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We use the mean value property in an asymptotic way to provide a notion of 
a pointwise Laplacian, called AMV Laplacian, that we study in several contexts 
including the Heisenberg group and weighted Lebesgue measures. We focus 
especially on a class of metric measure spaces including intersecting submanifolds 
of Rn, a context in which our notion brings new insights; the Kirchhoff law appears 
as a special case. In the general case, we also prove a maximum and comparison 
principle, as well as a Green-type identity for a related operator.
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1. Introduction and definitions

Harmonic functions defined on Euclidean domains are well-known to have the mean value property: for 
any domain Ω ⊂ Rn, a function u ∈ C2(Ω) such that Δu = 0 (where Δ =

∑n
k=1 ∂kk) satisfies

u(x) =
 

Br(x)

u (1.1)
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for any solid ball Br(x) ⊆ Ω centered at x with radius r > 0. We call this the strong mean value property. 
Here, 

ffl
Br(x) u is defined as the average integral Ln(Br(x))−1 ´

Br(x) u dLn, where Ln denotes the Lebesgue 
measure. This celebrated result is credited to Gauss [9].

The converse implication was first studied by Koebe [14]. He proved that if u is continuous in Ω and 
satisfies the mean value property on every sphere, then u is harmonic, i.e., Δu = 0. Moreover, Koebe’s 
arguments show that the same statement is true if the mean value property is satisfied at every x ∈ Ω only 
for some radii {ri(x)}i such that infi ri(x) = 0. Later on, Volterra [18] for regular domains Ω and then 
Kellog [12] for general domains proved that (1.1) is enough for a single radius, i.e., a function u ∈ C(Ω) is 
harmonic if it satisfies

u(x) =
 

Br(x)(x)

u ∀x ∈ Ω,

where r is a positive function on Ω with r(x) < d(x, Ωc). We call this the weak mean value property. To sum 
up, under suitable conditions, we have the following equivalences.

u is harmonic. ⇐⇒ u has the strong mean value property.

⇐⇒ u has the weak mean value property.

For the interested reader, we refer to the exhaustive survey by Netuka and Veselý [17], and the work of 
Llorente [15].

Moving from Euclidean domains to a general metric measure space (X, d, μ), the above picture led 
Gaczkowski and Górka [8] to study the properties of locally integrable functions u : X → R such that

u(x) =
 

Br(x)

u dμ

for any ball Br(x) ⊆ Ω centered at x with radius r > 0. Such functions are called strongly harmonic by 
Adamowicz, Gaczkowski and Górka [1]. Also weakly harmonic functions are introduced, namely those locally 
integrable functions u : X → R satisfying, for every x, the mean value property for a single radius, denoted 
r(x):

u(x) =
 

Br(x)(x)

u dμ.

It turns out that, in this context in which a pointwise definition of a Laplacian is delicate to set, strongly and 
weakly harmonic functions share some common properties with harmonic functions on Euclidean domains. 
For instance, the maximum principle and the Harnack inequality hold under rather general assumptions.

However, weak harmonicity does not imply strong harmonicity [1, Example 1]:

u is weakly harmonic. 	=⇒ u is strongly harmonic.

Moreover, as shown by Bose [5], there exist functions in Rn satisfying a weighted Laplace equation without 
being strongly harmonic. In hindsight this might not be too surprising due to Rn being homogeneous seen 
as a medium. For a general measure, local properties (think partial derivatives) might have little to do with 
macroscopic properties (think strong harmonicity). We will return to this issue in Section 2.

In this article, we propose another approach based on the asymptotic fulfillment of the mean value 
property. This idea has been in the air for some time — see for instance the works of Manfredi et al. [16,7]
and of Burago et al. [6] — but perhaps has not been completely crystallized yet.
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We want to point out that during the finalization of this article, it came to our attention via private 
communication with Adamowicz that he, Kijowski and Soultanis [2] independently have come up with the 
same definition. They have investigated several related problems, e.g. the Hölder regularity of continuous 
asymptotic mean value harmonic functions, and the dimension of the space of continuous asymptotic mean 
value harmonic functions with polynomial growth.

It should be noted that when we refer to a metric measure space (X, μ, d), we always consider a strictly 
positive and locally finite metric measure space, i.e., μ(Br(x)) < ∞ for r > 0 small enough, and μ(Ω) > 0 for 
every non-empty open subset Ω ⊂ X. To be able to discuss pointwise properties of L1

loc functions, we use the 
convention of choosing the representative ũ of u ∈ L1

loc(X, μ) defined at x as the limit of 
ffl
Br(x) u(y) dμ(y)

as r → 0+, whenever the limit exists, which it does μ-a.e.

Definition 1.1 (AMV Laplacian). Let (X, d, μ) be a metric measure space and u : X → R be locally 
integrable. Then the asymptotic mean value Laplacian (AMV Laplacian for short) of u is defined as

Δd
μu(x) := lim

r→0+

1
r2

 

Br(x)

u(y) − u(x) dμ(y)

for any x ∈ X for which the limit exists. We also define for μ-a.e. x

Δd
μ,ru(x) := 1

r2

 

Br(x)

u(y) − u(x) dμ(y)

for any r > 0.

If u is defined only on a subset Ω ⊂ X, then we set

Δd
μ,ru(x) := 1

r2

 

Br(x)∩Ω

u(y) − u(x) dμ(y).

Note that this definition does not require Ω to be open, only that μ(Br(x) ∩ Ω) > 0 for all positive r.
Having a notion of pointwise Laplacian at our disposal, we can define harmonicity in the following manner.

Definition 1.2 (AMV harmonic function). Let (X, d, μ) be a metric measure space and u ∈ L1
loc(X, μ). We 

say that u is asymptotically mean value harmonic (AMV harmonic for short) in Ω ⊂ X if Δd
μu(x) = 0 for 

all x ∈ Ω.

Remark 1.3. There are evident versions Δd
μu(·) and Δd

μu(·) in which the limit is replaced by lim sup and 
lim inf, for which one can define asymptotically mean value sub- and superharmonic functions, see Section 4.

AMV harmonic functions have some advantages over strongly harmonic ones. Indeed, the latter are 
trivially seen to be AMV harmonic. Moreover, AMV harmonicity comes along with a natural notion of 
Laplacian, which is absent in the context of strongly harmonic functions. Therefore, it is possible to consider 
the corresponding Poisson equation, Δd

μu(x) = f , heat equation or Helmholtz equation, etc.
A natural question is the relation of the AMV Laplacian with other notions of Laplacians. When u ∈

C2(Rn), one can easily show that a second order Taylor expansion gives

Δde

Lnu = 1 Δu,
2(n + 2)
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where de stands for the Euclidean distance. Using normal coordinates, this calculation can be adapted to 
the setting of a C2 Riemannian manifold (M, g) in order to prove that for any u ∈ C2(M) and any interior 
point x ∈ M ,

Δdg

volgu(x) = 1
2(n + 2)Δgu(x),

where dg, volg and Δg are the canonical Riemannian distance, the Riemannian volume measure and the 
Laplace–Beltrami operator of (M, g) respectively. In Section 2, we consider more examples: the Heisenberg 
group, and the Euclidean space equipped with a weighted Lebesgue measure, showing that in both cases 
the AMV Laplacian is comparable to the corresponding Laplace operator, namely the Kohn Laplacian and 
the weighted Laplacian respectively.

More interestingly, our definition permits to deduce some results on spaces which, to the best of our 
knowledge, has not been proposed yet. We focus especially on metric measure spaces for which the measure 
has a dimension that depends on the part of the space we are looking at. This is formalized through the 
notion of a stratified measure, see Section 3. Our results (Theorem 3.2 and Corollary 3.4) show that the 
AMV Laplacian at a point in the intersection of the supports of measures with different Ahlfors dimension 
only takes into account the lowest dimension. Here by Ahlfors dimension we mean a number Q ≥ 0 such 
that the measure is Q-Ahlfors regular, see Section 3 for details. We apply these results in the context of 
submanifolds of Rn intersecting each other, see Corollary 3.7. Note that our example in Subsection 2.3, 
namely the Euclidean space equipped with the Lebesgue measure plus a Dirac mass, can be seen as a 
particular case of these stratified spaces.

In Section 4 we define AMV sub- and superharmonic functions, and show that the maximum of upper 
semicontinuous AMV subharmonic functions is attained on the boundary (see Theorem 4.3 for precise as-
sumptions). A symmetrical argument goes through for lower semicontinuous AMV superharmonic functions, 
and a comparison principle is obtained as a corollary.

Finally, we prove a Green-type identity for the operators Δd
μ,r restricted to a suitable weighted L2 space. 

This formula suggests to define the weak AMV Laplacian Δd
μu as the measure ν such that

ˆ

X

φ dν = lim
r→0+

ˆ

X

φΔd
μ,ru dμ

holds for any φ ∈ Cc(X), see Definition 5.5. It is worth pointing out that with this definition, pointwise AMV 
harmonic functions might fail to be weakly AMV harmonic. An example can be found in the paragraph 
following Definition 5.5.

Acknowledgments. A. Minne was supported by the Knut and Alice Wallenberg Foundation (grant no. 
KAW2015.0380), as well as Stiftelsen G S Magnusons fond (grant no. MG2019-0094). We are both grateful 
to Scuola Normale Superiore di Pisa at which most of this work was conducted, and to T. Adamowicz for 
his invitation to IMPAN where we had inspiring final discussions with him, A. Kijowski, and E. Soultanis.

2. Examples

In this section, we get some familiarity with the AMV Laplacian by looking at three different examples 
for which it is possible to do explicit computations.
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2.1. Heisenberg group

Let H be the Heisenberg group that we interpret here as R3 equipped with the following group law:

(x, y, t) ◦ (x′, y′, t′) := (x + x′, y + y′, t + t′ + 2(yx′ − y′x)) ∀(x, y, t), (x′, y′, t′) ∈ R3.

We equip H with the classical vector fields

X = ∂

∂x
+ 2y ∂

∂t
, Y = ∂

∂y
− 2x ∂

∂t
, T = −4 ∂

∂t
,

which provide a sub-Riemannian structure to H. We denote by dCC the associated intrinsic metric, called 
the Carnot–Carathéodory metric (see e.g. [4, 5.2]). We recall that Br(p) = p ◦ δr(B1(o)) for any p ∈ H and 
any r > 0, where δr is the dilation (x, y, t) �→ (rx, ry, r2t) and o = (0, 0, 0) is the origin.

For any po = (xo, yo, to) ∈ H, let Lpo
be the left translation H � p �→ po ◦ p. Then Lpo

is smooth and its 
Jacobian matrix in q = (x, y, t) is

Jpo
(q) =

( 1 0 0
0 1 0

−2yo 2xo 1

)
;

in particular | det(Jpo
(q))| = 1.

In the next proposition, we show that for C3 functions the AMV Laplacian on (H, dCC , L3) coincides 
with the usual Kohn Laplacian ΔH = X2 +Y 2 up to a multiplicative constant. This result is already known 
from the work of Ferrari et al. [7], but we provide a slightly different proof for the reader’s convenience.

Proposition 2.1. Let u ∈ C3(H). Then

ΔdCC

L3 u = cΔHu,

where c = 1
2
ffl
B1(o) x

2 dL3.

Proof. Let u ∈ C3(H) and po = (xo, yo, to) ∈ H. Note that in this proof, all the balls are taken with respect 
to the Carnot–Carathéodory metric. For any given r > 0, by the change of variable p = Lpo

(q) we have

ΔdCC

L3,ru(po) = 1
r2

 

Br(po)

u(p) − u(po) dp = 1
r2

 

Br(o)

[u(Lpo
(q)) − u(po)] |det(Jpo

(q))| dq

= 1
r2

 

Br(o)

[v(q) − v(o)] dq, (2.1)

where we have set v = u ◦Lpo
. Let us write the Taylor expansion of v at o (see [4, p. 743]1): for q = (x, y, t) ∈

Br(o),

v(q) = v(o) + (Xv)(o)x + (Y v)(o)y + (Tv)(o)t

+ 1
2(X2v)(o)x2 + 1

2(Y 2v)(o)y2 + [2(Tv)(o) + (XY v)(o)]xy + O(r3).

1 It is at this point we need u ∈ C3(H).
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Since the vector fields X, Y and T commute with left translations,

v(q) = v(o) + (Xu)(po)x + (Y u)(po)y + (Tu)(po)t

+ 1
2(X2u)(po)x2 + 1

2(Y 2u)(po)y2 + [2(Tu)(po) + (XY u)(po)]xy + O(r3).

Plugging this expression into (2.1) and using the fact that L3(Br(po)) = L3(Br(o)), we obtain

ΔdCC

L3,ru(po) = 1
r2

⎛
⎜⎝(Xu)(po)

 

Br(o)

x dq + (Y u)(po)
 

Br(o)

y dq + (Tu)(po)
 

Br(o)

t dq

+ 1
2(X2u)(po)

 

Br(o)

x2 dq + 1
2(Y 2u)(po)

 

Br(o)

y2 dq

+ [2(Tu)(po) + (XY u)(po)]
 

Br(o)

xy dq

⎞
⎟⎠ + O(r).

Now, it is known that a Carnot–Carathéodory ball centered at the origin of H is symmetric around the 
t-axis and also symmetric with respect to the xy-plane, hence

ˆ

Br(o)

x dq =
ˆ

Br(o)

y dq =
ˆ

Br(o)

t dq =
ˆ

Br(o)

xy dq = 0.

Moreover, a Carnot–Carathéodory ball centered at the origin is invariant under rotations around the z-axis, 
consequently

ˆ

Br(o)

x2 dq =
ˆ

Br(o)

y2 dq.

Therefore we get

ΔdCC

L3,ru(po) = (X2u)(po) + (Y 2u)(po)
2r2

 

Br(o)

x2 dq + O(r)

= ΔHu(po)
1

2r2

 

Br(o)

x2 dq + O(r)

Since Br(o) = δr(B1(o)) and the Jacobian determinant of δr is constant equal to r4, the change of variable 
q = δr(q′) provides L3(Br(o)) = r4L3(B1(o)) and 

´
Br(o) x

2 dq = r4 ´
Br(o)(rx)2 dq. Therefore

ΔdCC

L3,ru(po) = ΔHu(po)
2

 

B1(o)

x2 dq + O(r),

hence the result. �
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2.2. Weighted Lebesgue measures in Rn

In an earlier work by A.K. Bose [5], the author considers weighted Lebesgue measures

μ = wLn

on connected open sets Ω in Rn, where w ∈ L1
loc(Ω, Ln) is nonnegative and such that μ(B) > 0 for any 

ball B ⊂ Ω. He shows that when w ∈ C1(Ω), any function u ∈ L1
loc(Ω, μ) which satisfies the mean value 

property,

u(x) =
 

Br(x)

u dμ ∀Br(x) ⊂ Ω,

is a C2 function and a solution to the partial differential equation

Lwu := wΔu + 2∇w · ∇u = 0 (2.2)

in Ω, hence a harmonic function for the weighted Laplacian Lw (see [13] for the case of a Sobolev regular 
weight function). The converse is not true:

Example 2.2 ([5]). Let w(x, y) = (x + y)2 and u(x, y) = x2 − 3xy + y2 in R2. A direct computation shows 
that u satisfies (2.2), but

 

Br(x,y)

u dμ = u(x, y) + r4

6(r2 + 2(x + y)2) 	= u(x, y)

for all (x, y) ∈ R2 and r > 0. However, with our notation, we have

Δde
μ,ru(x, y) = r2

6(r2 + 2(x + y)2)

for any (x, y) ∈ R2 and r > 0. Letting r tend to 0 shows that u is AMV harmonic outside the diagonal 
{x = −y}, which coincides with {w = 0}. More generally, we have the following.

Proposition 2.3. Let w ∈ C1(Ω) and u ∈ C2(Ω). Then for any x ∈ Ω such that w(x) 	= 0,

Δde
μ u(x) = cn

Lwu(x)
w(x) , (2.3)

where cn = 2−1(n + 2)−1. Moreover, for any x ∈ Ω such that w(x) = 0, assume that br(x) := 1
r2

ffl
Br(x)(y −

x)w(y) dy and arij(x) := 1
2r2

ffl
Br(x)(y−x)i(y−x)jw(y) dy converge to b(x) ∈ Rn and aij(x) ∈ R respectively 

when r → 0+. Then

Δde
μ u(x) =

n∑
i,j=1

aij(x)∂iju(x) + b(x) · ∇u(x). (2.4)

Proof. Let x ∈ Ω be such that w(x) 	= 0. By first and second order Taylor expansions of w and u respectively, 
we know that there exists a function E : (0, +∞) → (0, +∞) such that E(r) → 0 when r → 0+ and for any 
r > 0 and y ∈ Br(x),
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(u(y) − u(x))w(y) = w(x)∇u(x) · (y − x) + w(x)
2 ∇2u(x) · (y − x, y − x)

+ [∇u(x) · (y − x)][∇w(x) · (y − x)] + E(r)r2.

Note that for any v ∈ Rn, the antisymmetry of y �→ v ·(y−x) with respect to the hyperplane v⊥ implies that ´
Br(x) v·(y−x) dx = 0, and that ́

Br(x)(y−x)i(y−x)j dy = 0 for i 	= j and ́
Br(x)(y−x)2i dy = 2cnLn(Br(x))r2

for any 1 ≤ i, j ≤ n. From this, a direct computation shows that

Δd
μ,ru(x) = cn

Ln(Br(x))
μ(Br(x)) (w(x)Δu(x) + 2∇u(x) · ∇w(x) + o(1)).

Since w is C1, μ(Br(x))/Ln(Br(x)) → w(x) as r → 0+, hence (2.3).
Now take x ∈ Ω such that w(x) = 0 and the required assumptions are satisfied. By a similar expansion 

as above, but with respect to u only gives that

Δde
μ,ru(x) = ∇u(x) · br(x) +

n∑
i,j=1

∂iju(x)arij + o(1),

hence (2.4). �
Note that (2.3) is consistent with the unweighted case w ≡ 1. Moreover, in Example 2.2 where w(x, y) =

(x + y)2, explicit calculations from (2.4) show that for any u ∈ C2(R2),

Δde
μ u = 1

6(Δu + ∂xyu) on {x = −y}.

In particular, for u(x, y) = x2 − 3xy + y2 we get Δde
μ u = 1/6 on {x = −y}, hence u is not AMV harmonic.

2.3. The Lebesgue measure with a Dirac mass in Rn

Let us consider (X, d, μ) := (Rn, de, Ln + δo) where δo is a Dirac measure at the origin o of Rn. Take 
u ∈ L1

loc(Rn, Ln) and x ∈ Rn. If x 	= o, we trivially get Δde
μ u(x) = Δde

Lnu(x). Consider therefore the case 
x = o. Since μ(Br(o)) = 1 + ωnr

n (where ωn = Ln(B1)) for any r > 0,

Δde
μ,ru(o) = 1

r2(1 + ωnrn)

( ˆ

Br(o)

u(y) − u(x) dy +
ˆ

Br(o)

u(y) − u(o) dδo(y)

︸ ︷︷ ︸
=u(o)−u(o)=0

)

= Ln(Br(o))
r2(1 + ωnrn)

 

Br(o)

u(y) − u(o) dy.

Since 1/(1 + ωnr
n) = 1 + O(rn), we get

Δde
μ,ru(o) = ωnr

n−2(1 + O(rn))
 

Br(o)

u(y) − u(o) dy.

This simple computation leads to the following:
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Observation 2.4. Assume that o is a Lebesgue point of u with respect to Ln and denote by u∗(o) the 
unique number a ∈ R such that 

ffl
Br(x) |u(y) − a| dy → 0 when r → 0+. If n = 1, assume additionally that 

r−1 ffl
Br(o) u(y) − u(o) dy converges to some constant b as r → 0+. Then:

Δde
μ u(o) =

⎧⎪⎪⎨
⎪⎪⎩

0 when n ≥ 3,
π(u∗(o) − u(o)) when n = 2,
2b when n = 1.

Note that in case n = 1, we obviously have u∗(o) = u(o). Moreover, u differentiable at o is enough to 
imply convergence of Δde

μ,ru(o) to 0 as r → 0+.
It is also worth mentioning that for the Poisson problem Δde

μ u = v, when n ≥ 3, a necessary condition 
for existence of a solution is v(o) = 0.

This last example is a special case of a stratified measure that we discuss in the next section.

3. AMV Laplacian for stratified measures

In this section, we introduce the notion of a stratified measure and study the AMV Laplacian at the 
intersection of strata of such a measure. We then apply our results to the case of intersecting submanifolds 
in Rn.

Recall that for Q ≥ 0, a Borel measure μ on a metric space (X, d) is called Ahlfors Q-regular if it satisfies 
crQ ≤ μ(B) ≤ CrQ for any metric ball B ⊂ X with radius r > 0, where c, C > 0 are independent of the 
radius and the ball. If a measure μ is Q-Ahlfors regular, we say that μ has an Ahlfors dimension equal to 
Q.

Definition 3.1 (Stratified measures). Let (X, d) be a metric space. We call μ a stratified measure on (X, d) if

μ = μ1 + · · · + μk,

where for any 1 ≤ j ≤ k,

(i) μj is a measure supported on a closed set Yj ⊂ X,
(ii) μj is Qj-Ahlfors regular on (Yj , d|Yj

),
(iii) Q1 < . . . < Qk.

A particular example of a stratified measure is Hm1
¬
M1 + . . . + Hmk

¬
Mk where M1, . . . , Mk are sub-

manifolds of Rn of dimensions m1 < . . . < mk respectively. See also Example 3.9.
The next theorem states that the lowest dimensional stratum determines the AMV Laplacian of a strat-

ified measure.

Theorem 3.2 (AMV Laplacian on intersections of strata of a stratified measure). Let (X, d) be a metric space 
equipped with a stratified measure μ and u ∈ L1

loc(X, μ). For any x ∈
⋂l

i=1 Yji where {ji} is an increasing 
subsequence of {1, . . . , k}, if Δd

μj1
u(x) exists and rQji

−Qj1 |Δd
μji

,ru(x)| → 0 as r → 0+ for all 2 ≤ i ≤ l, 
then Δd

μu(x) exists and

Δd
μu(x) = Δd

μj1
u(x).

Proof. We can without loss of generality assume that {ji} = {1, . . . , l}: indeed, since Y c
j is open for any 

1 ≤ j ≤ k, there exists r > 0 small enough such that μ ¬
Br(x) = μj1

¬
Br(x) + . . . + μjl

¬
Br(x), hence the 

validity of the above relabeling. Let therefore x ∈
⋂l

Yj and consider Δd
μ,ru(x). Then
j=1
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Δd
μ,ru(x) = 1

r2μ(Br(x))

ˆ

Br(x)

u(y) − u(x) dμ(y)

= 1
r2μ(Br(x))

l∑
j=1

ˆ

Br(x)∩Yj

u(y) − u(x) dμj(y).

For a given j, let cj , Cj be the Ahlfors constants related to μj . Note that

μ(Br(x)) =
l∑

j=1
μj(Br(x) ∩ Yj) ≥

l∑
j=1

cjr
Qj ≥ c1r

Q1 .

For j ≥ 2 we have, by assumption,

∣∣∣∣ 1
r2μ(Br(x))

ˆ

Br(x)∩Yj

u(y) − u(x) dμj(y)
∣∣∣∣

≤ 1
c1rQ1+2

∣∣∣∣
ˆ

Br(x)∩Yj

u(y) − u(x) dμj(y)
∣∣∣∣

= μj(Br(x) ∩ Yj)
c1rQ1+2

∣∣∣∣
 

Br(x)∩Yj

u(y) − u(x) dμj(y)
∣∣∣∣

≤ Cj

c1
rQj−Q1

∣∣∣∣Δd
μj ,ru(x)

∣∣∣∣ → 0, r → 0+. (3.1)

Then

∣∣Δd
μ,ru(x) − Δd

μ1
u(x)

∣∣
=

∣∣∣∣ 1
r2μ(Br(x))

l∑
j=1

ˆ

Br(x)∩Yj

u(y) − u(x) dμj(y) − Δd
μ1
u(x)

∣∣∣∣
=

∣∣∣∣ l∑
j=1

μj(Br(x) ∩ Yj)
r2μ(Br(x))

 

Br(x)∩Yj

u(y) − u(x) dμj(y) − Δd
μ1
u(x)

∣∣∣∣
=

∣∣∣∣ l∑
j=1

μj(Br(x) ∩ Yj)
μ(Br(x)) Δd

μj ,ru(x) − Δd
μ1
u(x)

∣∣∣∣
≤

∣∣∣∣μ1(Br(x) ∩ Y1)
μ(Br(x)) Δd

μ1,ru(x) − Δd
μ1
u(x)

∣∣∣∣ +
∣∣∣∣ l∑
j=2

μj(Br(x) ∩ Yj)
μ(Br(x)) Δd

μj ,ru(x)
∣∣∣∣.

The second term tends to zero as r → 0+ by (3.1). Moreover,

μ1(Br(x) ∩ Y1)
μ(Br(x)) = μ1(Br(x) ∩ Y1)∑k

j=1 μj(Br(x) ∩ Yj)
≤ 1,

μ1(Br(x) ∩ Y1)
μ(Br(x)) = μ1(Br(x) ∩ Y1)∑k

μ (B (x) ∩ Y )
j=1 j r j
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= 1
1 +

∑k
j=2

μj(Br(x)∩Yj)
μ1(Br(x)∩Y1)

≥ 1
1 +

∑k
j=2

Cj

c1
rQj−Q1

→ 1, r → 0+.

Therefore

lim sup
r→0+

∣∣Δd
μ,ru(x) − Δd

μ1
u(x)

∣∣ = lim sup
r→0+

∣∣∣∣μ1(Br(x) ∩ Yj)
μ(Br(x)) Δd

μ1,ru(x) − Δd
μ1
u(x)

∣∣∣∣ = 0. �

Remark 3.3. Note that a sufficient condition for rQji
−Qj1 |Δd

μji
,ru(x)| to be o(1) is boundedness of 

|Δd
μji

,ru(x)| for all 2 ≤ i ≤ l.

The previous theorem can be extended in a straightforward way to stratified measures with (iii) weakened 
to Q1 ≤ Q2 ≤ . . . ≤ Qk, if limits of the form limr→0+

μj(Br(x)∩Yj)
μ(Br(x)) exist as for the lowest dimensional stratum, 

reducing the AMV Laplacian to a convex combination of the AMV Laplacians of this stratum.

Corollary 3.4. Let (X, d, μ) and x ∈
⋂l

i=1 Yji be as in Theorem 3.2 except that Qj is nondecreasing with 
Qj1 = Qj2 = . . . = Qjn < Qjn+1 and rQji

−Qj1 |Δd
μji

,ru(x)| → 0 as r → 0+ for any n + 1 ≤ i ≤ l. Assume 

that Δd
μj1

u(x), Δd
μj2

u(x), . . . , Δd
μjn

u(x) exist. Assume also that αi(x) := limr→0+ μj(Br(x) ∩ Yji)/μ(Br(x))
exists for any 1 ≤ i ≤ n. Then Δd

μu(x) exists,

Δd
μu(x) =

n∑
i=1

αi(x)Δd
μji

u(x),

and 
∑n

i=1 αi(x) = 1.

Proof. As in the proof of Theorem 3.2, we have μ(Br(x)) ≥ c1r
Q1 , and we can reduce to the case {ji} =

{1, . . . , n, . . . , l} for which

Δd
μ,ru(x) = 1

r2μ(Br(x))

l∑
j=1

ˆ

Br(x)∩Yj

u(y) − u(x) dμj(y).

For j ≥ n + 1 we have, by assumption,

∣∣∣∣ 1
r2μ(Br(x))

ˆ

Br(x)∩Yj

u(y) − u(x) dμj(y)
∣∣∣∣

≤ 1
c1rQ1+2

∣∣∣∣
ˆ

Br(x)∩Yj

u(y) − u(x) dμj(y)
∣∣∣∣

= μj(Br(x) ∩ Yj)
c1rQ1+2

∣∣∣∣
 

Br(x)∩Yj

u(y) − u(x) dμj(y)
∣∣∣∣

≤ Cj

c1
rQj−Q1

∣∣∣Δd
μj ,ru(x)

∣∣∣ → 0, r → 0+. (3.2)

Continuing,
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∣∣∣∣Δd
μ,ru(x) −

n∑
j=1

αj(x)Δd
μj
u(x)

∣∣∣∣
=

∣∣∣∣ 1
r2μ(Br(x))

l∑
j=1

ˆ

Br(x)∩Yj

u(y) − u(x) dμj(y) −
n∑

j=1
αj(x)Δd

μj
u(x)

∣∣∣∣
=

∣∣∣∣ l∑
j=1

μj(Br(x) ∩ Yj)
r2μ(Br(x))

 

Br(x)∩Yj

u(y) − u(x) dμj(y) −
n∑

j=1
αj(x)Δd

μj
u(x)

∣∣∣∣
=

∣∣∣∣ l∑
j=1

μj(Br(x) ∩ Yj)
μ(Br(x)) Δd

μj ,ru(x) −
n∑

j=1
αj(x)Δd

μj
u(x)

∣∣∣∣
≤

∣∣∣∣ n∑
j=1

μj(Br(x) ∩ Yj)
μ(Br(x)) Δd

μj ,ru(x) −
n∑

j=1
αj(x)Δd

μj
u(x)

∣∣∣∣
+
∣∣∣∣ l∑
j=n+1

μj(Br(x) ∩ Yj)
μ(Br(x)) Δd

μj ,ru(x)
∣∣∣∣

The second term tends to zero as r → 0+ by (3.2). Also, by assumption,

μj(Br(x) ∩ Yj)
μ(Br(x)) → αj(x), r → 0+.

Therefore,

lim sup
r→0+

∣∣∣∣∣∣Δd
μ,ru(x) −

n∑
j=1

αj(x)Δd
μj
u(x)

∣∣∣∣∣∣
≤ lim sup

r→0+

∣∣∣∣∣∣
n∑

j=1

(
μj(Br(x) ∩ Yj)

μ(Br(x)) Δd
μj ,ru(x) − αj(x)Δd

μj
u(x)

)∣∣∣∣∣∣ = 0.

The fact 
∑n

j=1 αj(x) = 1 is immediate since

∣∣∣∣ n∑
j=1

αi(x) − 1
∣∣∣∣ =

∣∣∣∣ n∑
j=1

lim
r→0+

μj(Br(x) ∩ Yj)
μ(Br(x)) − 1

∣∣∣∣
=

∣∣∣∣ lim
r→0+

1∑l
j=1 μ(Br(x) ∩ Yj)

n∑
j=1

μj(Br(x) ∩ Yj) − 1
∣∣∣∣

=
∣∣∣∣ lim
r→0+

1∑l
j=1 μ(Br(x) ∩ Yj)

( n∑
j=1

μj(Br(x) ∩ Yj) −
l∑

j=1
μj(Br(x) ∩ Yj)

)∣∣∣∣
=

∣∣∣∣ lim
r→0+

1
O(rQ1)O(rQn+1)

∣∣∣∣
= 0. �

Example 3.5. An interesting example is (R2, de, μ := μ1 + . . . + μl) where μi = H1 ¬
Si for any 1 ≤ i ≤ l

and Si is the image of a smooth curve ci emanating from o = (0, 0) with direction τi. Here H1 denotes the 
1-dimensional Hausdorff measure. A direct computation shows that for any u ∈ C2(R2),
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Δde
μ u(o) ∈ R ⇐⇒

l∑
i=1

∂τiu(o) = 0,

where ∂τiu is the directional derivative of u along τi. This is the well-known Kirchhoff condition (compare 
for instance with [3, Section 4]). If this condition holds, Corollary 3.4 implies that

Δde
μ u(o) = 1

l

l∑
i=1

Δde
μi
u(o).

Let us apply the previous results to the case of intersecting submanifolds in Rn. Recall that a Riemannian 
submanifold of Rn is equipped with the Riemannian metric inherited from the Euclidean metric of Rn. If 
(M, g) is a smooth m-dimensional Riemannian submanifold of Rn, then the topological metric dg induced 
by g in the usual way (i.e. minimizing the length of curves joining two points) satisfies dg ≥ de, and the 
canonically associated Riemannian volume measure volg on M coincides with the m-dimensional Hausdorff 
measure Hm.

Proposition 3.6. Let (M, g) be a smooth m-dimensional Riemannian submanifold of Rn, and consider 
(Rn, de, Hm ¬

M). Then, for any u ∈ C2(Rn) and any interior point x in M ,

Δde

Hm
¬
M
u(x) = Δgu(x)

2(m + 2) ,

where Δg is the Laplace–Beltrami operator on (M, g).

Proof. Since dg ≥ de, the geodesic ball Bg
r (x) is included in the subset Br(x) ∩M of Rn. Therefore

Δde

Hm
¬
M,r

u(x) = 1
r2

 

Br(x)∩M

u(y) − u(x) dHm(y)

= 1
r2Hm(Br(x) ∩M)

( ˆ

(Br(x)∩M)\Bg
r (x)

u(y) − u(x) dHm(y)

+
ˆ

Bg
r (x)

u(y) − u(x) dVg(y)
)
.

For the first term, by a first order Taylor expansion of u around x,∣∣∣∣∣∣∣
1

r2Hm(Br(x) ∩M)

ˆ

(Br(x)∩M)\Bg
r (x)

u(y) − u(x) dHm(y)

∣∣∣∣∣∣∣
≤ O(r)
r2Hm(Br(x) ∩M) (Hm(Br(x) ∩M) −Hm(Bg

r (x))).

Now, from the works of Karp and Pinsky [11], the volume of the extrinsic ball for small r is given by

Hm(Br(x) ∩M) = ωmrm
(

1 + 2‖II(x)‖ − ‖H(x)‖
8(m + 2) r2 + O(r3)

)
, (3.3)

where II denotes the second fundamental form of (M, g) and H = Tr II the mean curvature. Furthermore, 
the volume of the intrinsic ball has been calculated by Gray [10] for small r as
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(Hm(Bg
r (x)) = ) volg(Bg

r (x)) = ωmrm
(

1 − R(x)
6(m + 2)r

2 + O(r4)
)
,

where R is the scalar curvature of (M, g). Hence

Hm(Br(x) ∩M) −Hm(Bg
r (x)) = O(rm+2).

Therefore

O(r)
r2Hm(Br(x) ∩M) (Hm(Br(x) ∩M) −Hm(Bg

r (x))) = O(r)O(rm+2)
O(rm+2) = O(r),

so the first term tends to zero with r. The second term tends to Δgu(x)
2(m+2) since

Hm(Bg
r (x))

Hm(Br(x) ∩M) = ωmrm(1 + O(r2))
ωmrm(1 + O(r2)) → 1, r → 0+,

and by the result of Gray and Willmore [19],

1
r2

 

Bg
r (x)

u(y) − u(x) dVg → Δgu(x)
2(m + 2) ·

Consequently,

1
r2Hm(Br(x) ∩M)

ˆ

Bg
r (x)

u(y) − u(x) dVg = Hm(Bg
r (x))

r2Hm(Br(x) ∩M)

 

Bg
r (x)

u(y) − u(x) dVg

→ Δgu(x)
2(m + 2) , as r → 0+. �

In this smooth context, we can prove the following refinement of Corollary 3.4 where we get a mean value 
of the AMV Laplacians of the lowest stratum.

Corollary 3.7. Let (X, d, μ) = (Rn, de, Hm1
¬
M1 + . . .+Hmk

¬
Mk) where {mj} is a non-decreasing sequence 

of integers and (Mj , gj) is a smooth mj-dimensional Riemannian submanifold of Rn without boundary for 
any 1 ≤ j ≤ k. Take u ∈ L1

loc(X, μ) and let x ∈
⋂l

i=1 Mji for a subsequence {ji} of {1, . . . , k} with 
mj1 = . . . = mjt . If Δd

Hmji
¬
Mji

u(x) exists for all i ∈ {1, . . . , t} and rmji
−mj1 |Δd

μji
,ru(x)| → 0 as r → 0+

for all i ∈ {t + 1, . . . , k}, then Δd
μu(x) exists and

Δd
μu(x) = 1

t

t∑
i=1

Δd
Hmji

¬
Mji

u(x).

Furthermore, if u ∈ C2(Rn), we have

Δd
μu(x) = 1

2(mj1 + 2)t

t∑
i=1

Δgiu(x).

Proof. The first part follows from Corollary 3.4 if we can show that the limits αi(x):= limr→0+
μji

(Br(x)∩Mji
)

μ(Br(x))
for 1 ≤ i ≤ t exist and are all equal to 1

t . This is true since for any such i, applying (3.3) with m := mj1

gives
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lim
r→0+

μji(Br(x) ∩Mji)
μ(Br(x)) = lim

r→0+

ωmrm(1 + O(r2))∑l
k=1 ωmrm(1 + O(r2))

= lim
r→0+

ωmrm(1 + O(r2))∑t
k=1 ωmrm(1 + O(r2)) + O(rm+1)

= lim
r→0+

ωmrm(1 + O(r2))
tωmrm(1 + O(r2)) = 1

t
·

For u ∈ C2(Rn),

1
t

t∑
i=1

Δd
Hmji

¬
Mji

u(x) = 1
2(m + 2)t

t∑
i=1

Δgiu(x)

by Proposition 3.6. �
Remark 3.8. Let us point out that Theorem 3.2 and Corollary 3.4 also hold true if the Ahlfors regularity 
assumption on the measures μi is replaced by a pointwise version, namely

crQji
(x) ≤ μji(Br(x)) ≤ CrQji

(x)

for any r > 0, any i and any x ∈ ∩iCji , where {ji} ⊆ {1, . . . , k} and the constants c, C > 0 might depend 
on ji and x.

Let us apply this remark in the following example.

Example 3.9. Set L := [0, 1] × {0}, S := [−1, 0] × [−1/2, 1/2], and consider (R2, de) equipped with the 
measures μ1, μ2, μ3, where μi := μi

1 + μ2 and

μ2 := dx dy ¬
S, μi

1 := xi−1 dx ¬
L

for any i ∈ {1, 2, 3}. Then μ2 is 2-Ahlfors regular, while at the intersection point o = (0, 0), for any r > 0, 
one has

μ1
1(Br(o)) = r, μ2

1(Br(o)) = r2

2 , μ3
1(Br(o)) = r3

3 ·

Let us focus on μ1. An immediate computation shows that μ1(Br(o)) = (r + πr2)/2 holds for any r > 0
small enough. Take u ∈ C2(R2). The second order Taylor expansion with Laplace remainder of u(·, 0) at 0
implies

Δd
μ1

1,r
u(o) = 2

r3(1 + πr)

⎛
⎝r2

2 ∂xu(o) +
rˆ

0

∂2
xxu(t) (r − t)2

2 dt

⎞
⎠ .

On the other hand, applying Taylor’s theorem to u(·, ·) at o, we know that for some d > 0 and C > 0,

|u(x, y) − u(o) −∇u(o) · (x, y)| ≤ C‖(x, y)‖2

holds for all (x, y) ∈ Bd(o). Therefore, for any 0 < r < d, we get
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|Δd
μ2,ru(o)| ≤ 2

r3(1 + πr)

⎛
⎜⎝ ¨

S∩Br(o)

|∇u(o)|‖(x, y)‖ dx dy + C

¨

S∩Br(o)

‖(x, y)‖2 dx dy

⎞
⎟⎠

≤ 2
r3(1 + πr)

(
r|∇u(o)| + Cr2)H2(S ∩Br(o))︸ ︷︷ ︸

=πr2/2

≤ π(|∇u(o)| + Cr)
1 + πr

·

In particular, r �→ |Δd
μ2,ru(o)| is bounded in a neighborhood of 0.

We thus deduce that Δd
μ1u(o) exists if and only if

∂xu(o) = 0 and a := lim
r→0+

r−3
rˆ

0

∂2
xxu(t)(r − t)2/2 dt exists in R,

in which case Δd
μ1u(o) = Δd

μ1
1
u(o) = 2a.

Performing similar calculations for μ3 shows that Δd
μ3u(o) exists if and only if ∂xu(o) = 0, in which case 

we have Δd
μ3u(o) = Δd

μ2
u(o). Note that in this case the main contribution to the AMV Laplacian comes 

from the 2-dimensional piece S, while in the previous case it was coming from the 1-dimensional piece L. In 
fact, this example shows that the Hausdorff dimension of a piece does not matter when one computes the 
AMV Laplacian at an intersection point: what really matters is the so-to-say Ahlfors regular dimension of 
the measures.

Finally in the case of μ2, explicit computations show that Δde

μ2u(o) exists if and only if ∂xu(o) = 0, in 
which case

Δde

μ2u(o) = (1 + π)−1Δde

μ2
1
u(o) + π(1 + π)−1Δde

μ2
u(o),

as expected from Corollary 3.4.

4. Maximum and comparison principles

In this section we introduce the notion of AMV sub- and superharmonic functions, and show that an 
upper semicontinuous AMV subharmonic function attains its maximum at the boundary. We recall that 
a metric space is called proper whenever all closed subsets are compact, in which case any u.s.c. function 
defined on the closure of a bounded domain attains its maximum.

Definition 4.1 (Pointwise upper and lower AMV Laplacian). Let (X, d, μ) be a metric measure space and 
u ∈ L1

loc(X, μ). Then we define the upper AMV Laplacian Δd
μu and lower AMV Laplacian Δd

μu respectively 
as

Δd
μu(x) := lim

r→0+

1
r2

 

Br(x)

u(y) − u(x) dμ(y),

Δd
μu(x) := lim

r→0+

1
r2

 

Br(x)

u(y) − u(x) dμ(y),

for μ-a.e. x ∈ X.

Accordingly, for Ω ⊆ X, the function u ∈ L1
loc(X, μ) is called pointwise

• upper AMV subharmonic in Ω if Δd
μu(x) ≥ 0 holds for all x ∈ Ω,
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• lower AMV subharmonic in Ω if Δd
μu(x) ≥ 0 holds for all x ∈ Ω,

• upper AMV superharmonic in Ω if Δd
μu(x) ≤ 0 holds for all x ∈ Ω,

• lower AMV superharmonic in Ω if Δd
μu(x) ≤ 0 holds for all x ∈ Ω.

We also add the word strictly whenever the inequalities involved are strict.

Lemma 4.2 (Maximum principle for strictly upper AMV subharmonic functions). Let (X, d, μ) be a proper 
metric measure space and u ∈ L1

loc(Ω, μ) an u.s.c. function in Ω ⊆ X such that Δd
μu > 0 in Ω. Then

max
∂Ω

u = max
Ω

u,

and u does not attain its maximum in Ω.

Proof. Let C := {x ∈ Ω : u(x) = maxΩ u}. If C is empty we are done by the upper semicontinuity of u. 
Assume therefore that C is nonempty and let maxΩ u = u(x) for some x ∈ C. Note that u(x) < ∞ since 
otherwise Δd

μ,ru(x) ≡ −∞ for all r > 0, which would contradict Δd
μu(x) > 0. Also, since u ∈ L1

loc(Ω, μ), 
u(x) > −∞. Therefore u(x) is finite and, for some r small enough, we get the following contradiction,

0 < Δd
μ,ru(x) = 1

r2

 

Br(x)

u(y) − u(x)︸ ︷︷ ︸
≤0

dμ(y) ≤ 0.

Therefore C has to be empty. �
From this lemma we can deduce the weak maximum principle for pointwise upper AMV subharmonic 

functions given the existence of a strictly lower AMV subharmonic function.

Theorem 4.3 (Weak maximum principle for upper AMV subharmonic functions). Let (X, d, μ) be a proper 
metric measure space and u ∈ L1

loc(Ω, μ) be an u.s.c. function in Ω ⊆ X such that Δd
μu ≥ 0 in Ω. Assume that 

there exists a bounded function φ which is u.s.c. in Ω and such that Δd
μφ > 0 in Ω. Then max∂Ω u = maxΩ u.

Proof. Assume that max∂Ω u < maxΩ u = u(x) for some x ∈ Ω. By the same argument as in Lemma 4.2, 
u(x) is finite. Let M := ‖φ‖L∞(Ω) and take ε > 0 such that maxΩ u > max∂Ω u + 2εM . In particular, this 
implies that

max
Ω

u + ε inf
Ω

φ > max
∂Ω

u + εmax
∂Ω

φ. (4.1)

Now define uε := u + εφ. Then, pointwise in Ω,

Δd
μuε ≥ Δd

μu + εΔd
μφ > 0,

and since uε is u.s.c. in Ω, Lemma 4.2 implies that max∂Ω uε = maxΩ uε. However, by (4.1),

max
Ω

uε ≥ uε(x) = max
Ω

u + εφ(x)

≥ max
Ω

u + ε inf
Ω

φ

> max
∂Ω

u + εmax
Ω

φ

≥ max
∂Ω

uε,
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a contradiction. Hence max∂Ω u = maxΩ u. �

Remark 4.4. As an example, in the Heisenberg group, we could for instance choose φ(x) as the graded 
coordinate function x2

1.

Remark 4.5. By considering the sign function sgnx defined as zero for x = 0, the function u(x) = sgn x −
sgn(x −1) in Ω := (−1, 2) is AMV harmonic everywhere in Ω but the maximum principle is violated, showing 
that upper semicontinuity is a necessary condition.2

Corollary 4.6 (Weak minimum principle for lower AMV superharmonic functions). Let (X, d, μ) be a proper
metric measure space and u ∈ L1

loc(Ω, μ) be a l.s.c. function in Ω ⊆ X such that Δd
μu ≤ 0 in Ω. Assume 

that there exists a bounded function φ which is u.s.c. in Ω and such that Δd
μφ > 0. Then min∂Ω u = minΩ u.

Proof. Let v := −u. Then v is u.s.c. in Ω and Δd
μv = Δd

μ(−u) = −Δd
μu ≥ 0. Hence we can conclude by 

applying Theorem 4.3 to v. �

From Theorem 4.3 and Corollary 4.6 we can deduce that continuous AMV harmonic functions attain 
extremal values at the boundary.

Corollary 4.7 (Weak max and minimum principle for AMV harmonic functions). Let (X, d, μ) be a proper 
metric measure space and u ∈ L1

loc(Ω, μ) be a continuous function in Ω ⊆ X such that Δd
μu = 0 in Ω. Assume 

that there exists a bounded function φ which is u.s.c. in Ω and such that Δd
μφ > 0. Then max∂Ω u = maxΩ u

and min∂Ω u = minΩ u.

Because of the superadditivity of Δd
μ we also get the following comparison principle.

Corollary 4.8 (Weak comparison principle). Let (X, d, μ) be a proper metric measure space and u, v ∈
L1

loc(Ω, μ) be l.s.c. and u.s.c. functions respectively in Ω ⊆ X such that u ≥ v on ∂Ω, and either

(i) Δd
μu ≤ 0 and Δd

μv ≥ 0 in Ω, or
(ii) Δd

μu ≤ 0 and Δd
μv ≥ 0 in Ω.

Assume also that there exists a bounded function φ which is u.s.c. in Ω and such that Δd
μφ > 0. Then u ≥ v

in Ω.

Proof. We assume (i) and note that w := u − v is l.s.c. in Ω and Δd
μw ≤ Δd

μu − Δd
μv ≤ 0. Therefore 

minΩ w = min∂Ω w ≥ 0 by Corollary 4.6, hence u ≥ v in Ω.
If we instead assume (ii), we get Δd

μw ≤ Δd
μu −Δd

μv ≤ 0, and Corollary 4.6 again gives the conclusion. �

Remark 4.9. In particular, if u and v are continuous AMV harmonic functions such that u ≥ v on the 
boundary ∂Ω, and φ as described above exists, then u ≥ v in Ω.

2 This example was proposed to us by A. Kijowski.
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5. Green-type identity and weak AMV Laplacian

A metric measure space (X, d, μ) being given, we set

Tru :=
 

Br(x)

u dμ

for any u ∈ L1
loc(X, μ), r > 0 and x ∈ X. Let us provide a preliminary result.

Lemma 5.1. Let (X, d, μ) be a metric measure space. Set w(x) :=
´
Br(x)

dμ(y)
μ(Br(y)) for any x ∈ X. Then for 

any 1 ≤ p ≤ +∞ and r > 0,

1. if u ∈ Lp(X, wμ) then Tru ∈ Lp(X, μ) and

‖Tru‖Lp(X,μ) ≤ ‖u‖Lp(X,wμ) ,

2. if u ∈ Lp(X, μ) ∩ Lp(X, wμ) then Δd
μ,ru ∈ Lp(X, μ) and

‖Δd
μ,ru‖Lp(X,μ) ≤

1
r2 (‖u‖Lp(X,μ) + ‖u‖Lp(X,wμ)) .

Proof. Let us start by proving 1. In case p = +∞ the result is immediate. For 1 ≤ p < +∞, if u ∈ Lp(X, wμ), 
Jensen’s inequality with the convex function t �→ |t|p implies

‖Tru‖pLp(X,μ) ≤
ˆ

X

 

Br(x)

|u(y)|p dμ(y) dμ(x)

=
ˆ

X

ˆ

X

χBr(x)(y)
μ(Br(x)) |u(y)|p dμ(y) dμ(x).

Applying the Fubini–Tonelli theorem and the simple observation that χBr(x)(y) = χBr(y)(x), we get

‖Tru‖pLp(X,μ) ≤
ˆ

X

|u(y)|p
ˆ

X

χBr(y)(x)
μ(Br(x)) dμ(x) dμ(y)

=
ˆ

X

|u(y)|p
ˆ

Br(y)

1
μ(Br(x)) dμ(x) dμ(y)

=
ˆ

X

|u(y)|pw(y) dμ(y) = ‖u‖pLp(X,wμ) .

This shows 1. That 2. follows is straightforward: for any 1 ≤ p ≤ +∞, if u ∈ Lp(X, μ) ∩ Lp(X, wμ), then

‖Δd
μ,ru‖Lp(X,μ) ≤

1
r2 ‖Tru− u‖Lp(X,μ) ≤

1
r2

(
‖Tru‖Lp(X,μ) + ‖u‖Lp(X,μ)

)
≤ 1

r2

(
‖u‖Lp(X,wμ) + ‖u‖Lp(X,μ)

)
due to 1. �
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Remark 5.2. Lemma 5.1 applies especially when μ is a doubling measure, in which case the condition 
u ∈ Lp(X, wμ) is superfluous. Explicit computations show that if Cμ is the doubling constant of μ, then 
‖Tr‖p→p ≤ C2

μ and ‖Δd
μ,r‖p→p ≤ (1 + C2

μ)r−2. For the particular case of a Q-Ahlfors regular measure, 
one has ‖Tr‖p→p ≤ C/c and ‖Δd

μ,r‖p→p ≤ (1 + C/c)r−2. Finally, in case μ is uniform, meaning that there 
exists ω > 0 and Q ≥ 0 such that μ(B) = ωrQ for any ball B with radius r, one has ‖Tr‖p→p ≤ 1 and 
‖Δd

μ,r‖p→p ≤ 2r−2.

Theorem 5.3 (Green-type identity). Let (X, d, μ) be a metric measure space, and w be as in Lemma 5.1. 
Then for any u, v ∈ L2(X, wμ) ∩ L2(X, μ) and r > 0,

ˆ

X

vΔd
μ,ru− uΔd

μ,rv dμ = 1
r2

ˆ

X

u(x)
 

Br(x)

v(y)
(
μ(Br(x))
μ(Br(y))

− 1
)

dμ(y) dμ(x) (5.1)

= 1
r2

ˆ

X

u(x)
ˆ

Br(x)

v(y)
(

1
μ(Br(y))

− 1
μ(Br(x))

)
dμ(y) dμ(x).

Proof. By 2. in Lemma 5.1, the integral on the left hand side exists. Moreover,

r2
ˆ

X

vΔd
μ,ru− uΔd

μ,rv dμ =
ˆ

X

 

Br(x)

u(y)v(x) − v(y)u(x) dμ(y) dμ(x). (5.2)

Again by Fubini–Tonelli and the fact that χBr(x)(y) = χBr(y)(x),

ˆ

X

 

Br(x)

u(y)v(x) dμ(y) dμ(x) =
ˆ

X

ˆ

X

χBr(x)(y)
μ(Br(x)) u(y)v(x) dμ(y) dμ(x)

=
ˆ

X

ˆ

X

χBr(x)(y)
μ(Br(x)) u(y)v(x) dμ(x) dμ(y)

=
ˆ

X

ˆ

X

χBr(y)(x)
μ(Br(x)) u(y)v(x) dμ(x) dμ(y).

By relabeling x to y and vice versa in the final expression above, we find that

ˆ

X

ˆ

X

χBr(y)(x)
μ(Br(x)) u(y)v(x) dμ(x) dμ(y) =

ˆ

X

ˆ

X

χBr(x)(y)
μ(Br(y))

u(x)v(y) dμ(y) dμ(x)

=
ˆ

X

 

Br(x)

μ(Br(x))
μ(Br(y))

u(x)v(y) dμ(y) dμ(x).

By putting this in (5.2), we conclude that

r2
ˆ

X

vΔd
μ,ru− uΔd

μ,rv dμ =
ˆ

X

 

Br(x)

u(x)v(y)
(
μ(Br(x))
μ(Br(y))

− 1
)

dμ(y) dμ(x)

=
ˆ ˆ

u(x)v(y)
(

1
μ(Br(y))

− 1
μ(Br(x))

)
dμ(y) dμ(x). �
X Br(x)
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Remark 5.4. The theorem shows that Δd
μ,r in general is not self-adjoint on L2(X, μ). However for measures 

such that μ(Br(x))/μ(Br(y)) = 1 + o(r2) uniformly, in particular uniform measures, the right-hand side of 
(5.1) is zero. This can be compared to the result of Burago et al. [6] where they show that Δd

μ,r is self-adjoint 
on L2(X, φμ), where φ(x) := r2μ(Br(x)).

If one seeks for a weak definition of the AMV Laplacian, Theorem 5.3 suggests to avoid “differentiation” of 
the test functions as one would naturally do. Indeed, by (5.1), there is no a priori reason to get 

´
X
vΔd

μ,ru −
uΔd

μ,rv dμ → 0 when r → 0+. Moreover, the low regularity of test functions in metric spaces do not 
guarantee the existence of the AMV Laplacian in any case. Therefore we propose the following definition.

Definition 5.5 (Weak AMV Laplacian). Let (X, d, μ) be a metric measure space. We say that a Borel measure 
ν on X is the weak AMV Laplacian of a μ-measurable function u : X → R, and we denote it by Δd

μu 
w= ν, if

lim
r→0+

ˆ

X

φ(x)Δd
μ,ru(x) dμ(x) =

ˆ

X

φ(x) dν(x)

holds for all φ ∈ Cc(X). When Δd
μu 

w= 0 we say that u is weakly AMV harmonic.

Note that a function which is pointwise AMV harmonic might not be weakly AMV harmonic (see also the 
works of Zalcman [20, Section 5]). For instance, for (X, d, μ) = (R, de, L1), the sign function u(x) = sgn x

defined as zero at the origin satisfies Δd
μu = 0 everywhere in R, but a straightforward computation shows 

that

Δd
μu

w= 2δ′

6 ,

which coincides with the distributional Laplacian of u divided by the dimensional constant 2(n + 2) for 
n = 1.
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