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evolution equations with irregular initial values

Adam Andersson, Arnulf Jentzen, and Ryan Kurniawan
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Abstract

In this article we develop a framework for studying parabolic semilinear stochastic
evolution equations (SEEs) with singularities in the initial condition and singularities at
the initial time of the time-dependent coefficients of the considered SEE. We use this
framework to establish existence, uniqueness, and regularity results for mild solutions of
parabolic semilinear SEEs with singularities at the initial time. We also provide several
counterexample SEEs that illustrate the optimality of our results.

Contents

4 Nonlinear heat equationd . . . . . . . . . . . . L 34

Introduction

There are a number of existence, uniqueness, and regularity results for mild solutions of semilin-
ear stochastic evolution equations (SEEs) in the literature; see, e.g., [10, [IT], 4, 28], 16, 18], 211, 27
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and the references mentioned therein. In this work we extend the above cited results by adding
singularities in the initial condition and by introducing singularities at the initial time of the
time-dependent coefficients of the considered SEE; see also Chen & Dalang [7), [§] for related
results. To be more specific, in the first main result of this work (see Proposition 2.7)) we estab-
lish a general perturbation estimate (see (B)) below) for a general class of stochastic processes
which allows us to derive a priori bounds (see, e.g., (B below) for solutions and numerical
approximations of SEEs with singularities at the initial time. This perturbation estimate, in
turn, is used to prove the second main result of this article (see Theorem [2.9)) which establishes
existence, uniqueness, and regularity properties for solutions of SEEs with singularities at the
initial time (see (@) and (Bl) below). As an application of our perturbation estimate and this
second main result of our article, we reveal a regularity barrier (see (8) below) for the initial
condition of the considered SEE under which the considered SEE has a unique solution which
is Lipschitz continuous with respect to initial values (see Corollary [210]). By means of several
counterexamples (see Propositions B2 B4 and 1) we also demonstrate that this regularity
barrier can in general not essentially be improved (cf. (I0) and () below). We illustrate the
above findings in the case of possibly nonlinear stochastic heat equations on an interval such
as the continuous version of the parabolic Anderson model on an interval (cf. Corollary B
Proposition B2 and Proposition B.3)). Existence, uniqueness, and regularity results for possi-
bly nonlinear stochastic heat equations on the whole real line with rough initial values, that is,
signed Borel measures with exponentially growing tails over R as initial values can be found in
Chen & Dalang [7, 8] (see Theorem 2.4 in Chen & Dalang [§] for an existence and uniqueness
result and a priori estimates and see Theorem 3.1 in Chen & Dalang [7] for a Holder regularity
result). Moreover, Proposition 2.11 in Chen & Dalang [§] disproves the existence of a solution
of the considered stochastic heat equation in the case of a specific rough initial value, that is,
the derivative of the Dirac delta measure at zero as the initial value.

To illustrate the results of this article in more details, we assume the following setting
throughout this introductory section. Let (H, ||-||, ., (-,)y) and (U, |||l;;, (-,-);;) be nontrivial
separable R-Hilbert spaces. Let T' € (0,00), n € R, p € [2,00), @ € [0,1), & € (—o0,1),
B e [0,Y2), B € (—o00,Y2), Lo, Ly, Ly, Ly € [0,00), k = L(0,00)(L1) satisty w (a4 &) < 3/2. Let
(2, F, P, (Fi)iepo,r) be a stochastic basis. Let (W}).c0,7] be an Idy-cylindrical (F;)epo,r-Wiener
process. Let A: D(A) C H — H be a generator of a strongly continuous analytic semigroup
with spectrum(A) C {z € C: Re(z) < n}. Let (H,, ||z ,()g ), 7 € R, be a family of
interpolation spaces associated to n — A (cf., e.g., [26] Section 3.7]). Let F: [0, 7] x Q@ x H —
H_, be a (Pred((F;)icp,m) ® B(H))/B(H_,)-measurable mapping, let B: [0,7] x Q@ x H —
HS(U, H_g) be a (Pred((F¢):cjo.r1) ®B(H))/B(HS(U, H-g))-measurable mapping, and assume
for all t € (0,T], X,Y € LP(P; H) that

IF(t, X) = F(t,Y) | o@aroy < Lo | X = Ylzo@mys [F(E ) | on o) < Lot ™, (1)
HB(th) - B(t7Y)||Lp(P§HS(U7H—B)) < LIHX - YHLP(JP’;H)v HB<t7 0>‘|LP(P;HS(U,H_ﬁ)) < f/l t=°. (2)

In displays B)—(II) below we illustrate the above framework through several examples
and applications. Our first result is a suitable perturbation estimate for predictable stochastic
processes. We employ the following additional notation to formulate this perturbation estimate.



For every ¢ € R and every sufficiently regular predictable stochastic processes Y: [0,T] x  —
Hs let 1(-,Y) = (I(t,Y))ecpo,r: [0,T] x @ — H be a predictable stochastic process which
satisfies for all ¢ € [0, 7] P-a.s. that I(¢,Y) =Y; — [Let=)4F(s,Y,) ds — [} e®=1B(s,Y,) dW,.
Proposition 27 below then proves that there exists a function © = (©,) er: R — R such that
for all 6 € R, A € (—o0, £[1 4 Lj3(L1)]) and a wide class of (F;)sejo,r-predictable stochastic
processes Y1, Y2: [0,T] x Q — Hy it holds that

S [ Y = Y moeim)] < ®A<t§3)%} [# [1(t,Y") - I(t, Y2)HLP(P;H)} ) . (3)
We also note that we explicitly specify the function © = (0)) er: R — R in in Proposition 2.7]
below. Estimate (B]) follows from an appropriate application of a generalized Gronwall-type
inequality (see the proof of Proposition 2.7 below for details).

We use inequality (B]) to establish an existence, uniqueness, and regularity result for SEEs
with singularities at the initial time. More precisely, in Theorem below we prove that
there exists a function ©® = (O))rer: R — R such that for all suitable §,A € R, £ €
LP(P|ry; H- max{s,0}) it holds (i) that there exists a suitable up-to-modifications unique (F;)¢cpo,r-
predictable stochastic process X : [0, 7] x Q — H_ ax50y which satisfies for all ¢ € [0, 7] P-a.s.
that . .

Xy =+ / e (s, X,) ds + / e MB(s, X,) AW, (4)

0 0
and (ii) that

1+

(5)

sup [P 1 o ey | < O

te(0,T] l

SUP¢e (0,77 (ta ”emg | Lr(P;H) ) ]
< 00

In Theorem we also explicitly specify the function © = (0,) er: R — R. We would like
to point out that inequality (B) under the generality of () and (2) is a crucial ingredient to
establish essentially sharp weak convergence rates for numerical approximations of SEEs with
possibly smooth initial values (see the last paragraph in this introductory section for more
details). Inequality () follows from the perturbation estimate (B]) (with Y = X and Y? =0
in the notation of (3)).

We now illustrate Theorem and (@)—(El), respectively, by some examples. In particular,
in Corollary 2-T0Ibelow we prove by an application of Theorem 29 that for all F' € Lip(H, H_,,),
B e Lip(H, HS(U, H_3)), 6 = 2[4 1103 (| Bluip(m,rsw,i_y)))] it holds (i) that there exist up-to-
modifications unique (F3).c(o,71-predictable stochastic processes X*: [0,T|xQ — H_;, v € H_s,
§ € [0,4), which fulfill for all ¢ € [2,00), 6 € [0,6), z € H_s, t € [0,T] that X*((0,7] x Q) C H,
that sup,e oz $° || X7 || Loy < 00, and P-a.s. that

t t
X& =ty 4 / AP (XY ds + / e=AB(XT) AW, (6)
0 0
and (ii) that

Vo e [0,3), q € [2,00): sup sup max
:Jc,yefﬂs, te(0,77]
zy

0 ”XtZHLq(]P’;H) t0 | X7 — XinL‘I(P;H)
1 , — < 0. (7)
max{L, [lz]ln_;} [ = ylla_s



Here and below for two R-Banach spaces (V/||-||;,) and (W, |-||;;;) we denote by Lip(V, W) the
set of all Lipschitz continuous functions from V' to W and for two R-Banach spaces (V,||-]|,/)
and (W, ||-|ly,) and a function f € Lip(V, W) we denote by ’f|Lip(V,W) € [0,00) the Lipschitz
semi-norm associated to f (see (I3)) in Subsection [Tl below for details). The finiteness of the
second element in the set in the maximum in ([7) follows from the perturbation estimate (3]
(with Y! = X% and Y? = XV for 2,y € H_s, § € [0,0) in the notation of (B)) and the finiteness
of the first element in the set in the maximum in ([7) is a consequence from (), which, in turn,
also follows from the perturbation estimate (B]) (see above and the proof of Corollary 210 for
details). Roughly speaking, Corollary 2.T0] establishes the existence of mild solutions of the
SEE (@) and also establishes the Lipschitz continuity of the solutions with respect to the initial
conditions for any initial condition in H_s and any § < 5 = %[1 + ]l{()}(|B|Lip(H,HS(U,H_5)))]
(see ([M)). In Corollary B.J], Proposition B.2] Proposition B.4] and Proposition below we
demonstrate that the reqularity barrier

/2 : B is not a constant function

(8)

$_ 1

°=3 [1 * IL{O}(|B|Lip(H’HS(U’H_B)))} B {1 : B is a constant function
for the regularity of the initial conditions revealed in Corollary 210 (and Proposition 27 and
Theorem [20] respectively) can, in general, not essentially be improved. In particular, Corol-
lary B.1] and Proposition below prove in the case where H = U = L*((0,1); R), where
B € (Ya,1/2), where A: D(A) C H — H is the Laplacian with periodic boundary conditions on
H, and where B € L(H,HS(H, H_p)) satisfies Vu,v € H: B(v)u = v-u (B is not a constant
function) that it holds (i) that there exist up-to-modifications unique (F):cporj-predictable
stochastic processes X*: [0,T] x Q — H_s5, x € H 5, § € [0,1/2), which fulfill for all ¢ € [2,0),
6 €10,Y2), z € H.s5, t € [0,T] that X*((0,T] x Q) C H, that sup,c oz s° || X7 | zaesr) < o0,
and P-a.s. that

t
Xf:emx+l/eﬁ“MBCﬁDdW; (9)
0
(ii) that
| X7 — XY | Laqe;m)
Vo el0,12), g€ |2,00), te (0,T]: sup{ : < 00,
z#y

and (iii) that

Vi€ (Y2,00), g € [2,00),t € (0,T]: sup [ (11)
z,yeH,

TFy

X — XtyHLq(P;H)] _

12 =yl

The SEE (@) is sometimes referred to as a continuous version of the parabolic Anderson model
in the literature (see, e.g., Carmona & Molchanov [6]). In addition, Proposition below
disproves the existence of square integrable solutions of the SEE (@) with initial conditions in
(UserHs)\H_1/2. The noise in the counterexample SEE (@) is spatially very rough and one
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might question whether the regularity barrier (8) can be overcome in the case of more regular
spatially smooth noise. In Proposition 3.4] below we answer this question to the negative by
presenting another counterexample SEE with a non-constant diffusion coefficient but a spatially
smooth noise for which we disprove the existence of square integrable solutions with initial
conditions in (UserHs)\H_1/2 (cf., however, also Proposition 3.3 below). Proposition 3.5 below
also provides a further counterexample SEE which illustrates the sharpness of the regularity
barrier (8) in the case where B is a constant function.

Proposition 2.7, Theorem 2.9, and Corollary 2.10] outlined above (see ([B)—(7)) are of par-
ticular importance for establishing regularity properties for Kolmogorov backward equations
associated to parabolic semilinear SEEs and, thereby, for establishing essentially sharp proba-
bilistically weak convergence rates for numerical approximations of parabolic semilinear SEEs
(cf., e.g., Lemmas 4.4-4.6 in Debussche [12], Lemma 3.3 in Wang & Gan [30], (4.2)—(4.3)
in Andersson & Larsson [I], Propositions 5.1-5.2 and Lemma 5.4 in Bréhier [2], Lemma 3.3
in Wang [29], (79) in Conus et al. [9], Proposition 7.1, Lemma 10.5, and Lemma 10.10 in
Kopec [20], and (183)—(184) in Jentzen & Kurniawan [17]). The analytically weak norm for
the initial condition in (7)) as well as the singularities in the nonlinear coefficients of the SEE
in () and () above translate in an analytically weak norm for the approximation errors in
the probabilistically weak error analysis which, in turn, results in essentially sharp probabilis-
tically weak convergence rates (cf., e.g., Theorem 2.2 in Debussche [12], Theorem 2.1 in Wang
& Gan [30], Theorem 1.1 in Andersson & Larsson [1], Theorem 1.1 in Bréhier [2], Theorem 5.1
in Bréhier & Kopec [3], Corollary 1 in Wang [29], Corollary 5.2 in Conus et al. [9], Theorem 6.1
in Kopec [20], and Corollary 8.2 in [I7]). The perturbation inequality in Proposition 21 (see
[B) above) is also useful to establish essentially sharp probabilistically strong convergence rates
for numerical approximations and perturbations of SEEs (cf., e.g., Proposition 4.1 in Conus et
al. [9] and Proposition 4.3 in [I7]).

1.1 Notation

Throughout this article the following notation is used. For two measurable spaces (A, .A)
and (B,B) we denote by M(A,B) the set of all A/B-measurable functions. For a set A
we denote by P(A) the power set of A and we denote by #4: P(A) — [0,00] the counting
measure on A. For a Borel measurable set A € B(R) we denote by pa: B(A) — [0,00] the
Lebesgue-Borel measure on A. For a real number 7" € (0, 00) and a probability space (2, F,P)
with a normal filtration (F;)icpr (see, e.g., Definition 2.1.11 in [23]) we call the quadruple
(Q, F,P, (Fi)icpo,r)) a stochastic basis. For a real number 7" € (0, 00) and a filtered probability
space (0, F, P, (Fi)tcpo,r)) we denote by Pred((F;)tcjo,r1) the sigma-algebra given by

Pred((F)ico,r)) = oprixa({(s,t] x A: s,t €[0,T],s <t,Ae F,}U{{0} x A: A € Fo}) (12)

(the predictable sigma-algebra associated to (F;)iwcpo,r)). We denote by [-],: R = R, h €
(0, 00), the functions which satisfy for all h € (0,00), t € R that [¢], = min([¢, c0) N {0, h, —h,
2h, =2h, ... }). For R-Banach spaces (V. |-[|;,) and (W, ||-[;;;) we denote by [-[ 1,y : C(V, W) —



[0, 00] and ||| vy : C(V, W) — [0, 00] the functions which satisfyl] for all f € C(V,W) that

hisany = sup( { D=L 0y v 2y ooy,

lz =yl
“fHLlp(VW) Hf( )HW + ‘f’Lip(V,W)

and we denote by Lip(V, W) the set given by Lip(V, W) = {f € C(V.W): | f|Lip(v,w) < 00}. We
denote by B: (0, oo) (0 o0) the function with the property that for all x,y € (0, 00) it holds

(13)

that B(zx,y) f @D (1 — )"V dt (Beta function). We denote by Eqg: [0,00) — [0, 00),
a,f € (—o0, 1), the functlons which satisfy for all a, f € (—00,1), z € [0,00) that
Baple] =1+ 300 2" [ B(1 = B, k(1 = 5) + 1 - ) (14)

(generalized exponential function; cf. Lemma 7.1.1 in Chapter 7 in Henry [14], (1.0.3) in
Chapter 1 in Gorenflo et al. [13], and Lemma below). For a separable R-Hilbert space
(H, ||l () g)s real numbers T € (0,00), n € R, r € [0,00), s € [0,1], p € [1,00),
a, A € (—o00,1), b € (—00,3), and a generator A: D(A) C H — H of a strongly continuous
analytic semigroup with spectrum(A) C {z € C: Re(z) < n} we denote by XAT], HAI;I [0, 00)
the real numbers given by

Xin = S(up}t 17— A) e o (15)

and /-@277 supyeory b0 [|(n—A) (e =1dy) || Ly (cf., e.g., [24, Lemma 11.36]) and we denote
by G)‘anf;),T. [0,00)2 — [0, 00] the function which satisfies for all L, L € [0, c0) that

b >
67477771),T(L’ L) =

aT r /aT(-a) 2 1/2 A
\/Q E2>\,max{a,2b} |: XA’WT XA n L \/p T0- 2b)’ :| : ()‘7 L) € (—OO, %) x (07 OO)
B Xy LT L L=0
00 : otherwise

(16)

For a measure space (€2, F, i), a measurable space (5,S), and an F/S-measurable function
[+ — S we denote by [f], s the set given by

(fls={9€ M(F,S): (A€ F: p(A)=0and {w e Q: f(w) #g(w)} € A)} (17)

and, as usual, we often do not distinguish between an F/S-measurable function f: 2 — S and
its equivalence class [f] .

'the set {0} is incorporated in the union in ([3)) to ensure that the argument of the supremum is not empty
in the case where (V,|[-|||,) is the trivial R-Banach space.



1.2 Setting

Throughout this article the following setting is frequently used. Consider the notation in Sec-
tion [N, let (H, |||, (-, ) y) and (U, |||, (-, -)yy) be separable R-Hilbert spaces with #(H)
>1,let T € (0,00),n € R, let (2, F, P, (F)icpo,r)) be astochastic basis, let (W});ep0,r) be an Idy-
cylindrical (F;);ejo,71-Wiener process, let A: D(A) C H — H be a generator of a strongly con-
tinuous analytic semigroup with spectrum(A4) C {z € C: Re(z) < n}, let (H, [|-l5 () g,
r € R, be a family of interpolation spaces associated to n — A.

2 Stochastic evolution equations (SEEs) with singulari-
ties at the initial time

In the main result of this section, see Theorem in Subsection 2.4] below, we establish exis-
tence, uniqueness, and regularity properties for solutions of certain SEEs with time-dependent
coefficients and singularities at the initial time. In Subsection 2.1l below we formulate the pre-
cise framework which we employ to state Theorem in Subsection 2.4 below. The framework
in Subsection 2.1] is similar to the hypothesis used in the introductory section above.

2.1 Setting

Throughout this section the following setting is frequently used. Assume the setting in Sec-
tion [[L2 let p € [2,00), a € [0,1), & € (—o0,1), 8 € [0,1/2), B e (—o0, 1/2), Lo, Lo, L1, L, €
[0, 00) satisfy [a + &] L(0,00)(L1) < 3/2, and let F € M (Pred((F,)icior) @ B(H), B(H-,)) and
B € M(Pred((F,)icpo,r) @ B(H), B(HS(U, H_g))) satisfy for all ¢ € (0,T], X,Y € LP(P; H)
that

1B, X) = F(&, V) |lo@n ) < Lo lX =Y | moesmn, IF(E0) | o@ o) < Lot™®

(18)
IB(t, X) = B(t,Y) | o msw.a_p) < LallX = Yo, |BE0) | r@asw,m ) < Lit™.
(19

>

)

2.2 Predictable stochastic processes with singularities at the initial
time

The next result, Lemma 2.1] is an elementary lemma that slightly generalizes Proposition 3.6
(ii) in Da Prato & Zabczyk [10].

Lemma 2.1 (Existence of predictable modifications). Let T' € [0, 00), let (2, F, P, (F;)icpor) be
a stochastic basis, let (E, dg) be a complete and separable metric space, and let Y : [0, T|xQ — E
be an (Fi)icpo,m-adapted stochastic process which satisfies for all t € (0,00) N (—o0,T] that
lim supyy 715, B[ min{1, dg(Ys, Y:)}] = 0. Then there exists an (Fy)iepo.ri-predictable stochastic
process X : [0, T] x Q — E which satisfies for all t € [0,T] that P(X; =Y;) = 1.



Proof. First, we observe that the assumption that (2, F,P) is a probability space ensures that
Q) # () and this implies that [0, 7] x Q # (. The assumption that Y: [0, 7] xQ — F is a mapping
from [0, 7] x Q to E therefore ensures that E # (). Hence, there exists an element ey € E. In the
next step assume without loss of generality that T > 0, let ZV: [0,T] x Q — E, N € N, be the
functions with the property that for all N € N, ¢ € [0, 7] it holds that Z" = Yinax{e7 IN—T/N,0}s
and let w: (0,7] x N — [0, 00) be the function with the property that for all ¢ € (0,7], N € N
it holds that

w(e,N)= sup E[min{l,dp(V;,,Y;,)}]. (20)

t1,t2€[e, T,
[t1—t2|<T/N

The assumption that V¢ € (0,7]: limg ., E[min{1, dg(Y;, Y;)}] = 0 ensures that for alle € (0, 7]
it holds that limy_, w(e, N) = 0. This implies that there exists a strictly increasing sequence
N € N, k € N, with the property that for all £ € N it holds that

Next let X: [0,T] x Q — E be the mapping with the property that for all (¢,w) € [0,T] x Q it
holds that
Ii 0o ZNk : ZNk 1 t
Xt(w) _ { 1my,_, t (W) ( t (w))keN 1S convergen ' (22)

€g . else

The fact that for all N € N it holds that Z is Pred((F:)icjo,r7)/B(E)-measurable, the as-
sumption that (E,dg) is complete and separable, and, e.g., Exercise 1.74 in Chapter 1 in
Hoffmann-Jgrgensen [15] imply that

{(t,w) € 0,T] x Q: (ZNE (W) ke is convergent } € Pred((F;)epo.))- (23)

This together with the fact that for all N € N it holds that Z% is Pred((F;)iejo.r))/B(E)-
measurable, and, e.g., Exercise 1.74 in Chapter 1 in Hoffmann-Jergensen [15] ensure that X
is Pred((F¢):cj0,11)/B(E)-measurable. It thus remains to prove that X is a modification of Y.
For this we note that for all N € N, ¢ € (£, T] it holds that

E[min{1,dp(Y:, Z})}] = E[min{1,dp(Y:, Ve, y-1/n) }] S w(t — %, N). (24)
This together with (1)), the fact that Ve, eo € (0,7], N € N with ey < e3: w(e, N) >

w(ez, N), and the fact that V¢ € (0,7], k € NN (2, 00): ¢ < t — le ensure that for all




€ (0, 7] it holds that

i E [min{l, dp(Yy, ZtN’“)}] = Z E [min{l, dg(Ys, YmT/Nk—T/Nk)H
k=1 keN

= Z E[Inin{l,dE(Y},YmT/Nk—T/Nk)H

kENN(0,(T+1)/4]

+ Z E [min{l, dp(Ys, YmT/Nka/Nk)H (25)

kENN((T+1)/,00)

T+1 - T+1
S——+ > wlt-gm NS ——+ D wENy

keENN((T+1)/t,00) kEeENN((T+1)/t,00)

T+1 1
Iy les

kENN((T+1)/1,00)

This implies that for all ¢ € (0,7 it holds P-a.s. that limsup,_, ., dE(ZtN’“,Y}) = 0 (see, e.g.,
item (ii) of Theorem 6.12 in Klenke [19]). This and (22]) ensure for all ¢ € (0, 7] that P(X; =
Y;) = 1. This and the fact that VN € N: Xy = Z)¥ =Y} complete the proof of Lemma2Il [

The next result, Lemma below, presents a well-known fact regarding a measurability
property of Banach spaces. In the formulation of Lemma [2.2] we employ the convention that
for all R-Banach spaces (Vo, [|-|y,) and (V4, [|-[|y,) we write V1 C V; continuously if and only if
it holds (i) that V; is a subset of Vj and (ii) that there exists a real number C' € R such that
for all v € V; it holds that ||v]ly, < Clv||v,.

Lemma 2.2. Let (Vi,|ly,), k € {0,1}, be separable R-Banach spaces with Vi C Vy continu-
ously. Then

B(Vi) ={BeP(W): 3AcB(Vo): B=AnV)} < B(V). (26)

Proof. Throughout this proof let ¢: V}, — V4 and ¢: V4 — Vi be the mappings with the
property that for all v € V; it holds that ¢(v) = ¢(v) = v. Next observe that ¢ € C(Vi, Vj).
This implies that ¢ € M(B(V4), B(Vp)). Hence, we obtain that

(BeP(V): QA€ B(Vy): B=ANW)} CB(V). (27)

Moreover, note that the fact that ¢ € M(B(V7), B(V;)) allows us to apply, e.g., Parthasarathy [22),
Theorem 2.4 in Chapter V| (with (X, %) = (V1,B(W1)), (Y,€) = (Vo,B(W)), and ¢ = ¢ in
the notation of [22, Theorem 2.4 in Chapter V]) to obtain that for all C' € B(1}) it holds that
Vi = (V1) € B(Vp) and C' = ¢(C) = (¢7)71(C) e {B € P(V1): (3A € B(Wp): B=ANVi)}.
This implies that

B(Vi) C{BeP(Vi): 3AeB(V,): B=AnW)}. (28)

Combining (27), (28), and the fact that Vi € B(V4) completes the proof of Lemma 2.2 O



Lemma 2.3 (Non-stochastic integral). Assume the setting in Section 2], let § € R, \ €

(—00,1), and let Y : [0, T]xQ — Hs be an (Fy)icjo,r)-predictable stochastic process which satisfies
Y((0,T] x Q) € H and supye o7t |Vl o) < 00. Then

(i) for all t € [0,T] it holds P-a.s. that [} || 94F (s, Y,)| i ds < oo,

(ii) there exists an up-to-modifications unique (JF;)eo 1) -predictable stochastic process Y : [0,T]x
Q — H such that for all t € [0,T)] it holds P-a.s. that Y; = fot et=94F (5,Y,) ds,
(#3) it holds that

SF%} t(max{/\,d}-i-oz—l) ||}_/;||Lp(]P,H) S ([:() + L() Supte(oﬂ t>‘ ||Y;||Lp(]P>;H)>
te(0,

(29)
T v 1| B(1 — a,1 — max{\,a}) Xj’:‘; < 00,
(iv) and for all p € [0,1 — ), s,t € (0,T] with s <t it holds that
1V = Yall oy < [TV 1]A (ﬁo + Lo SUpye (o, U ||Yu||Lp(P;H>> |t — s|®
| R RS TB(L— a — 0,1 —max{A,a})]  (30)
(1 — a) Inin{smax{kﬁ}’ f;max{)\vd}} glotatmax{),a}-1) :

Proof. Throughout this prooflet K € [0, 00) be the real number given by K = SUP;e (0,7 el Lp(P;H)
We observe that (I8) implies that for all ¢ € (0, 7] it holds that

t
/0 He(t_s)AF(S’ Y;) ||LP(]P’;H) ds

t
0= (1RG0 = P50l + 1P Ol ) 0
t
<% t—s_a<L Yill oo + L 5’&)ds
<y [ =97 (Bl + o -
t
< (K Lo+ Ly) XXZ;/ (t—s)" max{s_k, 3_6‘} ds
0
t
< (KLy+ fz(]) Xj’; |7 v 1A=l / (t — )~ s~ max{hal g
0

< (KLo+ Lo) X%y IT V1A B(1 — o, 1 — max{\, a}) ¢ -omaxthan),

In particular, this ensures that for all ¢t € [0, 7] it holds P-a.s. that fg |e=AF (s, Ys)| i ds < oo.
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Moreover, we note that for all p € [0,1 — «), t1,t2 € (0,T] with ¢; < t5 it holds that

to t1
/ e2=94F(5,Y,) ds — / e1=94F(5,Y,) ds
0 0

LP(P;H)

t t
< /1 [(eltz94 — eti=a)4) F(s,YS)HLP(P_H) ds+/2 He(tH)AF(s,)Q)HLP(P.H) ds

0 " ’ t1 ’ (32)
<10 = gy [ 1 gy P Ve s

to
+/t He(tTS)AHL(H_a,H) [ (s, Yo)ll o) ds.
1

Assumption (I8) hence implies that for all p € [0,1 — «), t1,t2 € (0,7] with ¢; < ¢, it holds
that

to t1
/ e2=94F(5,Y,) ds — / el1=94F(5,Y,) ds
0 0

Lr(P;H)

t1
T o, T —(« ~ —a
< k4T N5 |t —t1|9/0 (b — 5)~(@+0 (LO 1Yl o ooy + Lo s )ds
r [ s 4
x| =97 (Lo l¥elln + Lo s-a) as
t1

< (K Lo+ L) 'LiAnXit]aT [ty — t1]° / )max{s”\,s’é‘}ds

+ (KL + Lo) Xi’;r]/ (ta — s) “max{s s %} ds (33)

t1

N N to )
< (KLo+ Lo) |T v 1]A {XZ:;/ (ty — 5) " s~ max{ral g
t1

t1
+ K;A n Xi+na T |t2 - t1|@/ (tl 4 S)_(a+@) s~ max{\,&} dS]
0

XAn |t2 ~ t1|(1 @)
(1 — o) min{ [¢;[max{da} |y max{raly
oT g+a T 0 «
K3 Xam  t2 —t1]” B(l —a — 0,1 —max{},a}) . -
i ‘tﬂ (ota+max{\,a}—1) (KLO + Lo) |T V 1| .
Combining (31I), (33), and Lemma 2] completes the proof of Lemma 0

Lemma 2.4 (Stochastic integral). Assume the setting in Section[2.1, let 6, A € R, p = max{A+
(6 A Loy (L), B} satisfy A L(oeo)(L1) < Y2, and let Y: [0,T] x Q — Hs be an (Fy)co,n)-
predictable stochastic process which satisfies Y (0, T]x€2) € H and sup;e (o 1y MYl oy < oo
Then

(i) for all t € [0,T] it holds P-a.s. that [} ||e"=4B(s, Yllfrsw.m ds < oo,
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(ii) there exists an up-to-modifications unique (JF;)eo.r)-predictable stochastic process Y : [0,T]x
Q — H such that for all t € [0,T)] it holds P-a.s. that Y; = f(f e=94B(s,Y,) dW,,

(#11) it holds that

sup 01D |1V o) < /PSR B(1— 28,1 — 2p)
t€(0,T7] A (34)
T v 1[PPI (1) Xﬁ”z; (L1 + L1 supse o7 t* HYtHLP(IP’;H)> < 00,

(i) and for all o € [0,1/2 — B), s,t € (0, T] with s <t it holds that

I = Valltein < 1TV AP0 (L 4 Ly sy o [ Vallisgo ) 16 = i
(1/2=B-0)

4/ pe=D) Xﬁ’,:; |t — 5| n ’fi’? Xirnﬁ’T B(1—28—20,1— 20)’1/2 (35)
2 min{sﬂ’ tp} m S(P+Q+B_1/2) ‘

Proof. Throughout this proof let K € [0,00) satisfy K = sup,c gt |YillLr@:). We observe
that (I9) implies for all ¢ € (0, 7] that

t

/0 He(t—s)AB(s,YS)H;(P;HS(U’H)) ds

<k | (=7 (L Wl gy Lo 577 s

< P (KLy + Ly)? / t (t — )72 max {720 E-N10pE) 5=21 g (36)

0
< WGP (K Ly + L0)? | T v 1[2A-Altoe (20 /t (t—s) "2 s ds
0

< |X§’£|Q (KL + L) TV 1|2\A—B|1(0,oc)(m) B(1—25,1—2p) +(1-28-20)

This implies, in particular, that for all ¢ € [0, 7] it holds P-a.s. that [} [le®*=4B(s, Ylarsqw my ds

< o0o. In addition, (B6) and the Burkholder-Davis-Gundy type inequality in Lemma 7.7 in Da
Prato & Zabczyk [10] ensure that for all ¢ € (0,77 it holds that

‘ Lp(P;H)

/2
N e ) 1 (37)
< {T/O [ B YOl sy 4

< Xﬁﬁ; (KLy + L) |T v 1|\A75|1<o,m)(L1)\/@ B(1—28,1—2p) +(/2=B=p)

t
/ e =B (s, Y,) dW,
0

Furthermore, we observe that the Burkholder-Davis-Gundy type inequality in Lemma 7.7 in
Da Prato & Zabczyk [10] proves that for all ¢ € [0,1/2 — f3), t1,t2 € (0, T] with t; < t5 it holds
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that

to t1
/ e(tQ_S)AB(S, Y;) dw, — / e(t1—s)AB(S, Y;) dW,
0 0

t1 1/2
< [p(p2_1)/0 [(Tdg —et==4) e(tl_S)AB(S’Y;)”iP(IP‘;HS(U,H)) ds]
, 1/2
1) s
+ [p(pQ /t e (2=94B(s,Y,) ||LP(]P’;HS(U,H)) dS]
1

to
_ _ 2 2
{p(z; 1)/t He(tz S)AHL(H_[?:H) ”B(SJ}/S)“LP(IP;HS(U,H_ﬁ)) ds}
1

Lp(P;H)

1/2

IN

. 1/2
—1 —s)A|[? 2
+ [%/0 e ) 1B Yl Lo s ds}

' H (Idg —eltamtA HL(HQ,H)'

Assumption (I9) hence ensures that for all o € [0,1/2 — ), t1,t5 € (0,7] with ¢; < t5 it holds

that
’ Lp(P;H)

t X 9 1/2
= KA??X%?BT |t2 - tl’Q {%/0 (tl - 5>_(2ﬁ+29) (Ll HYSHLP(P;H) + Ly 875) ds}

to . N2 1/2
i 2 [ = (LYl + L) 0

t1

\/m’@xn XGPT (K Ly + Ly) [TV 1A=L 0.00) (B1) g, — 4, [0
[ ¢ (39)
[/ (t1 — s) —(28+20) g—2p ds}
XA’,,] |T Vv 1||)\73‘]1(0,00)(L1) (KL, + ﬁl)\/p(p;l) Ity — t1|(1—25)

min{|t1|P, |t2|p}\/ 1-— Qﬂ
_ [%AnxffT to =t VB —28—20,1—2p) x40 [ta—ta /27

to t1
/ e(tgfs)AB(S’ Y:s) dWs _ / €(t1fS)AB<S’ Y;) dWs
0 0

+
|ty |(peth=1/2) min{|t; |7, |ta]?} 1 — 23
@ |T Vi 1|\)\*B|1(0,oo)(L1) (KLI + f/l)
Combining ([37), 39), and Lemma 2] completes the proof of Lemma 241 O

Theorem 2.9 in Subsection [Z4] below establishes existence, uniqueness, and regularity prop-
erties for SEEs with singularities at the initial time. Our proof of Theorem employs the
Banach fixed point theorem on a suitable vector space of (equivalence classes of) predictable
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stochastic processes with singularities at the initial time. In order to be in the position to
apply the Banach fixed point theorem we need to verify that this suitable vector space of pre-
dictable stochastic processes is complete. This is precisely the subject of Lemma 2.5 below.
In Lemma below Vy and V; are Banach spaces with V; C Vj continuously and we consider
stochastic processes which take values in the possibly larger Banach space V{ at the initial time
t = 0 and which take values in the possibly smaller Banach space V; at any later time ¢ > 0.

Lemma 2.5. Consider the notation in Section [L1, let (Vi, |- HV) k € {0,1}, be separa-
ble R-Banach spaces with Vi C Vy continuously, let T € (0, ) A€ R, pe[l,00), let
(Q, F, P, (Fi)eepo,m) be a filtered probability space, let L C M(Pred(( t)icor), B(Vo)) be the set
given by

£ = [FeMEm e SO OO (40)

1 Xoll 2p (B5vg) +5UPre (0,71t 1 Xt ll 27 (Byv; ) <00

let ||, : L —[0,00) be the mapping which satisfies for all X € L that
X1, = 1 Xollce@:vo) + supreo.zp [ 1 Xell o] (41)

and let XY € L, N € N, satisfy imsupy_, o, SUp,, enny,o0) [ X" — X"z = 0. Then there exists
aY € L such that limsupy_, . |[XY = Y|, =0.

Proof. Throughout this proof let N, € N, k E N, be a strictly increasing sequence such that
for all k € N it holds that |X Vet — X N[, < & et V: [0,T] X Q — Vj be the mapping with
the property for all (¢,w) € [0,7T] x € it holds that

, 42
0 : else (42)

limg oo X5 (w) ¢ (X (w))gen is convergent in V
Vi(w) = {

let ¢: Vo — Vi be the mapping with the property that for all x € Vj it holds that ¢(z) = 1y, (x)-
z, and let Y: [0, 7] xQ — Vj be the mapping with the property for all (¢,w) € [0, T] x € it holds
that Y;(w) = ¢(Lo1xa(t, w)-Ve(w))+Liorxa(t,w)-Jo(w). The assumption that VN € N: XV €
M(Pred((Fi)icpo1), B(Vo)) and, e.g., Exercise 1.74 in Chapter 1 in Hoffmann-Jergensen [15]
imply that {(¢,w) € [0,T] x Q: (XM (w))gen is convergent in Vo} € Pred((F)tep,r)). This
together with the assumption that VN € N: XV € M(Pred((F,)iep,r1), B(Vo)) and, e.g., Exer-
cise 1.74 in Chapter 1 in Hoffmann-Jgrgensen [15] ensure that } € M(Pred((F)icp,m). B(Vo)).
Furthermore, observe that, e.g., Lemma and the fact that

ANV :0¢ A

(Vo\Vi)U(ANVy) :0€A (43)

VAEB(Vo): ¢ (A) =9 (ANVi) = {

ensure that ¢ € M(B(Vy), B(V4)). Combining this with the fact that Y € M(Pred((F¢):c0,17),
B(Vy)) establishes that Y € M(Pred((F¢):cio.17), B(Vo)) and Y ((0,7] x ) € V;. In the next
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step we note that the assumption that lim supy_, ., SUp,, mennn,c0) [ X" — X™[z = 0 shows that
for all ¢ € [0, T it holds that

. n m
0 = lim sup sup HXt - Xt HU’(P;Vn o1 (®)
N—oo n,meNN[N,o00) o

1 n m 44
_ {hm SUP N 00 SUPp meNN[N,c0) ||Xt - Xt ||EP(IP§V1) tt>0 ( )

Hm supy _, o SUP,, meNnN,o0) 1 X0 = X"l 2oy 6 =10 .

Hence, we obtain for every ¢ € [0,7] that there exists a 9; € LP(P|x; Vi) such that
limsup_, ., ||thv—mt||£p([p>;vl<o ) = 0. The fact that Vk € N: [ XM+ — XNk |, < L therefore

proves that for every ¢ € [0, T] there exists a 9, € LP(P|x,; Vi, ;) such that for all n € N it
holds that

19 = X" | ereavn o)

< lim sup (||2)t — XtNmH[:P(lP’;Vl(O’T](t)) + | X — Xt]V”HﬁP(P;Vl(O’T](t)))

m— 00

— 15 -1 N N
= llgfip H Z;n:n (Xt - Xt k) HLP(P;Vn(OyT](t))

: (15)
Ny N,
< Z X" =X k“m(P;Vﬂ(o,T]‘”)
k=n
< Zt_ll(o,T](t)-)\ |XtNk+1 _ XtNk|g < ¢t~ Lo ®)A (Z 2ik> = ¢t~ Lon®-2 gl-n),
k=n =

This and, e.g., item (ii) of Theorem 6.12 in Klenke [19] assure that for every t € [0, 7] there
exists a 9; € LP(P|7,; Vi, 1)) such that for all n € N it holds that [|9); — XtN”HEP(JP’;Vn(OT

t_]l(O,T] (t)’>‘ 2(1771) and

](t)) <

1
(i1 50, <1

=0)] =1.
s =)

The assumption that V; C V4 continuously hence ensures that for all ¢t € [0,7], n € N it holds

that ||Y; — Xthng([P;Vn(O o) < t~Lom®*20=n) " This shows that for all n € N it holds that

1Yo — X0" | eo vy + Sup;e (0. [t 1Y — X o)) < 237, Therefore, we get that for all
n € N it holds that Y — XV € £ and |[Y — X V|, < 227", Hence, we obtain that Y € £ and
limsup,, .. |Y — X™|; = 0. This completes the proof of Lemma O

(46)

=P (lim sup HQ)t — X[
m—00

2.3 A perturbation estimate for stochastic processes

Lemma [2.6is a consequence of the generalized Gronwall inequality from Lemma 7.1.1 in Chap-
ter 7 in Henry [14] (cf. also Exercise 4 in Chapter 7 in Henry [14]).
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Lemma 2.6. Consider the notation in Section [I1, let o, 3 € (—00,1), a,b € [0,00), T €
(O 00), e € M(B([0,T7]),B([0,00])) satisfy for all t € (0,T] that fOTe(s) ds < o0 and e(t) <
+ [ ”” - ds. Then for allt € (0,T] it holds that e(t) < Eq5[bt1=7)].

tf

In the next result, Proposition 2.7, we prove a strong perturbation result that will be used
several times throughout the paper. We refer to (I6]) in Subsection [ Ilabove for the introduction
of the real numbers @j’z’;T(LO,Ll) appearing on the right hand side of inequality (49) in
Proposition 2.7]

Proposition 2.7 (Perturbation estimate). Assume the setting in Section [21, let 6 € R,
and let Y1, Y?: [0,T] x Q — H; be (Fy)epr-predictable stochastic processes which satisfy
Uke{lg}yk((O,T] X Q) Q H and

limsup  max_ sup t[|Y}¥|| o) < 0o (47)
)\/‘ [1+]l{0} (L1)] ke{1,2} t€(0,7]

Then
(1) it holds for allt € [0,T] that
P(Sicr Jo 1 4F (s, YE) i + e B (s, Y g ds < 00) =1 (48)
and

(i) it holds for all X € ((— oo, 3[1 4 Lyoy(L1)]) that

sup [N Y = Y|l woen] < ©%550 (Lo, L)
te (0,77

t t
}/;1 o / e(th)AF(S’ }/;1) ds — / e(th)AB<S’ }/;1) dWs (49)
0 0

- sup [tA
te(0,T7]

t t
+ / AR (5, Y2) ds + / =B (s, Y2 AW, — Y;2
0 0

LP(IP;H):| '

Proof. Throughout this proof let r € (—o0, 3[1 4+ 1{o}(L1)]), let Z € [0, oo] satisfy

t t
== sup [tr Ytl—/ e(t_s)AF(s,Ysl)ds—/ e IAB(s, Y1) dW,
t€(0,T] 0 0
‘ ’ (50)
+ / e VAR (s, Y2) ds + / e=DAB(s, Y2) dW, — Y2 }
0 0 L» (B;H)
and let C' € [0, 00) satisfy
1/2
N \/_Tl o)
C = |Bmastosy | [ Xy Lo~ e + L/ (p - 1) T2 (51)
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We observe that item (fl) of Lemma[Z3 and item () of Lemma 24 establish that for all ¢ € [0, T]
it holds that P(Y_;_, fot e =AF (s, YF) ||z + ||e(t*S)AB(s,YS’“)H%{S(U’H) ds < oo) = 1. It thus
remains to prove ([@J). For this we assume without loss of generality in the following that
= < 0o. Next we note that the triangle inequality shows that for all ¢ € (0, 7] it holds that

(A

Ve <

t t
Y} — / AR (5, Y ) ds — / eHAB(s, Y1) AW,
0 0

t t
+ / =R (5, Y2) ds + / e B (s, Y2) AW, — Y2
0

0

LP(P;H)

t
T / 4 (F(s, Y1) — F(s,Y2) ds
0

Lp(P;H)

t
+ /e(t_S)A(B(s,Y;)—B(s,Yf))dWs
0

LP(P;H)

This and the Burkholder-Davis-Gundy type inequality in Lemma 7.7 in Da Prato & Zabczyk [10]
imply that for all ¢t € (0,77 it holds that

t
—r— a,T —
I3 Y2y <72 o [0 8 2 = Vo 0
t 1/2 (53)
T L [M [ = 15 = 2R ds}

Combining this with Lemma [2.6] proves (49)) in the case L; = 0. It thus remains to prove (49)
in the case L; > 0. For this we observe that (53]) together with Holder’s inequality ensures that
for all £ € (0,7 it holds that

(1]

I - <t

L P
1/2

t t
i | Tt [ syeas [ (e - s gy
. 1/2
+ Xy I [”—“”21) Tax{a=26.0} /O e D e e [ s dS] :
The fact that Va,b € R: (a + b)? < 2a® + 20 hence yields that for all ¢ € (0, 7] it holds that

2 L ! — max Q&
IV = YWy < g [P+ [ (6= 9) ™0 |V = Y2 ds
0
@ 2 55
\/§ XA:Z; LO T1/2—a+max{ﬂ,a/2} ( )

Vi-a + Xy L1 v/p(p — )T/ 2’5}“3]
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Combining this with Lemma and the fact that

\/§T1/27a+max{ﬁ,a/2} 2

Vi—a

(1—max{«,28})

E27",max{a,26} T Xj:z; Lo + X’i’z; Liv/p (p — 1) Tmax{a/Z,,B}fB

o . 2
= B max{a,28} \/ﬁxf’iL_—oZ(l | + Xﬁ’z Ly \/p (p—1)T0=28)| | =2

(56)

ensures that for all ¢t € (0,77] it holds that
IV = Y2y < P C2 (57)

Hence, we obtain that

S 1 Y ran] V220 59)
This finishes the proof of Proposition 2.7 O

In the next result, Corollary 2.8, we illustrate Proposition 2.5 by a simple example. In
particular, Corollary 2.8 ensures uniqueness of solutions of SEEs with singularities at the initial
time. We refer, e.g., to item (i) of Theorem 7.4 in Da Prato & Zabczyk [10] for an existence
and uniqueness result for SEEs without singularities at the initial time.

Corollary 2.8 (Initial conditions). Assume the setting in Section[21], let 6 € [O, %[H—]l{o}(Ll)]),
and let X, X?: [0, T)xQ — H_s be (Fy)ieo.r)-predictable stochastic processes which fulfill for all
ke {1,2},t€[0,T] that X*((0,T]xQ) C H, that lm SUpy ~17141,, (£1)) SWPse (0,7] M| XEN Lo
< 00, and P-a.s. that

t t
XF=e X+ / IR (s, XF) ds + / e=9AB (s, XF) dW,. (59)
0 0

Then it holds for all A € [6, 5[1 + Lqoy(L1)]) that

6, T — a,B,
Sup [ 1XE = XPlloen] < Xy TN X — Xollooer_s) OXnpr(Lo, L) (60)
(0,

2.4 Existence, uniqueness, and regularity for SEEs with singularities
at the initial time

In Theorem 2.9/ below we establish existence, uniqueness, and regularity for SEEs with singular-
ities at the initial time. The following remark helps to access the formulation of Theorem 2.9
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Remark. Assume the setting in Section 2 and let 6 € (— oo, 1[1 + L(o1(L1)]). Observe that
the assumptions that « < 1, & <1, 8 <12, B < V2, and Li0,00)(L1) - [ + @] < 3/2 ensure that
max{d,a +&—1,8+ f — 12} < 1+ 1y (Ly)]. (61)

We now present the promised existence, uniqueness, and regularity results for SEEs with
singularities at the initial time.

Theorem 2.9. Assume the setting in Section 21 and let § € ( — oo, 1[1 + 1g(L

l): A
max{d,a + & — 1,8 + B — 12}, 1[1 + 1oy(L1)]), p = max{\ + (B — Moy (L), B}, €
LP(P|7y; H- maxgso}) satisfy sup,eioqy t° €| r @iy < 0o. Then

(i) there exists an up-to-modifications unique (F)sc(o,1)-predictable stochastic process X : [0, T]x
Q = H_ axqs0y which satisfies for all t € [0,T] that X((0,T] x Q) € H, that supe o7 5™
t —s —s
1 Xl oy < 00, that P( [y || 94F (s, Xo)[|ar + ([ 4B(s, X,) 350,y ds < 00) = 1,
and P-a.s. that

t t
Xt:etA§+/ e(t‘S)AF(s,Xs)der/ 4B (s, X,) AW, (62)
0 0

(i) it holds that

supse o, (11 €" €| Lo ;1))

sup t* ||XtHLP IP’H)i| <7 @ii’,g,T<L07Ll> [

te (0,7 79
aT 7 A BT % A (12 (63)
XA’,'r] LO]B(]' - 1- Oé) + XA’,n Ll‘p(p - 1) IB(l - 267 I 2B)| < 00
T(o+a—1) V2 T(B+3-1/2) ’
(i11) and for all o € [0, min{l — «, /2 — 5}), s,t € (0,T] with s < t it holds that
o X Bt s
) B 11— max{s,0}
||X5 o XtHLp(]P?H) £ |S Q t|9 { - - g(o+max{5,0})
+ [T v 1|4 (IZO + Lo Sup,e o,y u | Xullr@m )
XAr] |S |(1*a*9) + KAnXi—FnaTIB(l - Q= Q’]- —max{)\,éz})
1 _\ Oé Inln{srnax{)\ a} tmax{)\ a}} glotatmax{)a}—1) (64)
\/ D7y 1At ) (L1 + Lisup,cory @ [ Xallioeirn )
— |1 RGN IB(L 26 — 20,1 — 2p)['?
mln{sp, P} /1 —20 s(ptot+B-1/2) :
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Proof. Throughout this proof let £ and L be the sets given by

E . XGM(Pred((Ft)tE[O,T])vB(Hf max{&,O})) : X((OvT} XQ)gH’
T Xoller@im_ s 0p tsuPeeo, ) I XellLp @iy <oo |

(65)

and L = {{Y € L: infyeonP(Y = X;) =1} € L: X € L}, let ||, : L = [0,00), r € R, and
[l : L —[0,00), r € R, be the functions which satisfy for all r € R, X € L that

(X, = sup [e" M [ Xellwo@an]  and XL, = [1Xoll o

)+ X, (66)
te(0,7

— max{5,0}

and let C. € R, r € R, satisfy for all » € R that

1

1 rts p(1—a) _ 1 2 2rts 1(1—28) 2

o Loe™t 1 Ly|7e”™ ¢

C,=x A’:;'; sup / - - ds +Xf{fp plp=1) sup | 12‘ o ds .
te,1] |Jo s* (1 —s) 2 eor |Jo s (1—5s)

(67)
Here and below we do not distinguish between an element X € £ and its equivalence class
{Y € L: infepom ]P’(Yt = Xt) = 1} € L. We observe that for all ¢ € (0,77 it holds that

t>\||€tA€||Lp([P;H) < 7B sup 35||68A§||Lp(p;H) < 0. (68)
s€(0,T
This ensures that
([0, 7] x 23 (t,w) = e“"¢(w) € H_axs0}) € L- (69)

Combining this with Lemma and Lemma [2.4] shows that there exists a unique mapping
®: L — L which satisfies that for all Y € L, ¢t € [0, 7] it holds P-a.s. that

t t
O(Y), = ¢ + / e"IF (s, Y,) ds + / e IB(s, Y,) AW, (70)
0

0

Our next aim is to prove that there exists a real number » € R such that ® is a contraction on
the normed R-vector space (L, [|-[|,,.). Banach’s fixed point theorem together with Lemma
will then allow us to prove (fl). Observe that the Burkholder-Davis-Gundy type inequality in
Lemma 7.7 in Da Prato & Zabczyk [10] proves that for all Y, Z € L, r € R, t € [0,T] it holds
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that

1B ) — B2l oy < H/ 94 (F(s, Y,) — F(s, 2,)) ds

Lp(P;H)

+ /e(t )4 (B(s,Y,) — B(s, Z,)) dW,
0

Lp(P;H)

t
—s)A
< [Ny IO = P2 gy
t 9 1/2
—1 —s)A 2
+ {p(z; )/O He(t ) ||L(H_g,H) ||B(YS)—B(ZS)HLP(P;HS(U’H_B))ds}

t
o, T —a
SXA,U/O Lo (t—s) HY;_ZS”LP(]P’;H) ds

(71)
t 3
D [ [ = 9 1Y = ey 0
t
<XA Y — Z|LT/L0(t—S)aS_/\€_rsd8
0 t %
I L R
< {XAnfo Loe ™ (t—s) “sA ds+xﬁ’§ [@ fJ|L1|26*2” (t—s)fw sfzkds] 2]
Y = 2|, < oo,
Hence, we obtain that for all Y, Z € L, r € (—o0, 0] it holds that
[2(Y) = (2)|l,.,,
— 10(Y ) — D(Z)ol| o ¥ su [e”#@y — (7 ]
103 )o = Dol s 550 [P 1) = Dl .

t Loer(t—s) ¢ t|Ly|2 e2r(t—s) 427

1
T -1 2
< sup XAn 0 T dS“‘Xﬁ,T [p(zﬂ2 )fo T ds} }|Y—Z!LT.

This, (€7), and the integral transformation theorem with the diffeomorphisms (0,1) 3 s —
t(1—s) € (0,t) for t € (0,7] show that for all Y, Z € L, r € (—o0, 0] it holds that

[2(Y) = (D), <Y = 2], Cr (73)

Next note that Lebesgue’s theorem of dominated convergence ensures that for all » € R it holds
that the functions

L rtstl ) 1 rts
0, 7] 9t|—>/ O ds= Lot a>/ — dse0,00) (74)
(1—s) 0o s (1—y9)
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and

1 L2 2rtst(172,8) 1 L. |2 g2rts
075t [ Eile - ds—t(l‘zﬁ)/ %dse [0, 00) (75)
o s (1-s) 0o s (1—ys)

are continuous. This and the fact that for all ¢ € [0, 7] it holds that

L rts 75(1 ) 1 L. |2 g2rts t(l—QB)
lim sup / e—ds = lim sup L7 ) =0 (76)
r——0o0 0 s« (1 — S) r——0o0 0 826 (]_ — S)
allows us to apply Dini’s theorem (see, e.g., Theorem 7.13 in Rudin [25]) to obtain that
limsup C.. = 0. (77)

T——00

The Banach fixed point theorem together with Lemma and (72)) hence establishes (f), that
is, there exists an up-to-modifications unique X € £ which fulfills that for all ¢ € [0,7] it
holds that P( [ [|e4F (s, X,)| i + e 4B(s, X)) |}y ds < 00) = 1 and (62). In the
next step we observe that (i) follows directly from item (ivl) of Lemma 23] from item (ivl) of

Lemma 2.4, and from the fact that Vo € [0,1], ¢t € (0,T], s € (0,¢): ||e"*¢ — e A¢|| o,y <
s(gfn;% Dy anmax{é O]l LP(PiH_ angsoy)- 10 thus remains to prove (). For this we apply

Proposition 27 (with Y! = X, Y2 = 0, and r = X in the notation of Proposition 2.7]) to obtain
that

sup [N || Xe|| o] < @ing(L()) Ly)

te(0,7T

¢ ¢
- sup lt’\HXt—/ e =IAF (s, X,) ds—/ e =91B(s, X,) dW,
t€(0,T] 0 0

(78)

t t
+ / e(t’S)AF(s, 0)ds + / e(tfs)AB(s, 0)
0 0
= @Zﬁ:z,T(LOa Ll)
t t
- sup [tA ‘ e —i—/ e =IAP(s,0) ds +/ e=94B(s, 0) }
0 0 Lr(P;H)

te(0,T]
Next we note that the Burkholder-Davis-Gundy type inequality in Lemma 7.7 in Da Prato &
Zabczyk [10] implies that for all ¢ € [0, 7] it holds that

Lr(P;H) |

t t
etA§+/ e=IAR (s, 0) ds+/ e=94B(s,0) dW,
0

0

t 1/2
< ey B0y s+ [PE [ B0 0]

t 1/2
S HetAgHLP(IP"H) + Xj’}; LO/ (t — 5)70‘ s %ds + X Ll [% / (t _ S) 26 d8:|
) 0 0

Lp(P;H)

§H Xj’:;iOIB%(l—a,l—a Ll\/P -1)B 1_2671_25)
Lr(P;H) tlata—1) V2 t(B+5-1/2)

< HetA
(79)
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This shows that

t t
et +/ IR (5,0) ds —I—/ e =94B(s, 0) AW,
0 0

sup t
t€(0,T] L (P;H)

<TA sup [£]|eE | o) + x5y Lo T B(1 —a,1 - 4)

te(0,T] (80)
. O Ly TORE0-9 [ (p — 1) B(L - 28,1 — 25) _
0.
V2
Combining this with (78)) proves (). The proof of Theorem [Z0 is thus completed. O

In Theorem above we establish existence, uniqueness, and regularity properties for SEEs
with singularities at the initial time where the coefficients of the SEEs (see (62)) above) under
consideration may be both time-dependent and random (see Subsection 2.1 above for details).
The following result, Corollary Z.I0/below, specializes Theorem 2.9 to the specific case where the
coefficients of the SEEs under consideration (see (8I]) below) may only depend on the solution
but may neither be time-dependent nor random anymore (compare ([62)) above with (8Il) below).

Corollary 2.10. Assume the setting in Section [L2 and let o € [0,1), B € [0,1)2), F €
Lip(H, H_,), B € Lip(H,HS(U,H_g)), 6 = $[1 + Lioy(| BlLip(ar,rsw,i_»)))] - Then

(i) there exist up-to-modifications unique (F;)cjo,r)-predictable stochastic processes X®: [0, T]x
QO — H_s, & € Use5)H-s, which fulfill for all p € [2,00), 6 € 0,0), x € H_s, t € [0,T]
that X*((0,T] x Q) C H, that sup,c .1 8° | X7 || oe:m) < 00, and P-a.s. that

t t
X7 = ety + / VAR (XY ds 4 / e=DAB(XT) dW,, (81)
0 0

(i) for all p € [2,00), & € [0,0) it holds that

1 XF N o,
; a,B3,0 o, T
sup sup <0 FlLip(#,H_0)s | BlLip(a,HS(U,H_ XA
w€H_5 t€(0,T) [maX{LHxHH 5} Wnpr (| Fluipr_o) | Bluparmsw. ) | Xy, o
ENFOLy T VoT= D35 1BO) sy 7]
1-a) 247 ’
(iii) for all p € [2,00), 6 € [0,8) it holds that
s sup 1| X7 — XY | oqesny
T _ T — _
yf;; 5, t€(0,T] e —ylla_, (83)
(5T a,B,0
@AngOF‘Lip(H,H_a)a \B|Lip(H,HS(U,H,B))) < 00,
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(iv) and for all p € [2,00), 6 € [0,0), o € [0, min{1 — o, Y2 — B}) it holds that

s || X7 — th”Lp(IP;H)
sup sup sup

te(0,T] s€(0,t) x€H _5 max{l, ||x||H—5} |5 - t|g

(84)

Proof of Corollary[210. Throughout this proof let Lo, Ly, Lo, L, € [0, oo)Abe the real numbers
given by Lo = |F|uip(m,_0), L1 = |Bluipasw.a_s), Lo = [|F(0)|n,, and Ly = || B(0)|| s, my)-

We note that for all ¢ € (0,7], X,Y € LF(P; H) it holds that
IF(X) = FO) oty < Lo | X = Yooy 1F(0)|| o) < Lo, (85)
|B(X) = BY)||zr@asw sy < Lill X = Ylle@m), 1BO)||o@aswm_g) < L1 (86)

We can hence apply Corollary 2.8 and Theorem 2.9 More specifically, an application of
Theorem (with = 6, A =0, & =0 =0, Ly = |Flupmua_o), Lo = [[F(O)|a_.,
Ly = |Bluipa,a5w,H_4)), and Ly = |B(O)||zsw,m_g) for 6 € (0,0) in the notation of Theo-
rem [29) proves (f), proves that for all p € [2,00), § € [0,0), = € H_g it holds that

T «, 76
tS(ltl)PT] [té 1 X ||LP(]P’;H)} < @A,€77p,T(|F|Lip(H,H_a)> |B\Lip(H,HS(U,H,B)))
S El

- [xif; Il + X35 1FO) ., TO B(1—a, 1) (87)

XA IBO) sy T8 |p(p— 1) B(1 — 25, 1)|
+ < 00,
V2
and proves that for all p € [2,00), 8 €[0,6), z € H_5, 0 € [0,min{1 — a, Y2 — B}), s,¢ € (0,7T]
with s < t it holds that
X5 — Xf”LP(IP’;H) <|s—t*

T 5T
. {Ri,n sz;,rn ”xHH,(;

R + T V1P

Xan ls =070 wgT 4T B(1—a — 0,1 5)]

(1—a)s slota+o—1)
) (”F(O)HH,Q + |F|Lip(H,H,a) SUP,e (077 w0 ||X5HLP(]P‘;H)) 4 |T v 1|5]1(0,oo>(|B\Lip(H,HS<U,H,5>))
—1 €T
A/ (IBO) s ) + [ Bluptmasw,m_s) SWPucor v | X5 o) (88)
| Xi’; |s _ 75|(1/2—,6’—@)
861(0,00)(|B|Lip(H,HS(U,H7ﬂ)))m

n ﬁi{f] anﬂ’T IB(1—28— 20,1~ 251(0,00)(|B|Lip(H,HS(U,H_5))))|1/2
8(6]]-(0,00)(|B|Lip(H,HS(U,H75)))+9+5_1/2) )

Observe that (87) establishes (i) and note that (i) and (88) establish (). In addition, an
application of Corollary 28 (with X' = X? X2 = XY, § = 0, and A\ = ¢ for z,y € H_s,
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§ € [0,4) in the notation of Corollary ZZ8) ensures that for all p € [2,00), 6 € [0,6), x,y € H_g
it holds that

sup [t5 | X7 — XinLP(P;H)]

te(0,T] (89)
< 6,T @&,67(5 F B
< Xy 12 = ylla_, 0% o (| Fluipgar_o), | Bluip(asw.m_g)) < 00

This establishes (). The proof of Corollary 210 is thus completed. O

3 Examples and counterexamples for SEEs with irregu-
lar initial values

Corollary 2.10] in Subsection 2.4] above establishes existence, uniqueness, and regularity prop-
erties for solutions of parabolic SEEs. In this section we first illustrate the statement of Corol-
lary in the case of semilinear stochastic heat equations with space-time white noise and
periodic boundary conditions; see Corollary B.1] in Subsection B.2] below. Roughly speaking,
Corollary [3.1] shows existence and uniqueness of solutions of the considered stochastic heat
equation provided that the initial value lies in Use(—1/2 00)Hs where H,., r € R, is a family of in-
terpolation spaces associated to the Laplacian with periodic boundary conditions. Corollary [3.1]
applies, in particular, to the continuous version of the parabolic Anderson model. Thereafter,
we illustrate in Proposition [3.2] in Subsection B.2, in Proposition B.4] in Subsection [3.3] and
in Proposition in Subsection [3.4] by means of several example SEEs that the statement of
Corollary 2.10] can in general not be improved. Moreover, we illustrate in Proposition in
Subsection in the case of a specific linear example SEE with regular noise that the state-
ment of Corollary 2.0 can be improved. More specifically, note that Corollary [2.10] establishes
existence, uniqueness, and regularity properties for solutions of SEEs in the case where the
initial condition x takes values in the H_s space where the parameter o satisfies § < o and
Proposition establishes that a specific SEE with linear coefficients and regular noise admits
for all x € U,eg H, a solution without any regularity barrier for the initial value. The proof of
Proposition B.3] exploits the fact that the SEE is linear and the fact that the noise is regular
(see Proposition 3.2 for a result in which the regularity barrier 4 cannot be improved in the case
of linear SEEs with irregular noise and see Proposition for a result in which the regularity
barrier 4 cannot be improved in the case of nonlinear SEEs with regular noise).

3.1 Setting

Assume the setting in Section [I.2] let T be a set, let h,, € H, n € I, be an orthonormal ba-
sis of H, let A\: I — R be a function which satisfies sup,,c;(—A,) < 71, assume that D(A) =
{fveH: Y, | (b, ), |° < 00}, and assume for all v € D(A) that Av = =", . Ay (ha, v) g B

3.2 Stochastic heat equations with linear multiplicative noise

Corollary Bl below specializes Corollary .10l above by choosing (H, |||/, (-, ) ) = (U, ||l
() = (L2(no,q): R), H'HL2(u<o,1);lR) (s ->L2(u(0’1>;R) ), by choosing A to be the Laplacian with
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periodic boundary conditions on H, by choosing F (the drift coefficient of the SEE under
consideration) to be a Nemytskii operator, and by choosing B (the nonlinear diffusion coefficient
of the SEE under consideration) to be a multiplication operator (see Corollary B.1] below for
details).

Corollary 3.1. Assume the setting in Section [31, assume that (H, |||y, (-, ) g) = (U, |||l
(-, 0) = (L*(0,1); R), ||'||L2(u<o JiR) (- '>L2(u(o,1>;R) ), assume that A is the Laplacian with pe-

riodic boundary conditions on H, let B € (Y1,Y)2), f,b € Lip(R,R), and let F: H — H and
B: H — HS(H,H_g) satisfy for all v € L*(up1);R), u € C([ 1], ]R) that F([V] .0 .B) =

[{f<v(x))}I€(071)]H(0,1)7B(R) and B([ ],U«(o 1,8 (R)) [u‘(o Dlpo,1).B [{b }x€(071)}u<0,1),3(]1{)'
Then

(i) there exist up-to-modifications unique (F;)ejo,r1-predictable stochastic processes X®: [0, T]x
Q — H.y, v € Hy, 0 €0,Y2), which fulfill for all p € [2,00), § € [0,Y2), x € H_s,
t € [0,T] that X*((0,T] x Q) € H, that supyc 7y 5° | X7 oy < 00, and P-a.s. that

t t
X® = ety + / IR (XY ds + / e=IAB(XT) AW, (90)
0 0

(i1) and for all p € [2,00), 6 € [0,1/2) it holds that

a ”thHLP(]P’;H) 4 t° ||X£T - Xf”LP(]P‘;H)
max{L, [lz]n_;} = ylla_s

sup  sup (91)

$,y€H75, t€(07T]
Y

The next result, Proposition below, considers specialized hypotheses of Corollary 210
above by choosing F' to be 0 and by choosing B to be linear. Proposition B.2/thus deals with the
continuous version of the parabolic Anderson model with periodic boundary conditions. Under
these hypotheses Proposition shows that the regularity barrier —1/2 cannot be exceeded in
the sense that any integrable solution (see (02) below) must have an initial condition which
takes P-a.s. values in H_./, (see ({l) in Proposition 3.2 below).

Proposition 3.2. Assume the setting in Section[3 1, assume that (H, |||, (-, ) g) = (U, ||y »
(','>U) = (L*(po0.1); R), H'HL?(u(o,n;R)’<"'>L2(u<o,1>;lR))’ assume that 1 = Z, let v € (0,00),
€ [0,0), d € R, 8 € (717%) assume for all n € N that ho = [{1}zc(0,1) ]Mo,l)»B(]R)’ h, =
[{\/_cos(2n7rx)}$e(0,1)]u(o1 Bw)s hen = [{V2sin(2n7z)}econ Juony BR)s Ao = 0, and A,
1/712, let & € M(Fo, B(Hs)) and B € L(H, HS(H H_g)) satisfy for allv € L*(p ),

& C(0 1L R) that Bl ) [0 ]ueonyim = H0(E) - 6D} ocnlpn s, ond L
[0, T] XQ — Hs be an (Fy)iepo,r)-predictable stochastzc process which satisfies for allt € (0,T]

An
u
X:
that X((0,T] x Q) C H, that
t
B[l el ) + [ Bl B ] ds < o (92
and P-a.s. that X, = "¢ + [3 e"4B(X,) dW,. Then

26



(i) it holds that P(& € H_1s5) =1 and
(i1) it holds for allt € (0,T] that

272 (1= e e ooy ) < NIXell2ein,) < o0 (93)

Proof. Throughout this proof let x; € [0,00], k € Z, be the extended real numbers which
satisfy for all k& € Z that
|B(@)hell_,_,

veoert N0} 2%,

Observe that the product rule for differentiation and the fact that the mapping C([O, 1], IR) >
v = [V|0,1)]ue. Br) € Hijz is continuous ensures that for all n € N it holds that Vu,v €

NeerHs: u - v € NgerH,s and SUDy, ve (Nyem He )\ {0} % < oo. This implies that for all

k € Z, n € Ny it holds that

(94)

R =

B(x)h B(z)h

sup |1 B(@)hellm_, sup |(u, B(x)h) 4]

ve(uerB N0} Z|H, eeOuer g N0} 17| a_, ||lullm,
h — Ay (- ), (g — A)
_ sup [(u -, @)y | sup [((n— A)"(u-hy),(n— A)™"x) 4| (95)
wue(oen HOVO} 1Tl m_, 1l o, s ueoermo\f0} Nl z_,, lullm,
-h

< sup - by, c o

ueuert 0} [|ula,
Hence, we obtain that for all k£ € Z it holds that

1B) el

R —

veeeni N0y N2lF,
2
[ | B (@)l _,
<|l(n— AR g -
reuentN oy llZlla
r 2
1 2|l ar_,
<l = Ay sup S
| z€(Nser H5)\{0} [Fa{pa (96)
q2

IB@)hll;, .,
ECGREY SINCI S AV
= [ — AT O — AT
[ IB@hells,, ., |

seuertnoy  %llm_

< oQ.
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In the next step we observe that for all ¢ € (0,77 it holds P-a.s. that

2
2
1Xell, =

t
et + / e=IAB(X,) dW,
0

H_,

t ) (97)
_ ||€tA§H§L +2<etA€7/ 6(t—s)AB(XS) dWS> 4
" 0 H_,

t
/ e IAB(X,) dW,
0

H_,

Combining (@7) with Itd’s isometry and the assumption that V¢ € (0,7]: E[[|e"¢||3,_ ] +
f(f]E[He(t_S)AB(XS)H%{S(HJLT)} ds < oo proves that for all ¢ € (0, 7] it holds that

tA ' (t—s)A d
<€ 5,/0 e B(Xy) WS>HT]

E[IX05, | = Efle*el3_] +2E

2
‘ H_,

t
=E[||le"¢)? 1+ 2E| (4, E| [ e94B(X,) dW,
H_, ;

t
+/0 E|:H€(t_s)AB(XS)Hi{S(H,H,T)} ds
t
:E[Hemg‘ﬁ{_J +/(; E[He(tfs)AB(Xs)HiIS(H,H_T)] ds

—E[el ]+ % / B[94 BOC[, | ds < oo
k€eZ JO

t
+E / e IAB(X,) dW,

0

0] >H] (98)

Moreover, we note that for all k € Z, t € (0,7, s € (0,t) it holds P-a.s. that

2

||e(t—s)AB(XS) thi]_ b He(t—s)AB( 8A€_|_/ (s— u)AB(Xu) qu) hk
" 0

elt=24p ( / eWAB(X,) qu) hy,
0 H_,

+2 <e(t_S)AB(eSA§)hk, (=94 p ( / eAB(X,) qu) hk> (99)
0

H_,

H_,
2
= B )]y, +

> [l B (e [,

+92 <6(t_5)AB(€5A§) hu, / e(t—s)AB(e(s—u)AB(Xu) qu> hk>
0

H_,
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This and assumption ([@2) imply that for all k € Z, t € (0,T], s € (0,t) it holds that

. |:Z /s He(tfs)AB<e(sfu)AB(Xu> hn) hk”i{ du}
neZ JOo -

—s 2 ° s—u 2
< B [ 1B B Rl d]
e ) (100)
2 2
O R | Dol e e T
T neZ JOo "

—s 2 ° S—u 2
= kg He(t )AHL(H_T_l,H,T) E {/0 He( )AB(XU)HHS(H,Hﬂ) du} < X

and

E[|le Bl ohelly, | < me ez B[l el ] <oo (101
Combining (@9) with (I00)—(I0I) proves that for all k € Z, t € (0,T], s € (0,t) it holds that

B[l B | 2 B[l B ]
<6(t—s)AB( Ag) hk,/ (=94 B (elWAB(X,) dWV,) hk> ]
0 H_,

= B[[[4B(e4¢) b}, |

<€(t‘5)AB(eSA§) hy, E {/8 TIAB(TIAB(X,) dWL)
0
|:H€t sAB( sAg thH :| .

+2E

(102)
+2E

),
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Combining this with (O8] ensures that for all ¢ € (0,77 it holds that
o > Bl ] 2 Ellell ] + 5 [ B[letB (e hklli_r} s
> | tE[ue“—sMB(es%)HZWTJ is= [E[ln— Ay NBEg ] b
= [E[IBE) 10— A7 g s
—Z/ | Be ) el =4 (5 — A7 [ ] ds

nez
2/0 1B ) =% g — 4) 7o [] ds
t 103
=0 [E[Bee naly] s = B[l ds o
—2r sA 2 — 2 ! —2(vn?4n)s 2ns 2
HGZZ/ has €] ds = ;/0 e tms 215 B[\ (h, ) ,[7] ds

(1 . 672(Vn2+77)t) E[|<hna €>H|2]

Z/ R € g *] ds =07y 2(vn? + )

nel neZ
1 2
_ T Z (1 _ 2 +17)t) E[K(T} _ A)_1/2hn7§>H‘2]
nez
1— e‘m
> () S gl a7,
ne”Z

In particular, we obtain that E[ > | ((n — A)_l/th,QH ’2] < 00. Therefore, it holds that
]P’(§ € H,l/Q) = 1. This and (I03]) complete the proof of Proposition O

Proposition 3.3 (Positive example). Assume the setting in Section[3 1], let k € N, § € R, £ €
M (Fo, B(Hs)), (Li)ieqr2,.iy € L(H), B € L(H, HS(R¥, H)) satisfy for alli,j € {1,2,...,k},
veH,ue DA),y=(y,Y2,---,yx) € RF that L;(D(A)) C D(A), LiLju— L;jLiju = L;Au —
ALju =0, and B(v)y = S35, yiLyw, assume that W = (WO W W®¥)Y: [0, T]xQ — RF
is a k-dimensional standard (F;)icpo,r)-Brownian motion with continuous sample paths, and let
X:[0,T] x Q — Hj satisfy for all t € [0,T] that

Xy =exp(tA+ S [Wt(i)Li — (L)) € (104)

Then X has continuous sample paths and for all v € R, t € [0,T] it holds P-a.s. that
Jo 16 =92 B(X) |3 g i g, ds < 00 and Xy = eA¢ + [7 el AB(XS)dWS.

Proof. Throughout this proof let r € [0,00) and let ¢ € C([0,T] x R* x H,, H,) be the map-
ping with the property that for all t € [0,T], y = (y1,%2,...,yx) € R¥, v € H, it holds

30



that o(t,y,v) = exp(Xr,[wil; — 3t(L;)?])v. Note that the assumption that W has con-
tinuous sample paths ensures that X also has continuous sample paths. Next observe that
Y E CQ([O,T] x RF x H,, Hr). It6’s formula (cf., e.g., Theorem 2.4 in Brzezniak, Van Neerven,
Veraar & Weis [5]) therefore implies that for all ¢ € (0,77 it holds P-a.s. that

/||(£¢)<S’WS’€tA£)HiISR’“,HT)dS:/ >t ||(a%90)(5’ws7em5)”ilrds

(105)
/ Zz [ ( ) (s, Wy, e€) HH dS—fo e B(X >||HS1RkH ds < o0
an
t
X = plt, Wi e16) = 2(0.0,e46) + [ (36) . War ) du
0
A A
/O (Z¢) (s, Ws, e 4¢) dW, + = Z/ ) (5, We, e ) ds
o t (106)
—/ 52 (s Ws,emf)ds—k/ (=IAB(X,) dW,
0 2T 0
t
+ = Z / o(s, Wy, e!1¢) ds = et + / e=IAB(X,) AW,
0
Combining this and (I05)) completes the proof of Proposition B.3] O

3.3 Stochastic heat equations with nonlinear multiplicative noise

Proposition 3.4. Assume the setting in Section[L2, let § € R, r, 5 € [0,00), w € H_g\ {0},
¢ € M(Fo,B(H;)), B € C(H HS(R,H_p)) satisfy for all v € H, u € R that B(v)u =
wl||v] g w, assume that W: [0,T] x Q@ — R is a one-dimensional standard (F)icjo,r-Brownian
motion, and let X : [0,T] x Q — Hs be an (F;)ejo.r)-predictable stochastic process which fulfills

forallt € (0,T) that X((0,T)xQ) € H, that E[[|eA¢[13 |+ fy B[l B(X)I}gmn_)] ds <
00, and P-a.s. that X; = ¢ + f (t=)AB(X,)dW,. Then for all t € (0,T] it holds that

(fEH 1/2) =1 and

27112 7l (1 — 2N [l € papry ) < il cageuryy < 00 (107)

Proof. Note that for all ¢ € (0,77 it holds P-a.s. that

t
I, = lletell, +2 (e [ ey am)
0 —
2 " (108)

t
+ / IAB(X,) dW,
0

H_»
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Equation (I08) together with It6’s isometry and the assumption that V¢ € [0, T]: E[|le'4¢||%_ ]+
f;]E[He(t*S)AB( M@ } ds < oo hence prove that for all ¢t € (0,7 it holds that

< g / (=204 5>dWS>H ]

E[IXI15, | = E[le¢l%_,] +2E

2
‘ H_,

~E[je el ) + 28| (e[ [ -mpex) am| 7)) ] (109)
0 H,
+/0 IE[He(t_s)AB(Xs)HiIS(RH_TJ ds

t
. +/0 E[He(t_S)AB(XS>HZS’(R,H,T)} ds < 0.

Next we note that for all ¢ € (0,77, s € (0,¢) it holds P-a.s. that

t
+E / e =IAB(X,) dW,
0

2
He(t—s)AB

(t s)AB( SAf +/ e(s—u)AB(Xu) qu)
0

HHS RH_,) HS(R.H.)
2

et ]y,
ct=9)Ap (/5 e(sfu)AB(Xu) qu)
0
+2 He(t_s)AwHiL <e$A§, /S eTWAB(X,) qu>
, 0 o

> B g+ 2l (e [ Bonyan.)

_ He(t—s)AB (esAf)

e A + / eCTWAB(X,) dW,

0

_s s 2
= |le“24B(e Ag)”HS(]R,H—r) +

2

HS(R,H_,)
(110)

H

||HS R,H_,)

_|_2He(tfs)AwH2_r <( r SAf/ n— A —ro(s— uAB(Xu>qu>

H

In addition, the assumption that V¢ € (0,T]: E[[|e"*¢||3, ] < oo implies that for all ¢ € (0, 7]
it holds that

Eleeld,] < ez, m) Elle2?¢ll% ] < co. (111)

Ito’s isometry and the assumption that V¢ € (0,7T]: fJE[He(t_S)AB( )HHS R ]ds < o0
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hence prove that for all ¢ € (0,77, s € (0,¢) it holds that

E|:H€(t_S)AB(X ZE[”e(t—S)AB(esAg) 2

s ||HS(]RH T)] HHS(RHfr)}

w2l B[ (- arete, (- ayreipeo)an) |
" 0 H

—E|[[e“ " B(e (112)

SAS HHS R,H_,)

+2 ||t ||, [<<n A)TesAé,E{ /Sm—A)”e(“)AB(Xu)qu
" 0

—F |:He(t_S)AB(€SA§)

),

[isimn-)] -
Furthermore, we observe that for all ¢t € (0,77, s € (0,¢) it holds that
lewllzr, < e ol wlm, < e ey, < 0 e ]y . (113)

Combining (I12) with (I09) and (II3]) ensures that for all ¢ € (0,77 it holds that
oo > B[l ] = Bl ]+ [ B[l B9 ) i
2 [ Bl B ] a5 = [ el Bl ] o
> crmnnt [otus [ B[l el o

,gmax{no}tHetAwHH_ Z/ ‘(eSAhn,@H‘ }

nel

—2max{n0}t etAw / 2(An+n)s 2778 |<hm£> |
el % 2l ul'] ds (114)

_2|77|t }etAwH " Z/ —2(An+n)s hn7£>H| }

nel

ot |ltA (2 (1 — e 2O tDE[|(hy, &) )]
= e " ||e IUHH,TZ 2<)\n+77)

nel

||€tAw||%{—r —2(An+n)t —1/2 9
= = > (L= e Y B[ (= A)7 2R, ) ]

nel
(].—6 2(inf,e1 An+n) )He w”Z_T ~ )
g ST e SR [0 - A Vh6) [
nel

This and the assumption that w # 0, in particular, assure that £ [ Y nel |<(77 — A)"V?p,, §>H|2 ] <
0o. Hence, we obtain that P(f e H /2) = 1. This and (II4) complete the proof of Proposi-
tion [3.41 O
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3.4 Nonlinear heat equations

Proposition 3.5. Assume the setting in Section [3.1, assume 0 € 1, let § € R, w € H,
¢ € M(F,B(H(;)), F € C(H, H) satisfy for all v € H that (ho,w); > 0, w = (ho,w) ho,
and F(v) = ||[v||yw, and let X € M(B([0,T]) @ F,B(Hs)) satisfy for all t € (0,T] that
X((0,T] x Q) C H, P-a.s. that fg |e=AF (X ) |lm, ds < oo, and P-a.s. that X; = e +
f(f e=9AR(X,)ds. Then for all t € (0,T) it holds that P(€ € H_;) = 1 and P-a.s. that

(ho,w) y e~ Prothe 1 o~ (infper /\n+7])t] 1€ — (7o, &)y holl (115)
< (ho, Xy — €4€) < || Xy — ||, < o0

Proof. Throughout this proof let P € L(Hpuin(s0}) be the linear operator with the property
that for all v € H it holds that P(v) = v — (hg,v) 5 ho. We observe that the assumption that
X((0,T] x Q) C H implies that for all ¢t € (0, 7] it holds P-a.s. that

¢
o0 > HXt — etAfHH = <h0,Xt — et >H = / <h0,e(t_s)AF(Xs)>H ds
0

t

t
- / (ho, e w) 1 [1X||y ds = / (ho, w) gy e~ QotDE=9) =9 || || - ds
t
> (ho, w), e ino / e QoY PX |, ds
0 (116)
= (w0 [ ey ds
0
t
> (o, w)yg OO [P ds
0
—(XNo+max{n,0})t ' —(Antm)s ns 2]'/?
= <h07w>H€ ’ 0 [Zneﬂ\{O} |6 € <hn’€>H} ] ds.

This and the Minkowski integral inequality imply that for all ¢ € (0, 7] it holds P-a.s. that
00 > HXt - 6tA§HH > (ho, Xy — 6tAf>H

21 Y/2
f(f ‘e_()\n-‘r??)s <hn7€>H} dS‘ :|

> (hg, w) y e~ Gotlt |:Zn611\{0}

117)
A 1—e—OCuntnt 2 <hn7§> 2 1/2 (
= (hg,w) € (o+nhe {Zneﬂ\{o} [ \)\n-l-]n\L u

. 12
> (ho, w) e~ Rotnt {1 _ o (infner >\n+77)t] [Zneﬂ\{[)} [((n — A)~1b, £>H|2} '

The assumption that (hg,w), > 0 hence implies that it holds P-a.s. that

_ 2

> ner (= A) 7 hy, &) | < oo (118)
This ensures that P(¢ € H_;) = 1. This together with (II7) completes the proof of Proposi-
tion [3.5] 0
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