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We study the existence of compact almost automorphic weak solutions for the 
differential inclusion u′(t) +Au(t) � f(t) for t ∈ R, where A : D(A) ⊂ H −→ 2H is 
maximal monotone and the forcing term f is compact almost automorphic. We prove 
that the existence of a uniformly continuous weak solution on R+ having a relatively 
compact range over R+ implies the existence of a compact almost automorphic weak 
solution. For that goal, we use Amerio’s principle. We prove also the existence, 
uniqueness, and global attractivity of a compact almost automorphic weak solution 
where A is strongly maximal monotone. For illustration, some applications are 
provided for parabolic and hyperbolic equations.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Let H be a real Hilbert space and A : D(A) ⊂ H −→ 2H be a multivalued operator with domain D(A). 
We consider the following differential inclusions:

u′(t) + Au(t) � f(t) for t ∈ R, (1.1)

u′(t) + Au(t) � g(t, u(t)) for t ∈ R, (1.2)
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where f : R −→ H and g : R ×H −→ H are continuous functions. Many studies have been devoted to the 
existence of periodic and almost periodic solutions for the differential inclusion (1.1) when the operator A is 
maximal monotone on H and the forcing term f is periodic or almost periodic. Brézis [13, Theorem 3.4, p. 
65] proved that for any f ∈ L1(a, b; H) and u0 ∈ D(A) there exists a unique weak solution of the following 
differential inclusion: {

u′(t) + Au(t) � f(t) for t ∈ [a, b],
u(a) = u0.

(1.3)

Brézis [13, Theorem 3.15, p. 95] showed that if A is maximal monotone, then for each f ∈ L1(0, T ; H) the 
differential inclusion {

u′(t) + Au(t) � f(t),
u(0) = u(T )

(1.4)

has at least a weak solution. Baillon and Haraux [5] studied the following differential inclusion:

u′(t) + ∂φ(u(t)) � f(t) for t ∈ [0,+∞), (1.5)

where φ is a proper, convex, and lower semicontinuous function and f ∈ L2([0, +∞), H) is T -periodic. They 
proved that if a T -periodic solution of (1.5) exists on R, then for each solution u of (1.5) on R+ there exists 
a periodic strong solution w of (1.5) on R such that

u(t) ⇀ w(t) as t −→ +∞.

Haraux [19] proved that if the forcing term f : R −→ H is S2-almost periodic, then each weak solution of 
(1.5) on R+ is asymptotic to an almost periodic weak solution of (1.5) on R. Haraux [21] also proved that if 
(1.1) has a uniformly continuous weak solution on R+ and its range over R+ is relatively compact, then it 
has an almost periodic weak solution on R when f is almost periodic [21, Theorem 1, p. 295]. Furthermore, 
Haraux [23] proved that if the forcing term f : R −→ R2 is S1-almost periodic, then all bounded solutions 
on R of (1.1) are almost periodic.

Bochner [9–11] introduced the concept of almost automorphy as a generalization of almost periodicity 
[10,12]. This concept was then investigated in depth by Veech [26,27] and many other authors. Almost 
automorphy is a weak version of almost periodicity, so many results and methods in the theory of almost 
periodicity are complicated in the almost automorphic framework.

The aim of this work is to study the existence of compact almost automorphic weak solutions for (1.1)
and (1.2). If A is maximal monotone and f is compact almost automorphic, we prove that if (1.1) has a 
uniformly continuous weak solution on R+ having a relatively compact range over R+, then it has at least a 
compact almost automorphic weak solution on R. Our main result is proved by use of the minmax principle 
due to Amerio [1]. As an application, we study the following partial differential equation:⎧⎨⎩

∂2

∂t2
u(t, x) − Δu(t, x) + β

(
∂

∂t
u(t, x)

)
� f(t, x) for (t, x) ∈ R× Ω,

u(t, x) = 0 for (t, x) ∈ R× ∂Ω,
(1.6)

where Ω is a bounded open set in RN with smooth boundary ∂Ω such that dim(Ω) ≥ 2, β is a strongly 
monotone graph in R ×R, and f is a compact almost automorphic function in L2(Ω).
If A is strongly maximal monotone and f is compact almost automorphic, we prove that (1.1) has a unique 
bounded weak solution that is compact almost automorphic and globally attractive. Moreover, we use the 
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contraction principle to prove the existence and uniqueness of compact almost automorphic weak solutions 
for (1.2) where g is compact almost automorphic in t and Lipschitzian with respect to the second argument.

This work is organized as follows. In Section 2, we recall some definitions and basic results that we need 
to prove our results. Section 3 is devoted to the existence of compact almost automorphic weak solutions 
for the differential inclusion (1.1) where A is maximal monotone. In Section 4, we study the existence and 
uniqueness of compact almost automorphic weak solutions of the differential inclusion (1.2) where A is 
strongly maximal monotone. Finally, in Section 5 we give some applications to illustrate the main results 
of this work.

2. Monotone operators and almost automorphic functions

In this section we recall some basic results for maximal monotone operators and almost automorphic 
functions.

2.1. Maximal monotone operators

Let H be a real Hilbert space equipped with its norm | · | arising from its inner product (·, ·)H.

Definition 2.1. Let A : D(A) ⊂ H −→ 2H be a multivalued operator. Its domain is defined by

D(A) = {x ∈ H : Ax is nonempty in H}.

(i) The range of A is defined by

R(A) =
⋃
x∈H

Ax.

(ii) The graph of A is defined by

G(A) = {(x, y) ∈ H2 : y ∈ Ax}.

(iii) A is monotone if

(Ax−Ay, x− y)H ≥ 0 for all x, y ∈ D(A), (2.1)

which means that for each x1 ∈ D(A) and x2 ∈ D(A), one has

(y1 − y2, x1 − x2)H ≥ 0 for all y1 ∈ Ax1 and y2 ∈ Ax2. (2.2)

(iv) A is maximal monotone if it is monotone and R(I + A) = H, where I is the identity operator on H.
(v) A is α-strongly maximal monotone (α > 0) if it is maximal monotone and

(Ax−Ay, x− y)H ≥ α|x− y|2 for all x, y ∈ D(A). (2.3)

Remark 2.2. Let A : D(A) ⊂ H −→ 2H be a multivalued operator and α > 0. Then

A is maximal monotone if and only if A + αI is α-strongly maximal monotone.

Theorem 2.3. [13, p. 27] If A : H −→ 2H is maximal monotone, then D(A) is convex.
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Consider the following differential inclusion:{
u′(t) + Au(t) � f(t) for t ∈ [a, b],
u(a) = u0 ∈ H.

(2.4)

Definition 2.4. [13] Let f ∈ L1(a, b; H). A continuous function u : [a, b] −→ H is a strong solution of 
the differential inclusion (2.4) if u is absolutely continuous on each compact of ]a, b[, u(t) ∈ D(A) almost 
everywhere on [a, b] and (2.4) is satisfied almost everywhere on [a, b].

Definition 2.5. [13] A function u is a weak solution of (2.4) if there exist fn ∈ L1(a, b; H), un ∈ C(a, b; H)
such that un is a strong solution of

u′
n(t) + Aun(t) � fn(t)

on [a, b], fn −→ f in L1(a, b; H) and un −→ u in C(a, b; H).

Definition 2.6. Let f ∈ L1
loc(R, H). u is a weak solution of (2.4) on R if it is a weak solution of (2.4) on 

every compact interval of R.

The following results regarding the existence and estimations of weak solutions are needed in this work.

Theorem 2.7. [21, Theorem 36, p. 76]. Assume that A is maximal monotone and f ∈ L1(a, b; H). If u0 ∈
D(A), then there exists a unique weak solution of (2.4). Moreover, if u and v are two weak solutions of 
u′(t) + Au(t) � f(t) and v′(t) + Av(t) � g(t), respectively, then,

|u(t) − v(t)| ≤ |u(s) − v(s)| +
t∫

s

|f(σ) − g(σ)|dσ for a ≤ s ≤ t ≤ b. (2.5)

Theorem 2.8. [28] Assume that A is α-strongly maximal monotone. Let I be an interval of R and f̃ , f̂ ∈
L1
loc(I; H). If ũ and û are weak solutions on I of ũ′(t) +Aũ(t) � f̃(t) and û′(t) +Aû(t) � f̂(t), respectively, 

then for any s and t in I, s ≤ t, we have

|ũ(t) − û(t)| ≤ e−α(t−s)|ũ(s) − û(s)| +
t∫

s

e−α(t−σ)|ũ(σ) − f̂(σ)|dσ. (2.6)

2.2. Almost automorphic functions

Let (X, | ·|X) and (Y, | ·|Y ) be Banach spaces and BC(R, X) be the space of bounded continuous functions 
from R to X equipped with the supremum norm.

Definition 2.9. [14,18] A continuous function f : R −→ X is almost periodic if for every ε > 0 there exists 
a positive number l such that every interval of length l contains a number τ such that

sup
t∈R

|f(t + τ) − f(t)|X < ε.

We denote by AP (R, X) the space of almost periodic X-valued functions.

Theorem 2.10. [18] Every almost periodic function is uniformly continuous.
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Bochner [11] introduced the concept of almost automorphy, which is more general than almost periodicity.

Definition 2.11. [11,24,25] A continuous function f : R −→ X is almost automorphic if for every sequence 
of real numbers (t′n)n there exist a subsequence (tn)n and a function g such that for each t ∈ R

f(t + tn) −→ g(t) as n −→ +∞ (2.7)

and

g(t− tn) −→ f(t) as n −→ +∞. (2.8)

We denote by AA(R, X) the space of all almost automorphic X-valued functions.

Definition 2.12. [15] A continuous function f : R −→ X is compact almost automorphic if for each (t′n)n ⊆ R

there exist a subsequence (tn)n and a function g such that

lim
n→+∞

f(t + tn) = g(t) and lim
n→+∞

g(t− tn) = f(t) (2.9)

uniformly on any compact subset of R.
We denote by AAc(R, X) the space of all such functions.

Remark 2.13. (1) Each almost automorphic function f : R −→ X has a relatively compact range; hence, it 
is bounded.
(2) Since the convergence in Definition 2.11 is a pointwise convergence, the function g is only measurable 
and not necessarily continuous. The function g in Definition 2.12 is continuous.

Theorem 2.14. [16] A function f is compact almost automorphic if and only if it is almost automorphic and 
uniformly continuous.

Example 2.15. [6, Example 3.1] Let f : R −→ R be such that

f(t) = sin
(

1
2 + cos(t) + cos(

√
2t)

)
for t ∈ R.

f is almost automorphic, but it is not uniformly continuous on R; hence, it is not almost periodic.

Example 2.16. [17,27] Let θ be an irrational real number. Then for all n ∈ Z, cos(2πnθ) �= 0. Let (hn)n be 
the sequence defined by

hn = sgn cos(2πnθ) =
{

+1 if cos(2πnθ) > 0,
−1 if cos(2πnθ) < 0.

(2.10)

Let f be given by

f(t) = hn + (t− n)(hn+1 − hn) for t ∈ [n, n + 1].

Then f is compact almost automorphic, but it is not almost periodic.

Remark 2.17. We have that

AP (R, X) � AAc(R, X) � AA(R, X) � BC(R, X). (2.11)
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Theorem 2.18. [15] AAc(R, X) endowed with the supremum norm is a Banach space.

Definition 2.19. [15] A continuous function f : R ×X −→ Y is compact almost automorphic in t ∈ R if for 
every (t′n)n ⊆ R there exist a subsequence (tn)n and a function g such that

f(t + tn, x) −→ g(t, x) as n −→ +∞ (2.12)

and

g(t− tn, x) −→ f(t, x) as n −→ +∞ (2.13)

uniformly on any compact set in R and for any x ∈ X.
The space of such functions is denoted by AAc(R ×X, Y ).

Theorem 2.20. [15] Let f ∈ AAc(R × X, Y ) be Lipschitzian with respect to the second argument. If x ∈
AAc(R, X), then the composition function t �−→ f(t, x(t)) belongs to AAc(R, Y ).

3. Compact almost automorphic weak solutions of (1.1) where A is maximal monotone

In the sequel, we prove the existence of compact almost automorphic weak solutions of (1.1) where the 
operator A is maximal monotone.

Theorem 3.1. Suppose that f is compact almost automorphic and A is maximal monotone. If (1.1) has a 
uniformly continuous weak solution on R+ having a relatively compact range over R+, then (1.1) has at 
least a compact almost automorphic weak solution.

For the proof of Theorem 3.1, we need the following lemmas.

Lemma 3.2. [13] Let f, fn ∈ L1([a, b]; H). Assume that xn is a weak solution of x′
n(t) + Axn(t) � fn(t) on 

[a, b]. If xn −→ x uniformly on [a, b] and fn −→ f in L1([a, b]; H), then x is a weak solution of (1.1) on 
[a, b].

Lemma 3.3. Let F ∈ L1
loc(R, H) and x be a weak solution on R of the following differential inclusion:

x′(t) + Ax(t) � F (t). (3.1)

Assume that x is uniformly continuous on R and there exists a compact set K of H such that

x(t) ∈ K for all t ∈ R. (3.2)

If there exist a sequence (tn)n ⊆ R and a function G : R −→ H such that

F (t + tn) −→ G(t) in L1
loc(R,H) as n −→ +∞, (3.3)

then there exists a subsequence of (tn)n denoted by (sn)n such that

x(t + sn) −→ y(t) as n −→ +∞ (3.4)

uniformly on any compact subset of R, where y is a weak solution on R of the following differential inclusion:
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y′(t) + Ay(t) � G(t). (3.5)

Furthermore, y is uniformly continuous on R and y(t) ∈ K for all t ∈ R.

Proof. For each n ∈ N, we define xn and Fn on R by xn(t) = x(t +tn) and Fn(t) = F (t +tn). By (3.2), (xn)n
satisfies xn(t) ∈ K for each t ∈ R and n ∈ N. Consequently {xn(t) : n ∈ N} is a relatively compact set 
in H for each t ∈ R. Since x is uniformly continuous on R, the sequence (xn)n is uniformly equicontinuous 
on R. By the Arzelà-Ascoli theorem, {xn : n ∈ N} is a relatively compact subset of BC(R, H) endowed 
with the topology of compact convergence. From the sequence (tn)n, we can extract a subsequence (sn)n
such that there exists y ∈ BC(R, H) such that (xn)n converges to y uniformly on each compact subset of 
R and hence (3.4) holds. Furthermore, since xn is a weak solution of (1.1) with Fn and Fn converges to 
G in L1

loc(R, H), the use of Lemma 3.2 allows us to conclude that y is a weak solution of (3.5); moreover, 
y(t) ∈ K for all t ∈ R. Therefore, y is uniformly continuous on R because it is a limit of the sequence (xn)n, 
which is uniformly equicontinuous on R. �
Lemma 3.4. Suppose that f is compact almost automorphic. If (1.1) has a uniformly continuous weak solu-
tion u0 on R+ having a relatively compact range over R+, then it has a uniformly continuous weak solution 
u∗ on R; moreover, its range over R is relatively compact.

Proof. Let (tn)n ⊆ R be such that

lim
n→+∞

tn = +∞. (3.6)

If t ∈ [−1, 1], then for sufficiently large n the sequence of functions un : t �−→ u0(t + tn) is well defined 
and uniformly equicontinuous. By the Arzelà-Ascoli theorem, there exist a function v and a subsequence 
(t1n)n ⊂ (tn)n such that

u0(t + t1n) −→ v(t) as n −→ +∞

uniformly on [−1, 1]. Using the same argument, we deduce that for each p ∈ N∗ there exists a subsequence 
(tpn)n ⊂ (tp−1

n )n ⊂ · · · ⊂ (tn)n such that

u0(t + tpn) −→ v(t) as n −→ +∞

uniformly on [−p, p]. Let (t′n)n := (tnn)n be the Cantor’s diagonal sequence. Then

u0(t + t′n) −→ v(t) as n −→ +∞ (3.7)

uniformly on any compact subset of R. Since f is compact almost automorphic, there exist a continuous 
function g and a subsequence (t′′n)n ⊂ (t′n)n such that

f(t + t′′n) −→ g(t) as n −→ +∞, (3.8)

g(t− t′′n) −→ f(t) as n −→ +∞ (3.9)

uniformly on any compact subset of R. Moreover, using (3.7) and (3.8), we find that v is a weak solution on 
R of (1.1) with g. Furthermore, v is also equicontinuous. By applying the above argument to the returning 
sequence (−t′′n)n, we obtain a subsequence (t′′′n )n ⊂ (t′′n)n and a function u∗ such that

v(t + t′′′n ) −→ u∗(t) as n −→ +∞ (3.10)
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uniformly on any compact subset of R. By (3.9), (3.10), and Lemma 3.2, we deduce that u∗ is a weak 
solution on R of (1.1). Furthermore, the function u∗ is uniformly continuous on R and its range is contained 
in the closure of the range of u0; hence, it is relatively compact. �

The next lemma plays a crucial role in this work.

Lemma 3.5. [21, Lemma 30, p. 220] Let S be a contraction defined on a closed convex subset of H and 
x, y ∈ H be such that |Sx− Sy| = |x− y|. Then

S

(
x + y

2

)
= S(x) + S(y)

2 .

Proof of Theorem 3.1. We use Amerio’s principle. Let K = Co(u∗(R)) be the closed convex hull of u∗(R)
in H, where u∗ is given in Lemma 3.4. Let Λ and Γ be the sets defined by

Λ =
{
u ∈ C(R,H) : u(R) ⊂ K and sup

t∈R
|u(t + σ) − u(t)| ≤ sup

t∈R
|u∗(t + σ) − u∗(t)| for all σ ∈ R

}
,

Γ =
{
u ∈ Λ : u is a weak solution of the differential inclusion (1.1) on R

}
.

We define the operator J : Λ −→ R+ by

J(u) = sup
t∈R

|u(t)| for u ∈ Λ.

We say that ũ is a minimal weak solution of (1.1) if

ũ ∈ Γ and J(ũ) = inf
u∈Γ

J(u).

We divide the proof into three steps:
Step 1. We claim that (1.1) has a minimal weak solution û on R. Let

δ = inf
u∈Γ

J(u). (3.11)

Then, by Lemma 3.4, Γ is nonempty since u∗ ∈ Γ. Hence, δ exists in R. Consequently, there exists a sequence 
(un)n in Γ such that

lim
n→+∞

J(un) = δ. (3.12)

By the definition of Γ, for each t ∈ R, {un(t) : n ∈ N} is a subset of the compact K and (un)n is uniformly 
equicontinuous on R. Using the Arzelà-Ascoli theorem, we assert that {un : n ∈ N} is a relatively compact 
subset of BC(R, H) endowed with the topology of compact convergence. Thus, there exists a subsequence 
of (un)n denoted also by (un)n such that

un(t) −→ û(t) as n −→ +∞ (3.13)

uniformly on any compact subset of R. Since u′
n(t) + Aun(t) � f(t) in the sense of weak solutions, the use 

of (3.13) together with Lemma 3.2 implies that û is a weak solution on R of (1.1) and û ∈ Λ; consequently, 
û ∈ Γ. Hence, we obtain

δ ≤ J(û). (3.14)
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We note that J is lower semicontinuous with respect to the topology of compact convergence; namely, if 
lim
n→∞

xn = x uniformly on compact subsets of R, then J(x) ≤ lim infn→∞ J(xn). By (3.13), we get

J(û) ≤ lim inf
n→+∞

J(un). (3.15)

By (3.12), (3.14), and (3.15), we deduce that

J(û) = δ = inf
u∈Γ

J(u). (3.16)

Step 2. We claim that the minimal weak solution û is unique. Let u, v ∈ Γ be such that

J(u) = J(v) = δ. (3.17)

Let (tn)n ⊆ R be such that

lim
n→+∞

tn = −∞. (3.18)

From the compact almost automorphy of f , there exist a continuous function g and a subsequence of (tn)n
denoted also by (tn)n such that

f(t + tn) −→ g(t) as n −→ +∞,

g(t− tn) −→ f(t) as n −→ +∞

uniformly on any compact subset of R. Now let us prove that

u(t + tn) −→ u1(t) as n −→ +∞, (3.19)

u1(t− tn) −→ u2(t) as n −→ +∞, (3.20)

v(t + tn) −→ v1(t) as n −→ +∞, (3.21)

v1(t− tn) −→ v2(t) as n −→ +∞ (3.22)

uniformly on any compact subset of R, where u2 and v2 are two minimal weak solutions on R of (1.1). Since 
u ∈ Γ, it is uniformly continuous on R and u(R) ⊂ K. Applying Lemma 3.3 to x = u, F = f , and the 
sequence (tn)n, we obtain (3.19), where u1 is a weak solution on R of the following differential inclusion:

u′
1(t) + Au1(t) � g(t).

Moreover, u1 is uniformly continuous on R and u1(R) ⊂ K, which implies that u1 ∈ Λ. Applying again 
Lemma 3.3 to x = u1, F = g, and the returning sequence (−tn)n, we obtain (3.20), where u2 is a weak 
solution on R of (1.1) with u2 ∈ Γ. It follows from (3.19) and (3.20) that

J(u2) ≤ J(u1) ≤ J(u). (3.23)

Using (3.17), we obtain J(u2) = δ, and consequently u2 is a weak minimal solution on R of (1.1). Applying 
the same argument to v, we obtain (3.21) and (3.22), where v2 is a weak minimal solution on R of (1.1). 
Since u′(t) + Au(t) � f(t) and v′(t) + Av(t) � f(t) in the sense of weak solutions and the operator A is 
monotone, we find by using inequality (2.5) that the function t �−→ |u(t) − v(t)| is nonincreasing. By (3.18), 
we obtain
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lim
n→+∞

|u(t + tn) − v(t + tn)| = sup
σ∈R

|u(σ) − v(σ)|. (3.24)

It follows from (3.19)–(3.22) that for each t ∈ R

lim
m→+∞

lim
n→+∞

|u(t + tn − tm) − v(t + tn − tm)| = lim
m→+∞

|u1(t− tm) − v1(t− tm)|

= |u2(t) − v2(t)|. (3.25)

Combining (3.24) and (3.25), we find that for each t ∈ R

|u2(t) − v2(t)| = sup
σ∈R

|u(σ) − v(σ)| = c. (3.26)

Consequently, we have

|u2(t) − v2(t)| = |u2(0) − v2(0)| for t ∈ R. (3.27)

Let St : D(A) −→ D(A) be the operator defined for each x0 ∈ D(A) by

Stx0 = x(t),

where x is the unique weak solution on R of (1.1) with initial data x(0) = x0. Taking f = g in (2.5), we 
deduce that the operator St is contractive on the closed convex set D(A). It follows from (3.27) that

|Stu2(0) − Stv2(0)| = |u2(0) − v2(0)|.

Using Lemma 3.5, we obtain

St

(
u2(0) + v2(0)

2

)
= 1

2
(
Stu2(0) + Stv2(0)

)
= u2(t) + v2(t)

2 .

We conclude that u2 + v2

2 is also a weak solution on R of (1.1). Since u2(R) ⊂ K, v2(R) ⊂ K, and K is 

convex, 
(
u2 + v2

2

)
(R) ⊂ K and 

u2 + v2

2 ∈ Γ. Hence,

δ = inf
u∈Γ

J(u) ≤ J

(
1
2u2 + 1

2v2

)
= sup

t∈R

∣∣∣∣12u2(t) + 1
2v2(t)

∣∣∣∣ . (3.28)

By the parallelogram law, we get

sup
t∈R

∣∣∣∣12u2(t) + 1
2v2(t)

∣∣∣∣2 + 1
4c

2 ≤ 1
2 sup

t∈R
|u2(t)|2 + 1

2 sup
t∈R

|v2(t)|2. (3.29)

By (3.28) and (3.29), we obtain δ2 + 1
4c

2 ≤ 1
2δ

2 + 1
2δ

2. Hence, |u2(t) − v2(t)| = c ≤ 0 for all t ∈ R; 

consequently, u2 = v2, which implies by (3.26) that u = v.
Step 3. We claim that the unique minimal weak solution û is compact almost automorphic. Let (t′n)n ⊆ R. 
We have to prove that there exist a subsequence (tn)n of (t′n)n and a continuous function ν such that

û(t + tn) −→ ν(t) as n −→ +∞, (3.30)

ν(t− tn) −→ û(t) as n −→ +∞ (3.31)
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uniformly on any compact subset of R. From the compact almost automorphy of f , there exists a subsequence 
(tn)n ⊂ (t′n)n such that

f(t + tn) −→ g(t) as n −→ +∞,

g(t− tn) −→ f(t) as n −→ +∞

uniformly on any compact subset of R. Since û ∈ Γ, it is uniformly continuous on R, and û(t) ∈ K for all 
t ∈ R. Applying Lemma 3.3 to x = û, F = f , and the sequence (tn)n, we obtain (3.30), where ν is a weak 
solution on R of the following differential inclusion:

ν′(t) + Aν(t) � g(t).

Furthermore, ν is uniformly continuous on R and ν(t) ∈ K for all t ∈ R since ν ∈ Λ. Using (3.30), we obtain

J(ν) ≤ J(û). (3.32)

Applying Lemma 3.3 to x = ν, F = g, and the returning sequence (−tn)n, we find for a subsequence that

ν(t− tn) −→ ω(t) as n −→ +∞ (3.33)

uniformly on any compact subset of R, where ω ∈ Γ. From (3.33) we obtain

J(ω) ≤ J(ν). (3.34)

By (3.32) and (3.34), we get

J(ω) ≤ J(û) = inf
u∈Γ

J(u).

Consequently,

J(ω) = J(û) = inf
u∈Γ

J(u).

By the uniqueness of the minimal weak solution of (1.1) (from steps 1 and 2), we deduce that ω = û, (3.31)
holds, and û is compact almost automorphic. �
4. Compact almost automorphic weak solutions of (1.1) and (1.2) where A is strongly maximal monotone

In the sequel, we prove the existence and uniqueness of compact almost automorphic weak solutions for 
the differential inclusions (1.1) and (1.2) where the operator A is strongly maximal monotone.

Theorem 4.1. Assume that A is α-strongly maximal monotone (α > 0) with 0 ∈ A0 and f ∈ AAc(R, H). 
Then (1.1) has a unique compact almost automorphic weak solution uf that is globally attractive.

Proof. The proof is divided in five steps:
Step 1. We claim that the differential inclusion (1.1) has a bounded weak solution uf on R. Let n ∈ N and 
consider the following problem: {

u′(t) + Au(t) � f(t),
u(−n) = 0.

(4.1)
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Then (4.1) has a unique weak solution un on [−n, ∞). Since A0 � 0, it follows by Theorem 2.8, with ũ = un, 
f̃ = f , û = 0, and f̂ = 0, that

|un(t)| ≤
t∫

−n

e−α(t−σ)|f(σ)|dσ for t ∈ [−n,∞).

The compact almost automorphy of the function f implies its boundedness. Let Mf = supt∈R |f(t)|. Then 
the last inequality gives

|un(t)| ≤ Mf

α
(1 − e−α(t+n)) for t ∈ [−n,+∞[;

consequently,

|un(t)| ≤ Mf

α
for t ∈ [−n,+∞[. (4.2)

Let I = [a, b] and n and m be such that −n ≤ −m ≤ a. Using Theorem 2.8 for ũ = un, f̃ = f , û = um, and 
f̂ = f , we get

|un(t) − um(t)| ≤ e−α(t+m)|un(−m) − um(−m)| = e−α(t+m)|un(−m)| for t ∈ I. (4.3)

Inequalities (4.2) and (4.3) imply that

|un(t) − um(t)| ≤ Mf

α
e−α(a+m) for t ∈ I,

which implies that (un)n is a Cauchy sequence in C(I, H) and hence it converges to uf in C(I, H). By 
Lemma 3.2, the function uf is a weak solution of (1.1) on I. Since I is arbitrary, by (4.2), uf is a bounded 
weak solution on R of (1.1).
Step 2. We claim that uf is unique. Suppose that v is another bounded weak solution on R of (1.1). By 
Theorem 2.8, we have for t, σ ∈ R, t ≥ σ,

|uf (t) − v(t)| ≤ e−α(t−σ)|uf (σ) − v(σ)|. (4.4)

Since uf and v are bounded, by letting σ −→ −∞ in (4.4), we obtain uf = v. The global attractivity also 
follows from (4.4) by our taking σ = 0 and letting t −→ +∞.
Step 3. We claim that the range of uf is relatively compact. Let (t′n)n ⊆ R. From the almost automorphy 
of f , there exists a subsequence (tn)n ⊂ (t′n)n such that for each t ∈ R

|f(t + tp) − f(t + tq)| −→ 0

as p, q −→ ∞. Let

{
un(t) := uf (t + tn) for t ∈ R,

fn(t) := f(t + tn) for t ∈ R.

We claim that (un(t))n is a Cauchy sequence in H for each t ∈ R. up and uq are weak solutions of the 
following differential inclusions:
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{
u′
p(t) + Aup(t) � fp(t) for t ∈ R,

u′
q(t) + Auq(t) � fq(t) for t ∈ R.

(4.5)

Applying Theorem 2.8 to (4.5), we find that for t ≥ σ

|up(t) − uq(t)| ≤ e−α(t−σ)|up(σ) − uq(σ)| +
t∫

σ

e−α(t−s)|fp(s) − fq(s)|ds.

Using the boundedness of uf and letting σ −→ −∞, we deduce that for each t ∈ R

|up(t) − uq(t)| ≤
t∫

−∞

e−α(t−s)|fp(s) − fq(s)|ds

=
t∫

−∞

e−α(t−s)|f(s + tp) − f(s + tq)|ds.

Using Lebesgue’s dominated convergence theorem, we conclude that (un(t))n is a Cauchy sequence in H for 
each t ∈ R. Therefore, uf has a relatively compact range.
Step 4. We claim that the solution uf is uniformly continuous on R. By Theorem 2.8 with ũ = uf (· + h), 
û = uf (·), f̃ = f(· + h), and f̂ = f(·), we find that for t ≥ σ

|uf (t + h) − uf (t)| ≤ e−α(t−σ)|uf (σ + h) − uf (σ)| +
t∫

σ

e−α(t−s)|f(s + h) − f(s)|ds.

Since uf is bounded, we find by letting σ −→ −∞ that for each t ∈ R

|uf (t + h) − uf (t)| ≤
t∫

−∞

e−α(t−s)|f(s + h) − f(s)|ds

≤ 1
α

sup
t∈R

|f(t + h) − f(t)|,

which implies that

sup
t∈R

|uf (t + h) − uf (t)| ≤ 1
α

sup
t∈R

|f(t + h) − f(t)|.

By Theorem 2.14, we find that uf is uniformly continuous on R.
Step 5. We claim that uf is compact almost automorphic. Let (tn)n ⊆ R. Since f is compact almost 
automorphic, there exist a subsequence (t′n)n ⊂ (tn)n and a continuous function g : R −→ H such that

|f(t + t′n) − g(t)| −→ 0 as n −→ +∞,

|g(t− t′n) − f(t)| −→ 0 as n −→ +∞

uniformly on any compact subset of R. By Lemma 3.3, one can extract another subsequence (t′′n)n ⊂ (t′n)n ⊂
(tn)n such that

uf (t + t′′n) −→ y(t) as n −→ +∞ (4.6)
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uniformly on any compact subset of R, where y is a weak solution on R of the following differential inclusion:

y′(t) + Ay(t) � g(t).

Since y is also uniformly continuous and its range is relatively compact, by applying the same procedure to 
the function y using the returning sequence (−t′′n)n, we have another subsequence (t′′′n )n ⊂ (t′′n)n ⊂ (t′n)n ⊂
(tn)n such that

y(t− t′′′n ) −→ z(t) as n −→ +∞ (4.7)

uniformly on any compact subset of R, where z is a bounded weak solution of (1.1) on R. From the uniqueness 
of the bounded weak solution (step 2), we conclude that z = uf . Thus, it follows from (4.6) and (4.7) that 
uf is compact almost automorphic. �
Theorem 4.2. Assume that A is α-strongly maximal monotone (α > 0) with 0 ∈ A0 and g : R ×H −→ H
is compact almost automorphic in t and Lipschitzian with respect to the second argument. Then (1.2) has a 
unique compact almost automorphic weak solution provided that Lip(g) < α, where Lip(g) is the Lipschitz 
constant of g.

Proof. Let v : R −→ H be a compact almost automorphic function. Consider the following differential 
inclusion:

u′(t) + Au(t) � g(t, v(t)) for t ∈ R. (4.8)

By Theorem 2.20, the function t �−→ g(t, v(t)) is compact almost automorphic. It follows from Theorem 4.1
that the differential inclusion (4.8) has a unique compact almost automorphic weak solution uv. Let T be 
defined by

T : AAc(R,H) −→ AAc(R,H),

v �−→ uv.

Then T is well defined. Let v, w ∈ AAc(R, H). Applying Theorem 2.8 to ũ = uv, f̃ = g(·, v(·)), û = uw, and 
f̂ = g(·, w(·)), we obtain

|Tv(t) − Tw(t)| ≤ e−α(t−σ)|uv(σ) − uw(σ)| +
t∫

σ

e−α(t−s)|g(s, v(s)) − g(s, w(s))|ds for t ≥ σ.

Letting σ −→ −∞, we find that for each t ∈ R

|Tv(t) − Tw(t)| ≤
t∫

−∞

e−α(t−s)|g(s, v(s)) − g(s, w(s))|ds

≤ Lip(g)
α

|v − w|∞.

This means that T is a strict contraction. We deduce that the operator T has a unique fixed point that is 
the unique compact almost automorphic weak solution of (1.2). �
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5. Hyperbolic and parabolic equations

5.1. A dissipative hyperbolic system

We give an existence theorem of compact almost automorphic weak solutions for the following dissipative 
nonlinear wave inclusion:⎧⎨⎩

∂2

∂t2
u(t, x) − Δu(t, x) + β

(
∂

∂t
u(t, x)

)
� θ(t, x) for (t, x) ∈ R× Ω,

u(t, x) = 0 for (t, x) ∈ R× ∂Ω,
(5.1)

where Δ is the Laplacian operator. We assume that
(A1) Ω is a bounded open set in RN with smooth boundary ∂Ω such that dim(Ω) ≥ 2.
(A2) β is a strongly maximal monotone graph in R ×R with 0 ∈ β0 such that

|β0w| ≤ C1|w|k + C2, with 0 ≤ k ≤ N + 2
N − 2 , (5.2)

where β0w = Projβ(w)(0).

(A3) θ : R × Ω −→ R satisfies ∂θ
∂t

∈ S2(R, L2(Ω)), where

S2(R, L2(Ω)) =
{
h ∈ L2

loc(R, L2(Ω)) : sup
t∈R

t+1∫
t

|h(s)|2L2(Ω)ds < +∞
}
,

and the function t �−→ θ(t, ·) is in AAc(R, L2(Ω)). That is, for any (t′n)n ⊆ R, there exist a subsequence 
(tn)n and a continuous function θ̃ : R × Ω −→ R such that∫

Ω

|θ(t + tn, ω) − θ̃(t, ω)|2dω −→ 0 as n −→ +∞, (5.3)

∫
Ω

|θ̃(t− tn, ω) − θ(t, ω)|2dω −→ 0 as n −→ +∞ (5.4)

uniformly on any compact subset of R.
Let H = H1

0 (Ω) × L2(Ω) be the Hilbert space endowed with the norm

|(φ1, φ2)|H =
(∫

Ω

(|�φ1(s)|2 + |φ1(s)|2 + |φ2(s)|2)ds
) 1

2

,

and let B be the canonical extension of β to L2(Ω) taken from [21, p. 53]

(u, v) ∈ G(B) if and only if (u(x), v(x)) ∈ G(β) for almost allx ∈ Ω. (5.5)

Let ⎧⎪⎨⎪⎩
D(L) = H1

0 (Ω) ∩H2(Ω) ×H1
0 (Ω)

L =
(

0 −I

−Δ 0

)
,
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⎧⎪⎨⎪⎩
D(B) = H1

0 (Ω) ×D(B)

B =
(

0 0
0 B

)
.

Lemma 5.1. [21, p. 93] D(A) = D(L) ∩D(B), A = L + B is maximal monotone on H = H1
0 (Ω) × L2(Ω).

Let f : R −→ H be the function defined by

f(t)(ω) =
(

0
θ(t, ω)

)
for t ∈ R and ω ∈ Ω. (5.6)

Then, by assumption (A3), f ∈ AAc(R, H). If we take U =
(

u
∂u
∂t

)
, then (5.1) takes the following abstract 

form:

U ′(t) + AU(t) � f(t) for t ∈ R. (5.7)

Lemma 5.2. [8, Theorem 2.1] Let U(t) =
(

u
∂u
∂t

)
be a solution that starts at 

(
u0
v0

)
∈ D(A). Then

∂2u

∂t2
∈ L∞(R+, L2(Ω)) and ∂u

∂t
∈ L∞(R+, H1

0 (Ω)).

Lemma 5.3. [8] Let U(t) =
(

u
∂u
∂t

)
be a solution that starts at 

(
u0
v0

)
∈ D(A). Then U(t) has a relatively 

compact range in the energy space H = H1
0 (Ω) × L2(Ω).

As a consequence, we have the following result.

Theorem 5.4. (5.1) has at least a weak solution in AAc(R, H1
0 (Ω) × L2(Ω)).

Proof. By Lemmas 5.2 and 5.3, any trajectory (U(t))t≥0 that starts at U0 ∈ D(A) is uniformly continuous 
on R+ in H1

0 (Ω) ×L2(Ω) and its range over R+ is relatively compact. In view of Theorem 3.1, (5.7) has at 
least a compact almost automorphic weak solution. �
Remark 5.5. (5.1) was considered in the periodic case and the almost periodic case in [2–4,7,8,20–22].

5.2. A dissipative parabolic system

Consider the following system:⎧⎨⎩
∂

∂t
w(t, x) − Δw(t, x) + β (w(t, x)) + αw(t, x) � γ(w(t, x))) + h(t, x) for (t, x) ∈ R× Ω,

w(t, x) = 0 for (t, x) ∈ R× ∂Ω,
(5.8)

where α > 0. Assume that
(B1) Ω is a smooth subset of RN with a regular boundary ∂Ω.
(B2) β is a maximal monotone graph in R ×R with 0 ∈ β0.
(B3) γ : R −→ R is a Lipschitzian function such that γ(0) = 0. Let Lγ be its Lipschitz constant.
(B4) The function t �−→ h(t, ·) belongs to AAc(R, L2(Ω)).
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Let B be the canonical extension of β to L2(Ω) defined by

(u, v) ∈ G(B) if and only if (u(x), v(x)) ∈ G(β) for almost allx ∈ Ω. (5.9)

Let A1 be defined in L2(Ω) by

{
D(A1) =

{
u ∈ H2(Ω) ∩H1

0 (Ω);β (u) ∈ L2(Ω)
}
,

A1u = −Δu + Bu.

It is known from [21, p. 88] that A1 is maximal monotone. Hence, by Remark 2.2 the operator

{
D(A) = D(A1),
Au = A1u + αu

is α-strongly maximal monotone. Using the fact that 0 ∈ β0, we get 0 ∈ A0. Take H = L2(Ω).
We consider the function f : H −→ H defined by

f(x)(ω) = γ(x(ω)) for x ∈ H and ω ∈ Ω.

By assumption (B3), one sees that f is well defined. Using assumption (B3), we obtain that f is Lipschitzian 
with a Lipschitz constant Lf = Lγ . Furthermore, f ∈ C(H, H).
Let H : R −→ H be defined by

H(t)(ω) = h(t, ω) for t ∈ R and ω ∈ Ω.

Assumption (B4) implies that H ∈ AAc(R, H).
Let g : R ×H −→ H be defined by

g(t, x) = f(x) + H(t) for t ∈ R and x ∈ H.

We deduce that g ∈ AAc(R × H, H) and g is Lipschitzian with respect to the second argument with a 
Lipschitz constant Lg = Lγ .
If we take u(·)(x) = w(·, x), then (5.8) takes the following abstract form:

u′(t) + Au(t) � g(t, u(t)) for t ∈ R (5.10)

in the Hilbert space H. If we suppose that Lγ < α, then all the assumptions in Theorem 4.2 are fulfilled. 
Consequently, we get the following result.

Theorem 5.6. The system (5.8) has a unique compact almost automorphic weak solution provided that 
Lγ < α.
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