψ and Υϕ are the ones defined in Theorem 2.6. By the first part of the 
sufficiency proof and the Cauchy-Schwartz inequality, we get that:

Lm(〈ϕ, η〉n) ≤ Lm(1), ∀n ∈ N, ∀ϕ ∈ C+,∞
c (Rd) with ‖ϕ‖∞ ≤ 1. (49)

We will now show that (49) implies that Lm is τproj−continuous. Using the linearity of Lm, we can easily 
derive from (49) that
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Lm(〈ϕ, η〉n) ≤ Lm(1)‖ϕ‖n∞, ∀n ∈ N, ∀ϕ ∈ C+,∞
c (Rd). (50)

Then for all ϕ ∈ C∞
c (Rd) we have ϕ = ϕ+ − ϕ− with ϕ+(x) := max{ϕ(x), 0}, ϕ−(x) := − min{ϕ(x), 0}, 

and so:

|Lm(〈ϕ, η〉n)| ≤
n∑

k=0

(
n

k

) ∣∣Lm(〈ϕ−, η〉k〈ϕ+, η〉n−k)
∣∣

By using Cauchy-Schwarz inequality in the previous inequality and then (50), we get:

|Lm(〈ϕ, η〉n)| ≤
n∑

k=0

(
n

k

)
Lm(1)‖ϕ−‖k∞‖ϕ+‖n−k

∞ ≤ 2nLm(1)‖ϕ‖n∞. (51)

This gives in turn that for each n the following multilinear form on 
(
C∞
c (Rd)

)n endowed with the product 
topology induced by (C∞

c (Rd), ‖ · ‖∞) is continuous:

(ϕ1, . . . , ϕn) �→ Lm(
n∏

i=1
〈ϕi, η〉).

Indeed, using the polarization identity and then (51), we have that:

∣∣∣∣∣Lm(
n∏

i=1
〈ϕi, η〉)

∣∣∣∣∣ =

∣∣∣∣∣∣ 1
2nn!

∑
ε1,...,εn∈{−1,1}

n∏
i=1

εiLm

(
〈

n∑
i=1

εiϕi, η〉n
)∣∣∣∣∣∣

≤ 1
n! sup

ε1,...,εn∈{−1,1}

∣∣∣∣∣Lm

(
〈

n∑
i=1

εiϕi, η〉n
)∣∣∣∣∣

(51)
≤ Lm(1)2n

n! sup
ε1,...,εn∈{−1,1}

∥∥∥∥∥
n∑

i=1
εiϕi

∥∥∥∥∥
n

∞

,

and therefore

sup
ϕi∈C∞

c (Rd)
‖ϕi‖≤1

∣∣∣∣∣Lm(
n∏

i=1
〈ϕi, η〉)

∣∣∣∣∣ ≤ Lm(1)2nnn

n! ≤ Lm(1) 2nen√
2πn

≤ Lm(1)(2e)n,

where we used first that by triangle inequality we have ‖
∑n

i=1 εiϕi‖∞ ≤ n and then the Stirling formula. 
Hence, the multilinear mapping

(C∞
c (Rd), ‖ · ‖∞) × · · · × (C∞

c (Rd), ‖ · ‖∞) → R

(ϕ1, . . . , ϕn) �→ Lm(
∏n

i=1〈ϕi, η〉)

is continuous and so, by the universal property of the projective tensor product (see [47, Proposition 43.4]), 
there exists a unique continuous functional L̃m on C∞

c (Rd)⊗n endowed with the projective tensor norm 
‖ · ‖⊗n

∞ such that

Lm(
n∏
〈ϕi, η〉) = L̃m(〈ϕ1 ⊗ . . .⊗ ϕn, η

⊗n〉)

i=1
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In particular, this holds for S(C∞
c (Rd))n ⊂ C∞

c (Rd)⊗n and so by [47, Proposition 43.12-b)] we have that for 
all f (n) ∈ S(C∞

c (Rd))n ∣∣∣L̃m(〈f (n), η⊗n〉)
∣∣∣ ≤ (2e)nLm(1)‖f (n)‖⊗n

∞ .

Defining ρ(ϕ) := 2e‖ϕ‖∞, ∀ϕ ∈ C∞
c (Rd), we have that for all f (n) ∈ S(C∞

c (Rd))n∣∣∣L̃(〈f (n), η⊗n〉)
∣∣∣ ≤ Lm(1)ρ⊗n(f (n)) = Lm(1)ρn(f (n)),

where ρ⊗n is the projective tensor norm on C∞
c (Rd)⊗n induced by ρ and ρn the quotient norm on S(C∞

c (Rd))n
induced by ρ⊗n. Since every polynomial p ∈ P is of the form p(η) =

∑N
n=1〈f (n), η⊗n〉, we have

∣∣L̃(p(η))
∣∣ =

∣∣∣∣∣L̃(
N∑

n=1
〈f (n), η⊗n〉)

∣∣∣∣∣ ≤ Lm(1)
N∑

n=1
ρn(f (n)) = Lm(1)ρ(p),

where ρ :=
∑N

n=1 ρn is exactly the extension used in [16] (keeping in mind that S(V ) ≈ P). Hence, we 
have showed that Lm is ρ-continuous and so τproj−continuous (see [2, Chapter I, Section 3.10] and [16, 
Section 5] for more details on τproj and τproj , respectively). Then, by [16, Theorem 1.1] (11), (12) and 
(13) are equivalent to the existence of a unique representing measure for Lm whose support is contained in 
Rsub(Rd), i.e. Theorem 2.6 holds.
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