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A make-your-mind-up option is an American derivative with delivery lags. We show 
that its put option can be decomposed as a European put and a new type of 
American-style derivative. The latter is an option for which the investor receives 
the Greek Theta of the corresponding European option as the running payoff, 
and decides an optimal stopping time to terminate the contract. Based on this 
decomposition and using free boundary techniques, we show that the associated 
optimal exercise boundary exists and is a strictly increasing and smooth curve, 
and analyze the asymptotic behavior of the value function and the optimal exercise 
boundary for both large maturity and small time lag.
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1. Introduction

With a few exceptions, models of optimal stopping time problems assume that the player is able to 
terminate the underlying stochastic dynamics immediately after the decision to stop, or to bring a new 
project online without any delays after the decision to invest. In fact, both stopping stochastic dynamics 
and initiating a new project take time.

In this paper, we consider a class of optimal stopping problems where there exists a time lag between 
the player’s decision time and the time that the payoff is delivered. In particular, we study American put 
options with delivery lags in details. In practice, there may exist a time lag between the time that the option 
holder decides to exercise the option and the time that the payoff is delivered. Such delivery lags may be 
specified in financial contracts, where the decision to exercise must be made before the exercise takes place. 
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They are called make-your-mind-up options (see Chapter 6 of [18] and Chapter 9 of [22]). For example, the 
option holder must give a notice period before she exercises, and she cannot change her mind. On the other 
hand, even for a standard American derivative, the option holder may not be able to exercise it immediately, 
when there exist liquidation constraints in financial markets.

Let W be a one-dimensional Brownian motion on a complete probability space (Ω, F , P). Denote by 
F = {Ft}t≥0 the augmented filtration generated by W . Let a constant T > 0 represent the maturity and 
another constant δ ∈ [0, T ) represent the time lag. The player aims to choose an optimal stopping time 
τ0,∗ ∈ R0

t in order to maximize the discounted expected payoff

Y δ
t = ess sup

τ0∈R0
t

E
[
e−r(τ0+δ−t)(K −Xτ0+δ)+1{τ0+δ<T}

+ e−r(T−t)(K −XT )+1{τ0+δ≥T}|Ft

]
, t ∈ [0, T ], (1)

where Y δ represents the value process, the F -adapted process X models the stock price, the constant K > 0
denotes the strike price, and

R0
t := {τ0 : Ω → [t, T ], and {τ0 ≤ s} ∈ Fs for any s ∈ [t, T ]}.

Note that δ = 0 corresponds to the classical optimal stopping problem for American options (see, for 
example, [13] and [21]), so we mainly focus on the problem in the case of δ > 0 in this paper. For δ > 0, 
if the player decides to stop at some stopping time τ0, then the payoff will be delivered at τ0 + δ rather 
than τ0, so there is a time lag of the delivery of the payoff. We also observe that the problem (1) is trivial 
for t ∈ (T − δ, T ] for, in this situation, the expected payoff is independent of choice of τ0, and the player 
may simply choose the optimal stopping time as the maturity T . Thus, we focus on the case t ∈ [0, T − δ]
throughout the paper.

Although this type of optimal stopping problems with delivery lags has been well studied in the literature 
(see [1] and [19] with more references therein), little is known about the corresponding optimal exercise 
boundaries and their asymptotic behavior for small time lag δ and large maturity T . Intuitively, both the 
value function and the corresponding optimal exercise boundary (if exists) will converge to the solution for 
the case without delivery lags when δ ↓ 0, and to the solution for the perpetual case when T ↑ ∞. It is the 
aim of this paper to prove the above asymptotic behavior using free boundary techniques.

To be more specific, under the geometric Brownian motion setup, we prove the following result.

Theorem 1. Suppose that the stock price X follows

dXs/Xs = (r − q)ds + σdWs, Xt = X,

where the interest rate r > 0, the dividend rate q ∈ [0, r]1 and the volatility σ > 0 are all constants. Then, 
the following assertions hold:

(i) The value Y δ
t = V δ(t, Xt) is decreasing with respect to δ and, moreover,

V 0(t,X) ≥ V δ(t,X) ≥ V 0(t,X) −K
(
1 − e−rδ

)
, t ∈ [0, T − δ], (2)

where V δ(·, ·) and V 0(·, ·) represent the value function for the American put with and without delivery lags, 
respectively. In addition, V δ(t, X) is decreasing with respect to t.

1 q ≤ r is a technique assumption, which ensures conclusion (i) in Proposition 4.
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(ii) There exists an optimal exercise boundary Xδ(t) ∈ C∞[0, T −δ) separating exercise and continuation 
regions (cf. (21) and (22))). Moreover, it is strictly increasing in t, with the end point

Xδ(T − δ) = lim
t→(T−δ)−

Xδ(t) = KeX ,

where X is given in Proposition 4.
(iii) The optimal exercise boundary Xδ(t) → KeX as T → ∞ with X given in (17), so KeX is the 

asymptotic line of the optimal exercise boundary Xδ(t). Moreover, Xδ(t) → X0(t) for any t ∈ [0, T ) as 
δ → 0, where X0(t) represents the optimal exercise boundary for the corresponding American put without 
delivery lags.

To prove Theorem 1, we need to first solve the optimal stopping problem (1). A basic idea is to introduce 
a new obstacle (payoff) process, which is the projection (conditional expectation) of the original expected 
payoff. For t ∈ [0, T − δ], define

Ŷ δ
t = E

[
e−rδ(K −Xt+δ)+|Ft

]
, (3)

which is the time t value of the corresponding European put option with maturity t + δ. Denote by P (·, ·)
the value function of the European put option with maturity T . Then, the time homogeneity of (3) implies 
Ŷ δ
t = P (T − δ, Xt), and the tower property of conditional expectations further yields

Y δ
t = V δ(t,Xt) = ess sup

τ0∈R0
t

E
[
e−r((τ0∧(T−δ))−t)P (T − δ,Xτ0∧(T−δ))|Ft

]
(4)

with x ∧y = min(x, y) and t ∈ [0, T − δ]. Hence, we have transformed the original problem (1) to a standard 
optimal stopping problem (without delivery lags) with the European option price as the new obstacle 
process. The rest of the paper will therefore focus on (4) and its corresponding variational inequality (5) in 
section 2.

The existing literature of optimal stopping with delivery lags (see [1] and [19] for example) usually assumes 
that the payoff is a linear function of the underlying asset X, which certainly excludes the American payoff. 
A consequence of this simplified assumption is that the new obstacle Ŷ δ is also linear in X, which follows 
from the linearity of the conditional expectation, and the obstacle function in the variational inequality is 
therefore also a linear function. Hence, the treatments of the optimal stopping problems with and without 
delivery lags are essentially the same in their models.

In our case, since the American payoff is only a piecewise linear function of the underlying asset X (with 
a kink point at K), this kink point propagates via the conditional expectation, resulting in a nonlinear 
obstacle function P (T − δ, ·). This differentiates our problem from the existing optimal stopping problems 
with delivery lags, and makes the analysis of the corresponding optimal exercise boundary much more 
challenging.

We first develop an early exercise premium decomposition formula for the American put option with 
delivery lags (see (10)). This helps us overcome the difficulty of handling the European option price as the 
modified payoff. We show that an American put option with delivery lags can be decomposed as a European 
put option and another American-style derivative as an auxiliary optimal stopping problem (see (9)). The 
latter is an option for which the investor receives the Greek Theta of the corresponding European option 
as the running payoff, and decides an optimal stopping time to terminate the contract. The decomposition 
formula (10) can also be regarded as a counterpart of the early exercise premium representation of standard 
American options, and is crucial to the analysis of the associated optimal exercise boundary.

Using free-boundary techniques, we then give a detailed analysis of the associated optimal exercise bound-
ary. An essential difficulty herein is the non-monotonicity of the difference between the value function and 
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the payoff with respect to the stock price (a similar phenomenon also appears in [10]). As a result, it is 
not even clear ex ante whether the optimal exercise boundary exists or not. This is in contrast to standard 
American options, for which the value function, subtracted by the payoff, is monotonic with respect to the 
stock price, so the stopping and continuation regions can be easily separated.

Thanks to the auxiliary optimal stopping problem (9) and its associated variational inequality (8), we 
prove that the optimal exercise boundary exists and is a strictly increasing and smooth curve, with its end 
point closely related to the zero crossing point of the Greek Theta of the corresponding European option. 
Intuitively, when Theta is positive, the running payoff of the new American-style derivative is also positive, 
so the investor will hold the option to receive the positive Theta continuously. In contrast, when Theta 
is negative, one may think that the investor would then exercise the option to stop her losses. However, 
we show that when Theta is negative but not too small, the investor may still hold the option and wait 
for Theta to rally at a later time to recover her previous losses. We further quantify such negative values 
of Theta by identifying the asymptotic line of the optimal exercise boundary, which turns out to be the 
optimal exercise boundary of the corresponding perpetual problem.

The paper is organized as follows. In section 2, we prove Theorem 1 (i) and introduce the early excise 
premium decomposition formula. We then consider the corresponding perpetual problem in section 3, and 
in section 4 we prove Theorem 1 (ii) and (iii). Some technical proofs about the property of the Greek Theta 
are provided in the appendix.

2. The variational inequality characterization

We first solve the optimal stopping problem (4) via its associated variational inequality

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(−∂t − L)V δ(t,X) = 0, if V δ(t,X) > P (T − δ,X),
for (t,X) ∈ ΩT−δ;

(−∂t − L)V δ(t,X) ≥ 0, if V δ(t,X) = P (T − δ,X),
for (t,X) ∈ ΩT−δ;

V δ(T − δ,X) = P (T − δ,X), for X ∈ R+,

(5)

with ΩT−δ = [0, T − δ ) ×R+, and the operator L given by the Black-Scholes differential operator

L = 1
2 σ2X2∂XX + (r − q)X∂X − r.

Note that if δ = 0, P (T − δ, X) = (K − X)+, and variational inequality (5) reduces to the standard 
variational inequality for American put options. On the other hand, since variational inequality (5) is 
with smooth coefficients and obstacle, its (strong) solution V δ(·, ·) characterizes the value function and the 
optimal stopping rule for the optimal stopping problem (4).

Proposition 2. The value function V δ(·, ·) of the optimal stopping problem (4) is the unique bounded strong 
solution to variational inequality (5), and the optimal stopping rule is given by

τ0,∗ = inf{s ∈ [t, T − δ] : V δ(s,Xs) = P (T − δ,Xs)}. (6)

Moreover, V δ ∈ W 2,1
p,loc(ΩT−δ) ∩ C(ΩT−δ) for any p ≥ 1, and ∂xV δ ∈ C(ΩT−δ).

Herein, W 2,1
p,loc(ΩT−δ) is the set of all functions whose restriction on any compact subset Ω∗

T−δ ⊂ ΩT−δ

belong to W 2,1
p (Ω∗

T−δ), where W 2,1
p (Ω∗

T−δ) is the completion of C∞(Ω∗
T−δ) under the norm
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||V δ||W 2,1
p (Ω∗

T−δ)
=

⎡⎢⎣ ∫
Ω∗

T−δ

(|V δ|p + |∂tV δ|p + |∂xV δ|p + |∂xxV δ|p)dxdt

⎤⎥⎦
1
p

.

The proof follows along the similar arguments used in Chapter 1 of [17], or more recently [24], and is 
thus omitted.

2.1. Proof of Theorem 1 (i)

In this subsection, we prove Theorem 1 (i).2 Note that the arguments below do not rely on the geometric 
Brownian motion assumption on X, as long as its discounted price e−(r−q)tXt is a martingale.

We first prove the monotone property of V δ(·, ·) with respect to δ. Fix 0 ≤ δ1 < δ2. For any τ2 ∈ R0
t , 

take τ1 = (τ2 + (δ2 − δ1)) ∧ T . Since δ1, δ2, T are constants, we know that τ1 ∈ R0
t . Moreover, it is easy to 

check that {τ1 + δ1 ≥ T} = {τ2 + δ2 ≥ T} and

e−r(τ1+δ1−t)(K −Xτ1+δ1)+1{τ1+δ1<T} = e−r(τ2+δ2−t)(K −Xτ2+δ2)+1{τ2+δ2<T}.

Hence, from (1), we know that Y δ1
t ≥ Y δ2

t and V δ(·, ·) is decreasing with respect to δ.
For the second inequality in (2), for any τ ∈ R0

t , take τ̂ = (τ + δ) ∧ T . Note that τ̂ ∈ Fτ and X̃t =
e−(r−q)tXt is a martingale. Hence,

E
(
e−rτ̂ (K −Xτ̂ )+

∣∣∣Ft

)
= E

(
e−rτ̂

(
K − e(r−q)τ̂ X̃τ̂

)+ ∣∣∣Ft

)

≥ E
(
e−rτ̂

(
K − e(r−q)τ̂ X̃τ

)+ ∣∣∣Ft

)
≥ E

((
e−rτ̂K − e−qτ X̃τ

)+ ∣∣∣Ft

)
,

where the first inequality follows from the facts that e−rτ̂
(
K − e(r−q)τ̂x

)+ is convex with respect to x
and measurable with respect to Fτ , so we may take conditional expectation with respect to Fτ and apply 
Jensen’s inequality. For the second inequality, we have used the facts that q ≥ 0 and τ̂ ≥ τ . In turn,

E
(
e−rτ (K −Xτ )+

∣∣∣Ft

)
= E

((
e−rτ̂K − e−qτ X̃τ

)+
+

[
e−rτ (K −Xτ )+ −

(
e−rτ̂K − e−rτXτ

)+
] ∣∣∣Ft

)

≤ E
(
e−rτ̂ (K −Xτ̂ )+

∣∣∣Ft

)
+ KE

(
e−rτ − e−rτ̂

∣∣∣Ft

)
≤ E

(
e−r((τ+δ)∧T ) (K −X(τ+δ)∧T

)+ ∣∣∣Ft

)
+ K

(
1 − e−rδ

)
,

where we have used the above conclusion and the fact that (x + y)+ − x+ ≤ y+ in the first inequality, and 
τ ≥ 0 and τ̂ − τ ≤ δ in the second inequality. Until now, we have proved that for any τ ∈ R0

t ,

E
[
e−r(τ−t)(K −Xτ )+1{τ<T} + e−r(T−t)(K −XT )+1{τ≥T}|Ft

]
≤ E

[
e−r(τ+δ−t)(K −Xτ+δ)+1{τ+δ<T} + e−r(T−t)(K −XT )+1{τ+δ≥T}|Ft

]
2 We thank the referee for outlining the current probabilistic proof for us. Note that the proof does not require the geometric 

Brownian motion model of the underlying asset, which is more general than our original proof based on PDE arguments.
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+K
(
1 − e−rδ

)
.

Thus, from (1), we obtain the second inequality in (2).
Finally, we prove the following inequality (7), which is important to analyze the properties of the optimal 

exercise boundary later on.

∂tV
δ ≤ 0 a.e. in ΩT−δ. (7)

By the Markov property and time homogeneity, it is clear that

V δ(t, x) = ess sup
τ0∈R0

0

E
[
e−r((τ0+δ)∧(T−t))(K −X0,x

(τ0+δ)∧(T−t))
+|Ft

]
, (t, x) ∈ ΩT−δ,

where the notation X0,x means the state process X starts at the initial time 0 and position x
Let 0 ≤ t1 < t2 ≤ T − δ. For any τ2 ∈ R0

0, take τ1 = τ2 ∧ (T − δ − t2). It is not difficult to check that 
τ1 ∈ R0

0 and

(τ1 + δ) ∧ (T − t1) = (τ2 + δ) ∧ (T − t2).

Thus, we deduce that V δ(t1, x) ≥ V δ(t2, x) and V δ is non-increasing with respect to t, which further implies 
(7).

2.2. An early exercise premium decomposition formula

We derive a decomposition formula for the American put option with delivery lags. Such a decomposition 
formula is crucial to the analysis of the optimal exercise boundary in sections 3 and 4. Let Uδ(t, X) =
Y δ(t, X) − P (T − δ, X). Then, we deduce that Uδ(t, X) satisfies the variational inequality

⎧⎪⎪⎨⎪⎪⎩
(−∂t − L)U δ(t,X) = Θδ(X), if U δ(t,X) > 0, for (t,X) ∈ ΩT−δ;

(−∂t − L)U δ(t,X) ≥ Θδ(X), if U δ(t,X) = 0, for (t,X) ∈ ΩT−δ;

U δ(T − δ,X) = 0, for X ∈ R+,

(8)

where Θδ(·) is the Greek Theta of the European option:

Θδ(X) = −∂tP (T − δ,X).

Interestingly, we observe that the above variational inequality (8) also corresponds to an auxiliary optimal 
stopping problem

U δ(t,Xt) = ess sup
τ0∈R0

t

E

⎡⎢⎣ τ0∫
t

e−r(s−t)Θδ(Xs)ds|Ft

⎤⎥⎦ , (9)

with its optimal stopping time τ0,∗ given in (6). In turn, we obtain a decomposition formula for the American 
put option with delivery lags

Y δ(t,Xt) = P (T − δ,Xt) + U δ(t,Xt), (10)
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Remark 3. One advantage of the optimal stopping formulation (9) is that it does not have final payoff but 
only has running payoff, and this will facilitate our analysis of the associated optimal exercise boundary. In 
the rest of the paper, we shall focus our analysis on the optimal stopping problem (9) and its associated 
variational inequality (8).

To solve (8), introduce the transformation3

x = lnX − lnK, τ = T − δ − t, u(τ, x) = U δ(t,X), θ(x) = Θδ(X). (11)

Consequently, (8) reduces to⎧⎪⎪⎨⎪⎪⎩
(∂τ − L̃)u(t, x) = θ(x), if u(τ, x) > 0, for (τ, x) ∈ NT−δ;

(∂τ − L̃)u(t, x) ≥ θ(x), if u(τ, x) = 0, for (τ, x) ∈ NT−δ;

u(0, x) = 0, for x ∈ R,

(12)

where NT−δ = (0, T − δ ] ×R, and

L̃ = σ2

2 ∂xx +
(
r − q − σ2

2

)
∂x − r.

Moreover, it follows from Proposition 2 that u ∈ W 2,1
p,loc(NT−δ) ∩ C(NT−δ) for p ≥ 1 and ∂xu ∈ C(NT−δ).

For the latter use, we present some basic properties of the Greek Θδ(X) whose proof is given in Ap-
pendix A.

Proposition 4. Let θ(x) = Θδ(X) with x = lnX − lnK. Then, the following assertions hold:
(i) There exists a unique zero crossing point X ∈ R such that θ(X) = 0. In addition, θ(x) < 0 for any 

x < X, θ(x) > 0 for any x > X, and θ′(X) > 0.
(ii) For any x < X, θ(x) → qKex − rK as δ → 0+.

3. The perpetual case and its optimal exercise boundary

We consider the perpetual version of the optimal stopping problem (9), whose solution admits explicit 
expressions (cf. (19) and (20) below). The perpetual problem is also closely related to the asymptotic analysis 
of the optimal exercise boundary in section 4.

For any F -stopping time τ0 ≥ t, we consider the perpetual version of (9), i.e.

U δ
∞(Xt) = ess sup

τ0≥t
E

⎡⎢⎣ τ0∫
t

e−r(s−t)Θδ(Xs)ds|Ft

⎤⎥⎦ . (13)

Using the similar arguments as in section 2, we obtain that Uδ
∞(X) = u∞(x), where x = lnX − lnK, and 

u∞(·) is the unique bounded strong solution to the stationary variational inequality{
−L̃u∞(x) = θ(x), if u∞(x) > 0, for x ∈ R;

−L̃u∞(x) ≥ θ(x), if u∞(x) = 0, for x ∈ R,
(14)

3 For notation simplicity, we suppress the superscript δ in uδ and θδ, and use u and θ instead. The same convention applies to 
the optimal exercise boundary x(τ) in section 4.
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with u∞ ∈ W 2
p,loc(R) for any p ≥ 1 and (u∞)′ ∈ C(R).

From Proposition 4, we know that {θ(x) ≥ 0} = {x ≥ X}. In this domain, we consider the following 
PDE,

−L̃ v∞(x) = θ(x) > 0, x ∈ (X,+∞) v∞(X) = 0. (15)

The above PDE has a unique classical solution v∞∈ C2(X, +∞) ∩C[X, +∞). The strong maximum principle 
(see [15]) implies that v∞ > 0 in (X, +∞).

Moreover, it is clear that u∞ satisfies

−L̃u∞(x) ≥ θ(x), x ∈ (X,+∞) u∞(X) ≥ 0.

Using the comparison principle (see [17] or [23]) for the strong solution of PDE in (X, +∞), we deduce that 
u∞ ≥ v∞ > 0 in (X, +∞). So, it follows that

{x > X} ⊆ {u∞(x) > 0} and {x ≤ X} ⊇ {u∞(x) = 0}. (16)

We can then define the optimal exercise boundary X as4

X = inf{x ∈ R : u∞(x) > 0}. (17)

The continuity of u∞(·) implies that u∞(x) = 0 for x ≤ X and, therefore, the player will exercise the option 
in (−∞, X]. Moreover, it follows from (16) and (17) that X ≤ X.

The next proposition relates variational inequality (14) to a free-boundary problem, which in turn provides 
the explicit expressions for u∞(·) and X.

Proposition 5. For x > X, it holds that u∞(x) > 0. Moreover, (u∞(·), X) is the unique bounded solution to 
the free-boundary problem

⎧⎪⎪⎨⎪⎪⎩
−L̃u∞(x) = θ(x), for x > X;

u∞(x) = 0, for x ≤ X;

(u∞)′(X) = 0, (smooth-pasting condition),

(18)

and satisfies X > X > −∞.

Proof. Step 1. We prove that (u∞(·), X) satisfies the free-boundary problem (18). To this end, we first show 
what u∞(x) > 0 for x > X. Since u∞(x) > 0 for x > X, we only need to show that u∞ > 0 on (X, X]. If 
not, let x1, x2 ∈ [X, X ] be such that

x1 < x2, u∞(x1) = u∞(x2) = 0, and u∞(x) > 0 for any x ∈ (x1, x2).

Using variational inequality (14) and Proposition 4, we obtain that

{
−L̃u∞(x) = θ(x) ≤ 0, for x ∈ (x1, x2);

u∞(x1) = u∞(x2) = 0.

4 Note that from the definition of X, it may be possible that X = −∞. We will however exclude such a situation in Proposition 5.
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The comparison principle then implies that u∞(x) ≤ 0 for x ∈ (x1, x2), which is a contradiction.
To prove the smooth-pasting condition, we observe that (u∞)′ is continuous, and that u∞(x) = 0 for 

x ≤ X. Therefore, (u∞)′(X + 0) = (u∞)′(X − 0) = 0, and (u∞(·), X) indeed satisfies the free boundary 
problem (18).

Step 2. We prove that (u∞(·), X) is actually the unique solution to (18). To this end, we first show 
that if (u∞,1(·), X1) is any solution solving (18), then it is necessary that X1 < X. If not, by (18) and 
Proposition 4, we have

{
−L̃u∞,1(x) = θ(x) > 0, for x > X1 ≥ X;

u∞,1(X1) = (u∞,1)′(X1) = 0.

The strong comparison principle (see [15]) then implies that u∞,1(x) > 0 for x > X1.
Next we compare u∞,1(x) with an auxiliary function

w(x) = u∞,1(X1 + 1)w(x;X1, X1 + 1)

in the interval (X1, X1 + 1), where

w(x; a, b) = eλ
+(x−a ) − eλ

−(x−a )

eλ+(b−a) − eλ−(b−a) ,

with λ+ and λ− being, respectively, the positive and negative characteristic roots of L̃:

σ2

2 λ2 +
(
r − q − σ2

2

)
λ− r = 0.

It is clear that

w(a; a, b) = 0, w(b; a, b) = 1, w′(a; a, b) > 0, −L̃w = 0 in (a, b).

In turn,

{
−L̃w(x) = 0 < −L̃u∞,1(x), for x ∈ (X1, X1 + 1);

u∞,1(X1) = w(X1), u∞,1(X1 + 1) = w(X1 + 1).

Hence, the comparison principle implies that u∞,1(x) ≥ w(x) for x ∈ (X1, X1 + 1). In turn, (u∞,1)′(X1) ≥
w′(X1) > 0, which contradicts the smooth-pasting condition (u∞,1)′(X1) = 0.

Now we show that (u∞(·), X) is the unique solution to (18). If not, let (u∞, 1, X1) be another solution 
of the free-boundary problem (18). Without loss of generality, we may assume that X1 < X < X. It is 
immediate to check that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−L̃u∞, 1(x) = θ(x)
≤ θ(x)I{x>X} = −L̃u∞(x), for x ∈ (X1,∞);

u∞, 1(X1) = u∞(X1) = 0;
(u∞, 1)′(X1) = (u∞)′(X1) = 0,

where we have used the fact θ(x) < 0 for any x ≤ X < X. The comparison principle then implies that 
u∞, 1(x) ≤ u∞(x) and, in particular, u∞, 1(x) ≤ u∞(x) = 0 for x ∈ [X1, X].
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On the other hand, applying Taylor’s expansion to u∞,1(x) yields

u∞,1(x) = 1
2u

′′
∞,1(X1 + 0)(x−X1)2(1 + o(1)) = −θ(X1)

σ2 (x−X1)2(1 + o(1)),

which further implies that u∞,1(x) > 0 if x is close enough to X1. Thus, we obtain a contradiction.
Step 3. We prove that X > X > −∞. Since we have already showed that X < X in Step 2, it is sufficient 

to prove that X > −∞.
In fact, using the free-boundary formulation (18), we further obtain that its solution must have the form

u∞(x) = CKeλ
−x − p(x), for x > X,

where the constant C is to be determined, λ− is the negative root of the characteristic equation for L̃, and 
p(x) = p(T − δ, x) is the price of the European put option (cf. (32) with t = T − δ).

In order to fix the constant C and the optimal exercise boundary X, we make use of the boundary and 
smooth-pasting conditions in (18), and obtain that⎧⎨⎩CKeλ

−X = p(X ) =
[
Ke−rδN(−d 2) −KeX−qδN(−d 1)

]
;

CKλ−eλ
−X = p′(X ) = −KeX−qδN(−d 1),

where d 1 and d 2 are the same as d1 and d2 in (31) except that x is replaced by X (see Appendix A for the 
notations). Thus, we obtain that

u∞(x) =
{

p(X) eλ−(x−X ) − p(x), for x > X ;

0 for x ≤ X ,
(19)

and X is the zero crossing point of the algebraic equation

l(x) = λ−e−rδN(−d2) + (1 − λ−)ex−qδN(−d1) = 0. (20)

Next, we prove that the zero crossing point of l(x) = 0 exists and is unique. It is clear that, when 
x → −∞,

d1, d2 → −∞, N(−d1), N(−d2) → 1, l(x) → λ−e−rδ + o(1) < 0.

Hence, l(x) is negative provided x is small enough. On the other hand, by (34) and (35), we have

d1, d2 → +∞, N(−d1) = N ′(−d1)
d1

(
1 + o(1)

)
, N(−d2) = N ′(−d2)

d2

(
1 + o(1)

)
,

as x → +∞, and therefore,

l(x)erδ

N ′(−d2)
= λ−

d2

(
1 + o(1)

)
+ 1 − λ−

d1

(
1 + o(1)

)

= d2 + λ−(d1 − d2)
d1 d2

(
1 + o(1)

)
= 1

d1

(
1 + o(1)

)
.

Hence, l(x) is positive provided x is large enough. Thus, we deduce that there exists at least one zero 
crossing point of l(x) = 0. Thanks to the uniqueness of the solution to the free-boundary problem (18), we 
know that the zero crossing point of the algebraic equation (20) is also unique, from which we conclude that 
X > −∞. �
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Fig. 1. Optimal exercise boundary x(τ) under the coordinates (τ, x).
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Fig. 2. Optimal exercise boundary Xδ(t) under the coordinates (t,X).

4. The optimal exercise boundary and its asymptotic analysis

With all the preparations, we are ready to prove Theorem 1 (ii) and (iii). For illustration purpose, we 
first demonstrate the optimal exercise boundary through Figs. 1 and 2.

Fig. 1 is under the coordinates (τ, x), and Fig. 2 is under the coordinates (t, X), where τ = T − δ− t and 
x = lnX − lnK (cf. the transformation (11)). Fig. 2 illustrates that the whole region ΩT−δ is divided by 
a curve Xδ(t) into two parts. In the left region, the investor will exercise the option (with time lag δ), and 
in the right region the investor will hold the option. Hence, Xδ(t) is called the optimal exercise boundary. 
If we denote by x(·) the optimal exercise boundaries under the coordinates (τ, x), as shown in Fig. 1, then 
we have the relationship

Xδ(t) = K exp {x(T − δ − t)}. (21)

4.1. Proof of Theorem 1 (ii)

Due to Remark 3, we will mainly work with variational inequality (12) for u(·, ·). Recall NT−δ = (0, T −
δ ] ×R. Define the exercise domain ER and the continuation domain CR as

ER = {(τ, x) ∈ NT−δ : u(τ, x) = 0};

CR = {(τ, x) ∈ NT−δ : u(τ, x) > 0}.

Lemma 6. Let X and X be given in Proposition 4 and (17), respectively. Then, it holds that

{x ≤ X } ⊇ ER ⊇ {x ≤ X } and {x > X } ⊆ CR ⊆ {x > X }.
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Proof. In order to prove that ER ⊇ { x ≤ X }, we compare u(·, ·) and u∞(·), the latter of which is the 
solution to variational inequality (14). Note that

⎧⎪⎪⎨⎪⎪⎩
(∂τ − L̃)u∞(x) = θ(x), if u∞(x) > 0, for (τ, x) ∈ NT−δ;

(∂τ − L̃)u∞(x) ≥ θ(x), if u∞(x) = 0, for (τ, x) ∈ NT−δ;

u∞(x) ≥ 0 = u(0, x), for x ∈ R.

The comparison principle for variational inequality (12) in the domain NT−δ then implies that u(τ, x) ≤
u∞(x). But if x ≤ X, according to the free-boundary problem (18), u∞(x) = 0. In turn, u(τ, x) = 0. This 
proves that {x ≤ X } ⊆ ER.

Repeating the above argument to compare u and v∞ in the domain {x ≥ X }, where v∞ is the classical 
solution of PDE (15), we obtain u ≥ v∞ > 0 in the domain {x > X }, it follows that { x > X } ⊆ CR. �

Intuitively, when θ(x) is positive (i.e. x > X), the running payoff in (9) is also positive, so the investor 
will hold the option. In the contrary, when θ(x) is non-positive (i.e. x ≤ X), one may think that the investor 
would then exercise the option to stop her losses. However, the above lemma shows that for x ≤ X, the 
investor may still hold the option, and wait for the running payoff to rally at a later time to recover her 
previous losses.

Next, we define the optimal exercise boundary x(τ) as

x(τ) = inf{x ∈ R : u(τ, x) > 0}, (22)

for any τ ∈ (0, T−δ]. It follows from Lemma 6 that x(τ) ∈ [X, X], and by the continuity of u(·, ·), u(τ, x) = 0
for x ≤ x(τ).

Lemma 7. For τ ∈ (0, T − δ], let

x1(τ) = sup{x ∈ R : u(τ, x) = 0}.

Then, x(τ) = x1(τ). Hence, x(τ) is the unique curve separating NT−δ such that u(τ, x) = 0 for x ≤ x(τ)
and u(τ, x) > 0 for x ≥ x(τ).

Proof. The definition of x1(τ) implies that x(τ) ≤ x1(τ) and u(τ, x) > 0 for x ≥ x1(τ). Moreover, it follows 
from Lemma 6 that x1(τ) ∈ [X, X].

Suppose x(τ∗) < x1(τ∗) for some τ∗ ∈ (0, T − δ]. The continuity of u implies that u(τ∗, x(τ∗)) =
u(τ∗, x1(τ∗)) = 0. Let x∗ be a maximum point of u(τ∗, ·) in the interval [x(τ∗), x1(τ∗)]. Suppose that 
u(τ∗, x∗) > 0; otherwise u(τ∗, x) ≡ 0 in the interval [x(τ∗), x1(τ∗)], which contradicts the definition of x(τ). 
Since u(τ∗, x∗) > 0, ∂xu(τ∗, x∗) = 0 and ∂xxu(τ∗, x∗) ≤ 0, we have

−L̃u(τ∗, x∗) = −σ2

2 ∂xxu(τ∗, x∗) −
(
r − q − σ2

2

)
∂xu(τ∗, x∗) + ru(τ∗, x∗) > 0.

On the other hand, by the continuity of u, there exists a neighborhood of (τ∗, x∗) such that u > 0, so 
∂τu − L̃u = θ. In turn,

−L̃u(τ∗, x∗) = θ(x∗) − ∂τu(τ∗, x∗).

Since
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∂τu(τ, x) = −∂tU
δ(t,X) = −∂tV

δ(t,X) ≥ 0, (23)

where we have used the transformation (11) and the decomposition (10) in the first two equalities, and (7)
in the last inequality, we further get

−L̃u(τ∗, x∗) ≤ θ(x∗) < 0.

This is a contradiction. Thus, we must have x(τ∗) = x1(τ∗). �
From the above lemma, we deduce that the exercise region and the continuation region are equivalent to

ER = {(τ, x) ∈ NT−δ : x ≤ x(τ)};
CR = {(τ, x) ∈ NT−δ : x > x(τ)}.

We return to the proof of Theorem 1 (ii). Note that it is equivalent to the following proposition in terms 
of x(·).

Proposition 8. Let x(τ) be the optimal exercise boundary given in (22). Then, the following assertions hold:
(i) Monotonicity: x(τ) is strictly decreasing in τ5;
(ii) Position: x(τ) is with the starting point x(0) = lim

τ→0+
x(τ) = X;

(iii) Regularity: x(·) ∈ C∞(0, T − δ ] and u(·, ·) ∈ C∞({x ≥ x(τ) : τ ∈ (0, T − δ ]}).

Proof. (i) We first show that x(τ) is non-increasing. For any 0 ≤ τ1 < τ2 ≤ T − δ, we then have 0 =
u(τ2, x(τ2)) ≥ u(τ1, x(τ2)) ≥ 0. Thus, u(τ2, x(τ2)) = u(τ1, x(τ2)) = 0, and together with Lemma 7, we 
deduce that x(τ1) ≥ x(τ2), i.e. x(τ) is non-increasing.

If x(τ) is not strictly decreasing, then there exist x1 ∈ [X, X] and 0 ≤ τ1 < τ2 ≤ T − δ such that 
x(τ) = x1 for any τ ∈ [τ1, τ2]. See Fig. 3 below. Note that ∂xu(τ, x1) = 0 and, moreover, ∂τ∂xu(τ, x1) = 0
for any τ ∈ [τ1, τ2].

On the other hand, we observe that in the domain [τ1, τ2] × (x1, x1 + 1), u(·, ·) satisfies{
(∂τ − L̃)u(τ, x) = θ(x), for (τ, x) ∈ [τ1, τ2] × (x1, x1 + 1);

u(τ, x1) = 0, for τ ∈ [τ1, τ2].

In turn, ∂τu(·, ·) satisfies{
(∂τ − L̃)∂τu(τ, x) = ∂τθ(x) = 0, for (τ, x) ∈ [τ1, τ2] × (x1, x1 + 1);

∂τu(τ, x1) = 0, for τ ∈ [τ1, τ2].

For any x2 > X, since (τ2, x2) ∈ CR, we have u(τ2, x2) > 0, and u(0, x2) = 0. Hence, there exists τ ∈ (0, τ2)
such that ∂τu(τ, x2) > 0. Note, however, that ∂τu ≥ 0 (cf. (23)) and, therefore, the strong maximum 
principle (see [15]) implies that ∂τu > 0 in CR.

Together with ∂τu(τ, x1) = 0 for any τ ∈ [τ1, τ2], we deduce that ∂x∂τu(τ, x1) > 0 using Hopf lemma 
(see [15]). But this is a contradiction to ∂τ∂xu(τ, x1) = 0 for any τ ∈ [τ1, τ2].

(ii) It is obvious that x(0) ≤ X from Lemma 6, so it is sufficient to prove that x(0) ≥ X. If not, in the 
domain (0, T − δ] × (x(0), X) ⊂ CR, we consider

5 Recently, [11] provides a new probabilistic argument to prove that the free boundary is strictly monotonic. We thank the referee 
for pointing out [11].
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Fig. 3. Non-strictly decreasing and discontinuous free boundary x(τ).{
(∂τ − L̃)u(τ, x) = θ(x) < 0, for (τ, x) ∈ (0, T − δ] × (x(0), X);

u(0, x) = 0, for x ∈ (x(0), X).

Then, ∂τu(0, x) = L̃u(0, x) + θ(x) = θ(x) < 0, which is a contradiction to ∂τu ≥ 0 in (23).
(iii) We first prove that x(τ) is continuous. If not, then there exists τ2 ∈ (0, T − δ) and X ≤ x3 < x1 ≤ X

such that x(τ2 + 0) = x3 and x(τ2 − 0) = x1. See Fig. 3.
In the domain (τ2, T − δ] × (x3, x1) ⊂ CR, we consider

{
(∂τ − L̃)u(τ, x) = θ(x) < 0, for (τ, x) ∈ [τ2, T − δ] × (x3, x1);

u(τ2, x) = 0, for x ∈ (x3, x1).

Then, ∂τu(τ2, x) = L̃u(τ2, x) + θ(x) = θ(x) < 0, which is a contradiction to ∂τu ≥ 0 in (23).
Finally, since ∂τu ≥ 0, the smoothness of both the optimal exercise boundary x(τ) and the value function 

u(·, ·) in the continuation region follow along the similar arguments used in [16]. �
4.2. Proof of Theorem 1 (iii): asymptotic behavior for large maturity

We study the asymptotic behavior of the optimal exercise boundary x(τ) and the value function u(τ, x)
as τ → ∞, which in turn proves Theorem 1 (iii) for the asymptotic behavior of Xδ(t) when T → ∞.

To this end, we consider the auxiliary optimal stopping time problem perturbed by rε,

U ε
∞(Xt) = ess sup

τ0≥t
E

⎡⎢⎣ τ0∫
t

e−r(s−t)(Θ(Xs) − rε)ds|Ft

⎤⎥⎦ , (24)

for any F -stopping time τ0 ≥ t and any ε ≥ 0. This will help us to achieve the lower bound and, therefore, 
the asymptotic behavior of the optimal exercise boundary x(τ).

Following along the similar arguments used in section 3, we obtain that uε
∞(x) = U ε

∞(X), where x =
lnX − lnK, and uε(·) is the unique strong solution to the stationary variational inequality

{
−L̃uε

∞(x) = θ(x) − rε, if uε
∞(x) > 0, for x ∈ R;

−L̃uε
∞(x) ≥ θ(x) − rε, if uε

∞(x) = 0, for x ∈ R,
(25)

with uε
∞ ∈ W 2

p,loc(R) for p ≥ 1 and (uε
∞)′ ∈ C(R).

In contrast to variational inequality (14), it is not clear how to reduce variational inequality (25) to a 
free-boundary problem, and to obtain its explicit solution. Nevertheless, we are able to derive a local version 



G. Liang, Z. Yang / J. Math. Anal. Appl. 497 (2021) 124916 15
�
x

θ(x)

•
X

•
Xε

•
X

Fig. 4. The graph of X, Xε and X.

of the free-boundary problem with ε > 0 small enough, which is sufficient to obtain the asymptotic behavior 
of the optimal exercise boundary later on.

Lemma 9. For ε > 0 small enough, it holds that u∞(x) ≥ uε
∞(x) ≥ u∞(x) − ε. Define Xε as

Xε = inf{x ∈ (−∞, X] : uε
∞(x) > 0}.

Then X ≤ Xε < X, and uε
∞(x) > 0 for any x ∈ (Xε, X), where X and X are given in (17) and Proposi-

tion 4, respectively. Moreover, Xε → X as ε → 0+. See Fig. 4.

Proof. Note that the running payoff in the optimal stopping problem (24) satisfies

τ0∫
t

e−r(s−t)Θ(Xs)ds ≥
τ0∫
t

e−r(s−t)(Θ(Xs) − rε)ds

=
τ0∫
t

e−r(s−t)Θ(Xs)ds + εe−r(τ0−t) − ε

≥
τ0∫
t

e−r(s−t)Θ(Xs)ds− ε,

for any F -stopping time τ0 ≥ t. It follows that u∞(x) ≥ uε
∞(x) ≥ u∞(x) − ε.

Since u∞(x) > 0 for x > X, and X > X by Proposition 5, it holds that u∞(X) > 0. Let ε > 0 be small 
enough such that ε < u∞(X). Using the inequality uε

∞(x) ≥ u∞(x) − ε, we obtain that

uε
∞(X) ≥ u∞(X) − ε > 0.

In turn, the definition of Xε and the continuity of uε
∞(·) imply that Xε < X.

Repeating the similar arguments used in Proposition 5, we obtain that uε
∞(x) > 0 for x ∈ (Xε, X). 

Furthermore, the inequality u∞(x) ≥ uε
∞(x) and Proposition 5 imply that

0 = u∞(X) ≥ uε
∞(X).

In turn, the definition of Xε implies that Xε ≥ X.
Next, we prove that Xε → X as ε → 0+. In fact, from the definition of Xε and the continuity of uε

∞, we 
know that uε

∞(Xε) = 0. Using the inequality uε
∞(x) ≥ u∞(x) − ε again, we obtain u∞(Xε) ≤ ε.

On the other hand, applying Taylor’s expansion to u∞(x) yields

u∞(x) = 1
u′′
∞(X + 0)(x−X)2(1 + o(1)) = −θ(X) (x−X)2(1 + o(1)),
2 σ2
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which further implies that u∞(x) > κ(x − X)2 with some positive constant κ if x is close enough to X. 
Moreover, since u∞(x) > 0 in the interval (X, X ] and is continuous, we deduce that if ε is small enough, 
then Xε ≤ X +

√
ε/κ. Recalling Xε ≥ X, we conclude that Xε → X as ε → 0+. �

We return to the proof of Theorem 1 (iii), which is equivalent to the following proposition.

Proposition 10. Let u(·, ·) and x(τ) be the solution to variational inequality (12) and its associated optimal 
exercise boundary (22), respectively. Then,

u(τ, ·) → u∞(·) and x(τ) → X,

as τ → ∞, where u∞(·) and X are the solution of the stationary variational inequality (14) and its associated 
optimal exercise boundary (17), respectively,

Proof. From the optimal stopping problems (9) and (13), it is immediate that u(·, ·) ≤ u∞(·). For t ≤
(T − δ)/2, define

ut(τ, x) = uexp{−rt}
∞ (x) − e−r(τ−t) + e−rt,

where uexp{−rt}
∞ (·) is the solution of variational inequality (25) with ε = exp{−rt}. It is routine to check 

that ut ∈ W 2, 1
p, loc(N2t) ∩ C(N2t ), and satisfies⎧⎪⎪⎪⎨⎪⎪⎪⎩

(∂τ − L̃)ut(τ, x) = θ(x), if ut(τ, x) > −e−r(τ−t) + e−rt, for (τ, x) ∈ N2t;

(∂τ − L̃)ut(τ, x) ≥ θ(x), if ut(τ, x) = −e−r(τ−t) + e−rt, for (τ, x) ∈ N2t;

ut(0, x) = u
exp{−rt}
∞ (x) − ert + e−rt < 0, for x ∈ R,

provided that t and T are large enough. Since the obstacle −e−r(τ−t) + e−rt ≤ 0 in the domain N2t, using 
the comparison principle (see [17] or [23]) for variational inequality (12) in the domain N2t, we deduce that 
u(τ, x) ≥ ut(τ, x) for (τ, x) ∈ N2t. In turn, Lemma 9 implies that

u(2t, ·) ≥ ut(2t, ·) = uexp{−rt}
∞ (·) ≥ u∞(·) − e−rt. (26)

Together with u(2t, ·) ≤ u∞(·), we obtain that u(2t, ·) → u∞(·) as t → ∞.
To prove the convergence of the optimal exercise boundary x(τ) to X, we choose t large enough such 

that Xexp{−rt} + exp{−rt} < X. Then, (26) yields that

u
(
2t,Xexp{−rt} + exp{−rt}

)
≥ uexp{−rt}

∞

(
Xexp{−rt} + exp{−rt}

)
> 0,

where we have used uexp{−rt}
∞ (x) > 0 for x ∈ (Xexp{−rt}, X) (cf. Lemma 9) in the second inequality. It then 

follows from the definition of x(τ) in (22) that

x(2t) ≤ Xexp{−rt} + exp{−rt}.

By Lemma 6, we also have x(τ) ≥ X for any τ ∈ [ 0, T − δ ]. Hence, we have proved that

X ≤ x(2t) ≤ Xexp{−rt} + exp{−rt}.

Finally, we send t → ∞ in the above inequalities, and conclude the convergence of x(2t) to X by 
Lemma 9. �
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Remark 11. Under the original coordinates (t, X), it follows from the relationship (21) and Proposition 10
that Xδ(t) → KeX as T → ∞, so KeX is the asymptotic line of the optimal exercise boundary Xδ(t).

Proposition 10 also establishes the connection between the optimal stopping problems (9) and (13): 
U δ(t, X) → Uδ

∞(X) uniformly in X ∈ R+ as T → ∞. Moreover, it follows from the decomposition formula 
(10) that the value function of the American put option with time lag δ has the long maturity limit: 
V δ(t, X) → P (T − δ, X) + Uδ

∞(X) uniformly in X ∈ R+ as T → ∞.

4.3. Proof of Theorem 1 (iii): asymptotic behavior for small time lag

Finally, we prove Theorem 1 (iii) for the asymptotic behavior of Xδ(t) when δ → 0. Recall that X0(t)
denotes the optimal exercise boundary of the corresponding standard American put option. It is well known 
that X0(t) is a strictly increasing and smooth function with X0(T ) = K. We refer to [6] and [18] for its 
proof.

We first extend variational inequality (5) from ΩT−δ to ΩT by defining V δ(t, X) = P (t, X) for (t, X) ∈
[T − δ, T ] ×R+, and rewrite (5) as

(−∂t − L)V δ(t,X) = I{V δ=P (T−δ,X)}(−∂t − L)P (T − δ,X)

= −I{V δ=P (T−δ,X)}Θ(X), (27)

for (t, X) ∈ ΩT , and V δ(T, X) = (K −X)+ for X ∈ R+.
Denote Nn

T := (0, T ] ×Nn and Nn := (−n, K − 1
n ). Then, we apply the W 2,1

p -estimates (see Lemma A.4 
in [23] for example) to the above PDE (27) for V δ(·, ·), and obtain that for any n ∈ N,

‖V δ‖W 2,1
p (Nn

T ) ≤ C
(
‖V δ‖Lp(N 2n

T ) + ‖Θ‖Lp(N 2n) + ‖K −X‖W 2,1
p (N 2n)

)
. (28)

Note that the right hand side of the above inequality is independent of δ due to the fact that V 0(t, X) −
K(1 − e−rδ) ≤ V δ(t, X) ≤ V 0(t, X) (cf. (2)), and the formula (30) for Θ(X).

From Theorem 1 (i), V δ converges to V 0 in C(ΩT ) as δ → 0. Hence, the above estimate (28) implies that 
V δ also converges weakly to V 0 in W 2,1

p (Nn
T ) and

−I{V δ=P (T−δ,X)}Θ(X) = (−∂t − L)V δ(t,X) ⇀ (−∂t − L)V 0(t,X)

weakly in Lp(Nn
T ) as δ → 0. But note that

(−∂t − L)V 0(t,X) = I{V 0=K−X}(rK − qX).

In turn,

−I{V δ=P (T−δ,X)}Θ(X) ⇀ I{V 0=K−X}(qX − rK) (29)

weakly in Lp(Nn
T ).

Now suppose that Xδ(t) does not converge to X0(t). Then there exist t0 ∈ [0, T ) and a sequence 
{Xδm}∞m=1 such that when δm → 0, Xδm(t0) does not converge to X0(t0).

Since X0(t) is continuous and strictly increasing with X0(T ) = K, we may assume there exists ε > 0
and an integer M such that X0(t0) + 2ε < min{Xδm(t0), K} for any m ≥ M . See Fig. 5 below. Other cases 
can be treated in a similar way.

By the continuity and strictly increasing property of both X0(t) and Xδ(t), we can find η > 0 such that 
the compact set [t0, t0 + η] × [X0(t0) + ε, X0(t0) + 2ε] is in the exercise region of V δm and the continuation 
region of V 0. Therefore, in this compact set, V δm(t, X) = P (T − δm, X), V 0(t, X) > K −X, and
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Fig. 5. Non-convergence of the free boundaries Xδ(t) to X0(t) as δ → 0.

− I{V δm=P (T−δm,X)}Θ(T − δm, X) − I{V 0=K−X}(qX − rK)

= − Θ(T − δm, X),

where we use the notation Θ(T−δm, ·) to emphasize its dependence on T−δm. However, from Proposition 4, 
it is immediate to check that

lim
δm→0

Θ(T − δm, X) = qX − rK < 0, for X < K,

which is a contradiction to (29).

5. Conclusion

This paper studies the asymptotic behavior of the value function and the optimal exercise boundary 
of American put options with delivery lags through free boundary techniques. On one hand, it would be 
interesting to carry out the free boundary analysis to the real option setup such as reversible investment 
([2], [3], [9]), impulse control ([4], [5], [20]), and recursive optimal stopping ([8], [12]). On the other hand, 
it might be possible to prove the convexity of the optimal exercise boundary (as in [7] and [14] for the 
standard American put case). Such extensions are left for the future research.

Appendix A. Proof of Proposition 4

(i) We first show that the function θ(x) (or equivalently, Θ(X) with X = Kex) has the explicit form

θ(x) = qKex−qδN(−d1) + σK

2
√
δ
e−rδN ′(−d2) − rKe−rδN(−d2), (30)

where N(d) = 1√
2π

∫ d

−∞ e
−ξ2
2 dξ, N ′(d) = 1√

2π e
−d2

2 , and

d1 = x

σ
√
δ

+
(

r − q

σ
+ σ

2

) √
δ, d2 = d1 − σ

√
δ. (31)

To this end, let x = lnX − lnK and p(t, x) = P (t, X). It is well known that p(t, x) has the explicit 
expression (see [18] for example)

p(t, x) = Ke−r(T−t)N(−dt2) −Kex−q(T−t)N(−dt1), (32)

where dt1 and d2
t are the same as d1 and d2 in (31) except that δ is replaced T − t:
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dt1 = x

σ
√
T − t

+
(

r − q

σ
+ σ

2

) √
T − t, dt2 = dt1 − σ

√
T − t.

Differentiating p(t, x) against t yields that

∂tp(t, x) = rKe−r(T−t)N(−dt2) − qKex−q(T−t)N(−dt1)

−Ke−r(T−t)N ′(−dt2)
(
∂td

t
1 + σ

2
√
T − t

)
+ Kex−q(T−t)N ′(−dt1) ∂tdt1

= rKe−r(T−t)N(−dt2) − qKex−q(T−t)N(−dt1)

− σK

2
√
T − t

e−r(T−t)N ′(−dt2),

where we have used the fact that

e−r(T−t)N ′(−dt2) = ex−q(T−t)N ′(−dt1). (33)

Thus we have proved (30).
To prove Proposition 4 (i), we use the following two elementary inequalities: For d ≥ 0,

N(−d) < 1√
2π

−d∫
−∞

e−
ξ2
2

ξ

−d
dξ = 1√

2πd
e−

d2
2 = 1

d
N ′(−d); (34)

N(−d) > 1√
2π

−d∫
−∞

e−
ξ2
2

1 + 1
ξ2

1 + 1
d2

dξ = 1√
2π(d + 1

d )
e−

d2
2 = 1

d + 1
d

N ′(−d). (35)

We first show that there exists X such that θ(X) = 0. Note that this is equivalent to show that 
θ(X)/N ′(−d2) = 0, where d2 is the same as d2 in (31) except that x is replaced by X.

For x large enough such that d1, d2 ≥ 0 (cf. (31)), we have

θ(x)
N ′(−d2)

= qKex−qδ N(−d1)
N ′(−d2)

+ σK

2
√
δ
e−rδ − rKe−rδ N(−d2)

N ′(−d2)

≥ qKex−qδ 1
d1 + 1

d1

N ′(−d1)
N ′(−d2)

+ σK

2
√
δ
e−rδ − rKe−rδ 1

d2

N ′(−d2)
N ′(−d2)

,

by using the inequalities (34) and (35). From (33), we further obtain that

θ(x)
N ′(−d2)

≥ qK

d1 + 1
d1

e−rδ + σK

2
√
δ
e−rδ − rKe−rδ 1

d2
> 0,

provided that d2 ≥ 2r
√
δ/σ, so θ(x)

N ′(−d2) > 0 for large enough x.
On the other hand, when x → −∞, we have that d1, d2 → −∞ and, therefore,

N(−d1), N(−d2) → 1, and N ′(−d2) → 0.

Hence, θ(x) → −rKe−rδ < 0. This means that θ(x) is negative provided x is small enough, so θ(x)
N ′(−d2) < 0

for small enough x. Since θ(x)
N ′(−d2) is obviously continuous in x, we conclude that there exists X ∈ R such 

that θ(X)/N ′(−d2) = 0.
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Next, we show that θ(x)
N ′(−d2) is strictly increasing in x, so its zero crossing point X is unique. Indeed, note 

that (
θ(x)

N ′(−d2)

)′
= Ke−rδ

σ
√
δ

[
r − q + q

N(−d1)d1

N ′(−d1)
− r

N(−d2)d2

N ′(−d2)

]
.

Let h(d) := N(−d)d
N ′(−d) . Then, we calculate its derivative against d as

h′(d) = −d + N(−d)
N ′(−d) + N(−d)

N ′(−d)d
2.

It is obvious that h′(d) > 0 when d ≤ 0. For d > 0, by using the inequalities (34) and (35), we obtain that

h′(d) > −d + 1
d + 1

d

+ 1
d + 1

d

d2 = 0.

In turn, h(d2) < h(d1), which yields that

(
θ(x)

N ′(−d2)

)′
>

Ke−rδ

σ
√
δ

[r − q + (q − r)h(d1)] ≥ 0

by noting that h(d2) < limd→∞ h(d) = 1 and r > q.
(ii) For any x < 0, since δ → 0+, d1, d2 → −∞, and, therefore,

N(−d1), N(−d2) → 1, and N ′(−d2) → 0, θ(x) → qKex − rK.
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