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of an open subset with Lipschitz boundary and suitable topological conditions are
fulfilled, the existence of a nonconstant closed geodesic is proved. Q 1999 Aca-
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1. INTRODUCTION

The study of geodesics on a Riemannian manifold M without boundary
is a classical topic in differential geometry and in global analysis. One of

Ž w x.the first results in this area, due to Ljusternik and Fet see, e.g., 17 ,
asserts that there exists a nonconstant closed geodesic on each compact
Riemannian manifold without boundary.

This result was extended more recently to Riemannian manifolds with
w xboundary in 21 . Actually, in those years, several facts concerning geodesics

wwere generalized to Riemannian manifolds with boundary; see 1, 18, 20,
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x22, 26 . A common feature is that, even if the manifold with boundary M is
smooth, irregularities of various kind appear. For instance, there is no
uniqueness for the Cauchy problem and the natural domain of the energy
functional is not a smooth set. Geodesics themselves are differentiable
curves with locally Lipschitzian derivative, but they are not, in general, of
class C 2. Accordingly, the geodesic equation is satisfied only pointwise
almost everywhere.

w xA natural development was then provided in 2]4 , where geodesics on
Ž .certain nonsmooth sets, called p-convex sets see Definition 4.2 below ,

are considered. Each C 2-submanifold of R n, possibly with boundary, is a
p-convex subset of R n. However, these last sets may also have corners of a

Žcertain type and are not, in general, topological manifolds although they
.are absolute neighborhood retracts . For instance,

n
n 2< <M s x g R : max x F 1 F xÝj j½ 51FjFn js1

is a compact, p-convex subset of R n. In spite of the lack of regularity in the
set M, the results about geodesics on p-convex sets are similar to those on
Riemannian manifolds with boundary. In particular, the regularity of
geodesics and the interpretation of the geodesic equation are essentially
the same as in the previous case.

Our purpose is to consider a different kind of nonsmooth set, obtained
by taking as M the closure of an open subset of R n with Lipschitz
boundary. It is clear that, in such a case, we cannot expect a geodesic to be
more than Lipschitzian. Consequently, the notion itself of geodesic de-
serves a reformulation. We do this in Section 3, where we propose a new
definition of geodesic on a general subset M of R n and we show the basic

< <property that each geodesic g is Lipschitzian with g 9 constant almost
everywhere. Our definition is related to the nonsmooth critical point

w xtheory developed in 9, 13 , which we briefly recall in the next section. In
w xSection 4, we show that our notion of geodesic agrees with that of 2 ,

when M is locally closed and p-convex. A fortiori, the same fact holds
when M is a C 2-submanifold of R n, possibly with boundary.

The last sections are devoted to the proof of our main result, which is

THEOREM 1.1. Let g : R n ª R be a locally Lipschitzian function such
that

; x g R n : g x s 0 « 0 f ­ g xŽ . Ž .

Ž w x.­ g denotes Clarke’s subdifferential 7 and let

M s x g R n : g x F 0 .� 4Ž .
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Assume that M is compact, connected, and noncontractible in itself. Then
there exists at least one nonconstant closed geodesic on M.

This is the analogue of the Ljusternik]Fet theorem in our setting. To
w xprove it, we consider, as in 3, 21 , the set

X s g g W 1, 2 0, 1; R n : g 0 s g 1 , g s g M ;s� 4Ž . Ž . Ž . Ž .
2Ž n. � 4and the lower semicontinuous function f : L 0, 1; R ª R j q` de-

fined by

1¡ 1 2
g 9 s ds if g g X ,Ž .H~f g sŽ . 2 0¢q` otherwise.

Since we prefer to deal with a continuous functional, we introduce,
w xaccording to the general device of 10 , the metric space

epi f s g , l g L2 0, 1; R n = R: f g F l� 4Ž . Ž . Ž . Ž .

Ž . Ž .and the continuous function GG : epi f ª R defined by GG g , l s l.f f
Ž .In Sections 5 and 6, we show that epi f is homotopically equivalent to

Ž .the free loop space of M and that each critical point g , l of GG is of thef
Ž Ž ..form g , f g with g a critical point of f. Finally, in Section 7, we apply

w xthe nonsmooth critical point theory of 9, 13 to prove our main result.
By our methods, it is also possible to treat the case where M is the

closure of an open subset with Lipschitz boundary in a smooth Rieman-
nian manifold without boundary. However, we have preferred to consider a
more particular situation, not to add further technicalities.

On the contrary, it is an open problem whether Theorem 1.1 holds when
M is, say, a C1-submanifold of R n without boundary. More generally, it

Žwould be interesting to consider geodesics on LNRs Lipschitz Neighbor-
.hood Retracts; see Definition 5.1 below . All the sets M we have consid-

Žered fall, up to isometry, into this large class for p-convex sets, see
.Theorem 4.3 below . On the other hand, several steps in our proof are

valid for LNRs, but in Section 6 we exploit the fact that M is just the
closure of an open subset.

w xSome results of this paper were announced in 11 .

2. SOME ELEMENTS OF NONSMOOTH ANALYSIS

Let X be a metric space endowed with the metric d. In the following,
Ž .B u will denote the open ball of center u and radius r. More generally, ifr
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Ž . ŽY : X, B Y will denote the open r-neighborhood of Y we agree thatr
Ž . . Ž .B B s B . Finally, int Y and Y will denote the interior and the closurer

of Y, respectively.
w xThe next notion has been independently introduced in 9, 13, 16 , while a

w xvariant can be found in 15 .

DEFINITION 2.1. Let f : X ª R be a continuous function. For every
< <Ž . w wu g X, we denote by df u the supremum of the s ’s in 0, q` such that

Ž . w xthere exist d ) 0 and a continuous map HH: B u = 0, d ª X such thatd

w x;¨ g B u , ; t g 0, d : d HH ¨ , t , ¨ F t ,Ž . Ž .Ž .d

w x;¨ g B u , ; t g 0, d : f HH ¨ , t F f ¨ y s t .Ž . Ž . Ž .Ž .d

< <Ž .The extended real number df u is called the weak slope of f at u.

< < w xIt is easy to see that the function df : X ª 0, q` is lower semicontin-
uous.

� 4Now consider a function f : X ª R j q` . Set

DD f s u g X : f u - q` ,� 4Ž . Ž .

� 4 b;b g R j q` : f s u g DD f : f u F b ,� 4Ž . Ž .
epi f s u , l g X = R: f u F l ,� 4Ž . Ž . Ž .

Ž . Ž .and define a function GG : epi f ª R by GG u, l s l. The set X = R willf f
be endowed with the metric

1r22 2d u , l , ¨ , m s d u , ¨ q l y mŽ . Ž . Ž . Ž .Ž . Ž .
Ž . w xand epi f with the induced metric. According to 9, 13 , let us give

Ž .DEFINITION 2.2. For every u g DD f , let

< <¡ d GG u , f uŽ .Ž .f
< <if dGG u , f u - 1,Ž .Ž .f2~ < <1 y dGG u , f u< < ' Ž .Ž .df u sŽ . f

¢ < <q` if dGG u , f u s 1.Ž .Ž .f

When f is real-valued and continuous, the above definition turns out to
Ž w x.be consistent with Definition 2.1 see 13 . Let us give a criterion for

< <Ž . < <Ž .obtaining an estimate of dGG u, l and df u . It is the corrected versionf
w xof 5, Theorem 1.5.4 , which contains a mistake in the statement.

Ž . Ž .PROPOSITION 2.3. Let u, l g epi f . Assume there exist d , c, s ) 0
and a continuous map

w xHH : ¨ g B u : f ¨ - l q d = 0, d ª X� 4Ž . Ž .d
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Ž . Ž . w xsuch that for any ¨ g B u with f ¨ - l q d and any t g 0, d we ha¨ed

d HH ¨ , t , ¨ F ct , f HH ¨ , t F f ¨ y s t .Ž . Ž . Ž .Ž . Ž .
Then we ha¨e

s
< <dGG u , l G .Ž .f 2 2'c q s

Ž . < <Ž .In particular, if l s f u , it is df u G src.

Proof. By the change of variable t s trc, we can reduce the question
w xto the case c s 1. Now the same argument of 5, Theorem 1.5.4 works and

it is not necessary to assume the lower semicontinuity of f.

Ž . Ž .DEFINITION 2.4. We say that u g DD f is a lower critical point of f if
< <Ž . Ž .df u s 0. We say that c g R is a lower critical ¨alue of f if there exists
Ž . Ž . Ž .a lower critical point u g DD f of f with f u s c.

Ž . Ž .DEFINITION 2.5. Let c g R. A sequence u in DD f is said to be ah
ŽŽ . . Ž .Palais]Smale sequence at le¨el c PS -sequence, for short for f , if f uc h

< <Ž .ª c and df u ª 0.h
ŽŽ .We say that f satisfies the Palais]Smale condition at le¨el c PS forc

. Ž . Ž .short , if every PS -sequence u for f admits a convergent subsequencec h
Ž .u in X.hk

For every c g R, let

< <K s u g DD f : df u s 0, f u s c .� 4Ž . Ž . Ž .c

LEMMA 2.6. Let Y be a metric space and let A be a subset of Y. Assume
w xthat for e¨ery neighborhood U of A there exists a deformation h: Y = 0, 1 ª Y

Ž � 4. Ž w x.such that h Y = 1 : U and h A = 0, 1 : U. Then the inclusion
Ž . Ž .map i: A ª Y induces an isomorphism i*: H* Y ª H* A for

Alexander]Spanier cohomology.

Ž . Ž .Proof. Let v g H* Y be such that i* v s 0. Since A is tautly
Ž w x.imbedded in Y see 23 , there exists a neighborhood U of A such that

Ž . w xj* v s 0, where j: U ª Y is the inclusion map. Let h: Y = 0, 1 ª Y be
Ž .a deformation, according to the assumption. Since j(h ?, 1 is homotopic

to the identity of Y, j* is a monomorphism. It follows that v s 0, so that
i* is a monomorphism.

Ž .Now let v g H* A . Again from tautness we deduce that there exists a
Ž . Ž .neighborhood U of A such that v is in the range of k*: H* U ª H* A ,

w xwhere k: A ª U is the inclusion map. Let h: Y = 0, 1 ª Y be a
Ž .deformation as in the assumption. Since h ?, 1 ( i is homotopic to k, the

range of k* is contained in the range of i*. In particular, v belongs to the
range of i*, which is therefore an epimorphism.
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In the next result we prove a variant of the noncritical interval theorem
Ž w x w x.see 5, Theorem 1.1.14 and 8, Theorem 2.10 . Let us point out that we

y1Ž .allow the level set f a to contain infinitely many critical points.

THEOREM 2.7. Let f : X ª R be continuous and let a g R and b g R j
� 4 Ž . Ž .q` a - b . Assume that f has no critical points u with a - f u F b, that
Ž . c w wPS holds, and that f is complete whenë er c g a, b . Then the inclusionc

a b Ž b. Ž a.map i: f ª f induces an isomorphism i*: H* f ª H* f for Alexan-
der]Spanier cohomology.

Proof. Let U be a neighborhood of f a in f b. Since K is compact,a
Ž . wthere exits r ) 0 such that B K : U. By the deformation theorem 9,2 r a

xTheorem 2.14 , there exist « ) 0 with a q « - b and a deformation HH:
w xX = 0, 1 ª X such that

w x;u g X , ; t g 0, 1 : d HH u , t , u F r t , f HH u , t F f u ,Ž . Ž . Ž .Ž . Ž .
aq« � 4 ay«HH f R B K = 1 : f .Ž .Ž .Ž .r a

It follows that

aq« � 4 ay«HH f = 1 : f j B K : U.Ž .Ž . 2 r a

w xBy the noncritical interval theorem 5, Theorem 1.1.14 , there exists a
b w x b b aq«strong deformation retraction KK: f = 0, 1 ª f of f into f . Define

b w x ba deformation h: f = 0, 1 ª f by

1
KK u , 2 t if 0 F t F ,Ž . 2

h u , t sŽ . 1½ HH KK u , 1 , 2 t y 1 if F t F 1.Ž .Ž . 2

Ž b � 4. Ž a w x.Then we have h f = 1 : U and h f = 0, 1 : U. From the previous
lemma, the assertion follows.

Finally, if Y is a Banach space and f : Y ª R is a locally Lipschitzian
Ž . w xfunction, we denote by ­ f u the Clarke subdifferential of f at u 7 .

3. GEODESICS ON NONSMOOTH SETS

n 1, 2Ž n.Let M be a subset of R . In the sequel, each g g W a, b; R will be
w x nidentified with its continuous representative g : a, b ª R . Moreover, we˜

5 5 5 5 1, 2Ž n.will denote by ? and ? the usual norms in W a, b; R and1, 2 p
pŽ n.L a, b; R , 1 F p F `. We set

1, 2 1, 2 n w xW a, b; M [ g g W a, b; R : g s g M for each s g a, b� 4Ž . Ž . Ž .



CLOSED GEODESICS WITH LIPSCHITZ OBSTACLE 773

1, 2Ž .and we define a functional EE : W a, b; M ª R bya, b

1 b 2
EE g [ g 9 s ds.Ž . Ž .Ha , b 2 a

ŽThe next definition is suggested by Proposition 2.3 see also the proof of
.Theorem 3.8 below .

1, 2Ž .DEFINITION 3.1. Let a, b g R with a - b. A curve g g W a, b; M is
said to be energy-stationary if it is not possible to find d , c, s ) 0 and a
map

1, 2 5 5 1, 2w xHH : h g W a, b; M : h y g - d = 0, d ª W a, b; M� 4Ž . Ž .1, 2

with the following properties:

Ž . 2Ž n.a HH is continuous from the topology of L a, b; R = R to that of
2Ž n.L a, b; R ;

Ž . 1, 2Ž . 5 5 w xb for every h g W a, b; M with h y g - d and t g 0, d ,1, 2

we have

HH h , t y h g W 1, 2 a, b; R n ,Ž . Ž .Ž . 0

HH h , t y h F ct , EE HH h , t F EE h y s t .Ž . Ž . Ž .Ž .2 a , b a , b

1, 2Ž .PROPOSITION 3.2. Let g g W a, b; M be energy-stationary. Then for
w x w xe¨ery a , b : a, b , the restriction g is energy-stationary.<w a , b x

Proof. Set g s g . By contradiction, assume there exist d , c, s ) 0ˆ <w a , b x
and

1, 2 5 5 1, 2w xHH : h g W a , b ; M : h y g - d = 0, d ª W a , b ; M� 4Ž . Ž .ˆ 1, 2

1, 2Ž .according to Definition 3.1. For any h g W a, b; M , set h s hˆ <w a , b x
and define

1, 2 5 5 1, 2w xKK: h g W a, b; M : h y g - d = 0, d ª W a, b; M� 4Ž . Ž .1, 2

by

w xHH h , t s if s g a , b ,Ž . Ž .ˆ
KK h , t s sŽ . Ž . ½ w xh s if s f a , b .Ž .

It is readily seen that KK has all the properties required in Definition 3.1. It
follows that g is not energy-stationary, a contradiction.
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Ž .DEFINITION 3.3. Let I be an interval in R with int I / B. A continu-
Ž .ous map g : I ª M is said to be a geodesic on M if every s g int I admits

w x 1, 2Ž .a neighborhood a, b in I such that g belongs to W a, b; M and is<w a, b x
energy-stationary.

DEFINITION 3.4. A closed geodesic on M is a geodesic g : R ª M which
is periodic of period 1.

Ž .THEOREM 3.5. Let I be an inter̈ al in R with int I / B and let g :
< <I ª M be a geodesic on M. Then g is Lipschitzian and g 9 is almost

e¨erywhere equal to a constant.
1, 2Ž Ž . n. Ž .Proof. First, we have g g W int I ; R . For each s g int I , letloc

w xa , b be a neighborhood of s as in Definition 3.3. It is sufficient to shows s
that

b 2s` x w;s g int I , ;w g C a , b : w9 l g 9 l dl s 0.Ž . Ž . Ž .Ž . Hc s s
as

Ž . `Ž x w .By contradiction, let s g int I and w g C a , b be such thatc s s

1 b 2s
s [ w9 l g 9 l dl ) 0.Ž . Ž .H3 as

5 5 w x w x w xLet d ) 0 be such that d w9 - 1 and let c : a , b = 0, d ª a , b` s s s s
be the smooth function such that

w x w x;l g a , b , ; t g 0, d : l s c l, t y tw c l, t .Ž . Ž .Ž .s s

1, 2Ž . w x 1, 2Ž .Define HH: W a , b ; M = 0, d ª W a , b ; M bys s s s

HH h , t m s h m y tw m .Ž . Ž . Ž .Ž .
It is easy to see that HH is continuous from the topology of L2 = R to that
of L2 and that

HH h , t y h g W 1, 2 a , b ; R n ,Ž .Ž . Ž .0 s s

5 5 5 5HH h , t y h F h9 w t ,Ž . 2 `2

and

1 b 22s
EE HH h , t s 1 y tw9 m h9 m y tw m dmŽ . Ž . Ž .Ž . Ž . Ž .Ha , bs s 2 as

1 b 2ss 1 y tw9 c l, t h9 l dlŽ . Ž .Ž .Ž .H2 as

t b 2ss EE h y w9 c l, t h9 l dl.Ž . Ž . Ž .Ž .Ha , bs s 2 as
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By decreasing d , we may assume that

b 2s5 5h y g - d , 0 F t F d « w9 c l, t h9 l dl G 2s .Ž . Ž .Ž .1, 2 H
as

Therefore, if we restrict HH to

1, 2 5 5 w xh g W a , b ; M : h y g - d = 0, d ,Ž .� 41, 2s s

we have

5 5 5 5HH h , t y h F g 9 q d w t ,Ž . Ž .2 `2

EE HH h , t F EE h y s t .Ž . Ž .Ž .a , b a , bs s s s

It follows that g is not energy-stationary, a contradiction.<w a , b xs s

In order to apply the techniques of the previous section to the study of
closed geodesics, we have to introduce a variational structure suitable for

w xsuch a problem. As in 3, 21 we set

X s g g W 1, 2 0, 1; M : g 0 s g 1 3.6� 4Ž . Ž . Ž . Ž .
2Ž n. � 4and we define a functional f : L 0, 1; R ª R j q` by

1¡ 1 2
g 9 s ds if g g X ,Ž .H~f g s 3.7Ž . Ž .2 0¢q` otherwise.

THEOREM 3.8. If g g X is a critical point of f , then g is the restriction to
w x0, 1 of a closed geodesic on M.

Proof. Let us show that, if g is a critical point of f , then g is
w xenergy-stationary on 0, 1 . By contradiction, let d , c, s ) 0 and let HH be as

x xin Definition 3.1. There exists d 9 g 0, d such that

5 5 5 5;h g X : h y g - d 9, f h - f g q d 9 « h y g - d .Ž . Ž .2 1, 2

Then it is easy to deduce, by Proposition 2.3, that g is not a critical point
w xof f. The contradiction shows that g is energy-stationary on 0, 1 .

Now define g g X byˆ
1 1g s q if 0 F s F ,Ž .2 2

g s sŽ .ˆ 1 1½ g s y if F s F 1.Ž .2 2

w xIt is easy to see that also g is energy-stationary on 0, 1 , whence theˆ
assertion.
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4. A COMPARISON WITH A PREVIOUS NOTION

w xIn this section, we compare our definition of a geodesic with that of 2 .
In the following, H will denote a real Hilbert space endowed with the

Ž < .scalar product ? ? .

DEFINITION 4.1. A subset M of H is said to be locally closed if for
every u g M there exists r ) 0 such that M l B u is closed in H.Ž .r

DEFINITION 4.2. A locally closed subset M of H is said to be p-con¨ex
if for every u g M there exist r ) 0 and p G 0 such thatu u

;¨ , w g M l B u , 'z g M l B u :Ž . Ž .r ru u

¨ q w 25 5z y F p ¨ y w .u2

w xThe above notion was introduced in 12, Definition 1.34 , in the particu-
w xlar case where p is independent of u and was developed in 2]4 ,u

following an approach which is equivalent to the more general Definition
w x4.2. See in particular 4, Proposition 1.12 .

If M is a p-convex, locally closed subset of H and u g M, we denote by
T M and N M the tangent and the normal cone to M at u, as defined inu u
w x Ž .7 here we identify H with its dual space, so that N M : H . Let usu
mention that, in this case, the tangent and normal cones may be intro-

w xduced in other equivalent ways, according to 2, Proposition 2.14 . Finally,
we denote by P . H ª T M the orthogonal projection on T M.u u u

In the next result we recall the main properties we need for our
purposes.

THEOREM 4.3. Let M be a p-con¨ex, locally closed subset of H. Then the
following facts hold:

Ž .a there exists an open neighborhood A of M such that any u g A
admits one and only one point in M with minimal distance from u;

Ž .b the induced projection p : A ª M is Lipschitzian of constant 2;
Ž .c for e¨ery u g A, we ha¨e

u y p u g N M ;Ž . p Žu.

Ž . Ž . Ž .d if u is a sequence con¨erging to u in M and n is a sequenceh h
weakly con¨erging to n in H with n g N M, we ha¨e that n g N M;h u uh

Ž . w we there exists a continuous function p: M ª 0, q` such that˜

< 5 5 5 5 2
;u , w g M , ;n g N M : n w y u F p u n w y u .Ž . Ž .˜u
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Ž . w xProof. Property e follows from 4, Proposition 1.12 . The remaining
w xstatements follow from 2, Propositions 2.2 and 2.9 and Remark 2.10 .

THEOREM 4.4. Let M be a p-con¨ex, locally closed subset of H. Then for
e¨ery u g M and ¨ g H, we ha¨e

w q ẗ y p w q ẗŽ .
5 5lim sup F ¨ y P ¨ .utwªu , wgM

qtª0

Proof. Let w g M, w ª u, and t ª 0, t ) 0. Without loss of gener-h h h h
Ž .ality, we may suppose that w q t ¨ y p w q t ¨ / 0 and thath h h h

w q t ¨ y p w q t ¨Ž .h h h h
5 5© n , n F 1.

5 5w q t ¨ y p w q t ¨Ž .h h h h

Observe that we have

5 5w y p w q t ¨ s p w y p w q t ¨ F 2 t ¨ , 4.5Ž . Ž . Ž . Ž .h h h h h h h

w q t ¨ y p w q t ¨Ž .h h h h g N M ,p Žw qt ¨ .h hw q t ¨ y p w q t ¨Ž .h h h h

so that n g N M. On the other hand, we haveu

<w q t ¨ y p w q t ¨ w y p w q t ¨Ž . Ž .Ž .h h h h h h h

F p p w q t ¨ w q t ¨ y p w q t ¨Ž . Ž .Ž .˜ h h h h h h

2
? w y p w q t ¨ ,Ž .h h h

namely,

2
w q t ¨ y p w q t ¨Ž .h h h h

<F w q t ¨ y p w q t ¨ t ¨Ž .Ž .h h h h h

qp p w q t ¨ w q t ¨ y p w q t ¨Ž . Ž .Ž .˜ h h h h h h

2
? w y p w q t ¨ .Ž .h h h
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Ž .Taking into account 4.5 , we deduce that

w q t ¨ y p w q t ¨Ž .h h h h

th

w q t ¨ y p w q t ¨Ž .h h h h 25 5F ¨ q p p w q t ¨ 4 t ¨ .Ž .Ž .˜ h h hž /w q t ¨ y p w q t ¨Ž .h h h h

It follows that

w q t ¨ y p w q t ¨Ž .h h h h
< <lim sup F n ¨ y P ¨ q n P ¨Ž . Ž .u uth h

5 5 5 5 5 5F n ¨ y P ¨ F ¨ y P ¨ ,u u

whence the assertion.

Now assume that M is a p-convex, locally closed subset of R n.
1, 2Ž .LEMMA 4.6. Let a, b g R with a - b, g g W a, b; M , and j g

1, 2Ž n.W a, b; R . Then0

221 1b b< <H h9 q tj 9 ds y H p h q tj 9 dsŽ .a a2 2
lim inf

1, 2 tŽ .hªg , hgW a , b ; M
qtª0

b 2< < < <G y2 p g j y P j g 9 ds.Ž .H g
a

Ž . 1, 2Ž .Proof. Let h be a sequence in W a, b; M strongly convergent toh
1, 2 Ž . x wg in the W -topology and let t be a sequence in 0, q` convergent toh

0. We have

h s q t j s y p h s q t j sŽ . Ž . Ž . Ž .Ž .h h h h w xF 3 j s ;s g a, bŽ .
th

and

h s q t j s y p h s q t j sŽ . Ž . Ž . Ž .Ž .h h h h
lim sup

th h

w xF j s y P j s ;s g a, bŽ . Ž .g Ž s.

w xby Theorem 4.4. Then the same argument of 2, Lemma 3.3 works, with
Lebesgue’s Theorem replaced by Fatou’s Lemma.
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Finally, let us prove the main result of this section.

THEOREM 4.7. Let M : R n be locally closed and p-con¨ex. Moreo¨er, let
Ž .I be an inter̈ al in R with int I / B and let g : I ª M be a continuous map.

Then the following facts are equï alent:

Ž .a g is a geodesic on M;
Ž . 2, 1Ž Ž . n.b g g W int I ; R andloc

g 0 s g N M a.e. in int I .Ž . Ž .g Ž s.

Ž . Ž . Ž . w xProof. a « b Let s g int I and let a , b be a neighborhood ofs s
2, 1Ž n.s as in Definition 3.3. It is sufficient to show that g g W a , b ; R ands s

Ž . x w wg 0 s g N M a.e. in a , b . Let us argue by contradiction. From 2,g Ž s. s s
x 1, 2Ž n.Lemma 3.5 , it follows that we can find s ) 0 and j g W a , b ; R0 s s

such that

b bs s 2< < < <g 9 ? j 9 dl s y2 p g j y P j g 9 dl y 3s .Ž .˜H H g
a as s

Take d ) 0 sufficiently small and define

1, 2 5 5 1, 2w xHH : h g W a , b ; M : h y g - d = 0, d ª W a , b ; MŽ . Ž .� 41, 2s s s s

by

HH h , t s s p h s q tj s .Ž . Ž . Ž . Ž .Ž .

Then HH is continuous from the topology of L2 = R to that of L2 and we
have

HH h , t y h g W 1, 2 a , b ; R n ,Ž .Ž . Ž .0 s s

5 5HH h , t y h F 2 j t .Ž . 22

Moreover, by decreasing d we may assume that

db bs s 2< <h9 y g 9 ? j 9 dl q j 9 dl F sŽ .H H2a as s

and, by Lemma 4.6, that

1 1b b 2s s2< <h9 q tj 9 dl G p h q tj 9 dlŽ .H H2 2a as s

bs 2< < < <y t 2 p g j y P j g 9 dl q s .Ž .˜H g
as
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It follows that

EE HH h , tŽ .Ž .a , bs s

db bs s 2< <F EE h q t h9 ? j 9 dl q j 9 dlŽ . H Ha , bs s 2a as s

bs 2< < < <q2 p g j y P j g 9 dl q sŽ .˜H g
as

db bs s 2< <s EE h q t h9 y g 9 ? j 9 dl y 2s q j 9 dlŽ . Ž .H Ha , bs s 2a as s

F EE h y s t .Ž .a , bs s

w xWe deduce that g is not energy-stationary on a , b , which is a contradic-s s
tion.
Ž . Ž . Ž . w xb « a Let s g int I and let a , b be a neighborhood of s suchs s

2, 1Ž n. w xthat g g W a , b ; R . From 2, Theorem 3.8 it follows that g gs s
2, `Ž n.W a , b ; R . It is sufficient to show that g is energy-stationary ons s

w xa , b . By contradiction, let HH be as in Definition 3.1. In particular, wes s
have

s
EE g G EE HH g , t q HH g , t y g ,Ž . Ž . Ž .Ž . 2a , b a , bs s s s c

0 - t F d « HH g , t / g .Ž .

w xOn the other hand, from 2, Theorems 3.7 and 3.9 we deduce that

2
EE HH g , t G EE g y w HH g , t y gŽ . Ž . Ž .Ž . 2a , b a , b 0s s s s

for some constant w ) 0. It follows that0

s 2
HH g , t y g F w HH g , t y g ;Ž . Ž .2 202

hence s s 0, which is absurd.

5. LIPSCHITZ NEIGHBORHOOD RETRACTS

In this section we establish the topological properties we need to get our
w xmain result. Let us recall a notion from 14 .
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DEFINITION 5.1. A subset M of R n is said to be a LNR if there exist an
open neighborhood U of M in R n and a locally Lipschitzian retraction r :
U ª M.

If Y is a metric space, we shall consider

w xL Y [ g g C 0, 1 ; Y : g 0 s g 1� 4Ž . Ž . Ž .Ž .

Ž Ž . .endowed with the sup-metric L Y is called the free loop space of Y .
n 2Ž n. � 4Now let M be a subset of R and let X and f : L 0, 1; R ª R j q`

Ž . Ž .be defined as in 3.6 , 3.7 .
In the next lemma, we state without proof a simple variant of a

Ž w x.well-known result see, e.g., 19, Theorem 17.1 .

LEMMA 5.2. Let U be an open subset of R n and let

L1 U [ g g W 1, 2 0, 1; U : g 0 s g 1� 4Ž . Ž . Ž . Ž .

be endowed with the W 1, 2-metric. Then there exists a continuous map

w xKK: L U = 0, 1 ª L UŽ . Ž .
such that

;g g L U : KK g , 0 s g , KK g , 1 g L1 U ;Ž . Ž . Ž . Ž .
KK ?, 1 : L U ª L1 U is continuous;Ž . Ž . Ž .

1 w x 1KK L U = 0, 1 : L U ;Ž . Ž .Ž .
1 5 5w x;g g L U , ; t g 0, 1 : KK g , t 9 F g 9 .Ž . Ž . 22

As we have already mentioned in the Introduction, we want to apply a
Ž .variational argument to the continuous function GG : epi f ª R. There-f

fore the next result gives us crucial information.

THEOREM 5.3. Assume that M is a LNR. Then the map

p : epi f ª L MŽ . Ž .
g , l ¬ gŽ .

Ž Ž . 2 .is a homotopy equï alence epi f is endowed with the topology of L = R .

Ž . w xProof. Let r : U ª M be as in Definition 5.1 and KK: L U = 0, 1 ª
Ž . � Ž Ž ..4L U as in Lemma 5.2. The function g ¬ f r ( KK g , 1 is locally bounded

Ž . Ž .on L M . Let m: L M ª R be a continuous function such that

;g g L M : f r ( KK g , 1 F m g .Ž . Ž . Ž .Ž .
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Then the map

w : L M ª epi fŽ . Ž .
g ¬ r ( KK g , 1 , m gŽ . Ž .Ž .

is well defined and continuous. Since

p (w g s r ( KK g , 1 ,Ž . Ž . Ž .
Ž . Ž .it is evident that p (w is homotopic to the identity map of L M .

Ž . w wNow observe that there exists a continuous function L: L U ª 1, q`
such that

Ž . w x;g g L U , ;s , s g 0, 1 :1 2

r g s y r g s F L g g s y g s .Ž . Ž . Ž . Ž . Ž .Ž . Ž .2 1 2 1

It follows that

Ž . Ž . w x; g , l g epi f , ; t g 0, 1 :

f r ( KK g , t F L2 KK g , t f g F L2 KK g , t l.Ž . Ž . Ž . Ž .Ž . Ž . Ž .
Since

w (p g , l s r ( KK g , 1 , m g ,Ž . Ž . Ž . Ž .Ž .
Ž .we have that w (p is homotopic to the map

g , l ¬ r ( KK g , 1 , L2 KK g , 1 .Ž . Ž . Ž .Ž .� 4Ž .
This in turn is homotopic to the map

g , l ¬ g , L2 g l ,Ž . Ž .� 4Ž .
Ž . Ž .which is clearly homotopic to the identity map of epi f . Therefore w (p

Ž .is homotopic to the identity map of epi f and the proof is complete.

w xThe next result is a simple consequence of a well-known theorem of 24 .

THEOREM 5.4. Assume that M is an absolute neighborhood retract. Sup-
pose also that M is compact, simply connected, and noncontractible in itself.

qŽ . � 4 qŽ Ž .. � 4Then there exists q g N such that H M s 0 and H L M / 0 , where
H* denotes Alexander]Spanier cohomology with coefficients in R.

w xProof. Since M is a compact ANR, it follows from 25 that M is
homotopically equivalent to a compact polyhedron. Therefore M has

wcohomology of finite type. On the other hand, from 24, Main Theorem
x qŽ Ž .. � 4and Addendum we deduce that H L M / 0 for infinitely many q’s.
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COROLLARY 5.5. Assume that M is a LNR. Suppose also that M is
compact, simply connected, and noncontractible in itself. Then there exists

qŽ . � 4 qŽ Ž .. � 4q g N such that H M s 0 and H epi f / 0 .

Proof. Being a LNR, M is clearly an ANR. Then the assertion follows
from Theorems 5.3 and 5.4.

PROPOSITION 5.6. Assume that M is a LNR. Suppose also that M is
connected, but not simply connected. Then there exists g g X such that g is
not contractible to a point in M.

Ž .Proof. Let r : U ª M be as in Definition 5.1 and let h g L M be
Ž .noncontractible in M. Let h be a sequence of smooth closed curves inh

n Ž .R with h uniformly convergent to h. Since the range of h is containedh h
in U eventually as h ª `, we have r (h g X for large h. On the otherh
hand, it is easy to show that r (h is homotopic to h again for large h.h
Then the assertion follows.

6. LIPSCHITZ OBSTACLES

Let g : R n ª R be a locally Lipschitzian function such that

; x g R n : g x s 0 « 0 f ­ g xŽ . Ž .

and let

M s x g R n : g x F 0 .� 4Ž .

w x n w wAccording to 6 , define a lower semicontinuous function l: R ª 0, q`
by

< <l x s min a : a g ­ g x .� 4Ž . Ž .

w xThe same argument of 6, Lemma 3.3 shows that there exists a locally
Lipschitzian map

¨ : x g R n : 0 f ­ g x ª R n� 4Ž .

such that

0 f ­ g x « ¨ x F 2l x ,Ž . Ž . Ž .
2² :0 f ­ g x , a g ­ g x « a , ¨ x G l x .Ž . Ž . Ž . Ž .
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� n Ž .4Let OO be an open neighborhood of x g R : 0 g ­ g x and let q :
n w xR ª 0, 1 be a locally Lipschitzian function such that

x g OO « q x s 0,Ž .
g x s 0 « q x s 1.Ž . Ž .

Finally, define n : R n ª R n by

¡ ¨ xŽ .
q x if 0 f ­ g x ,Ž . Ž .~n x sŽ . ¨ xŽ .¢
0 if x g OO .

Then n is well defined and locally Lipschitzian. Moreover, we have

g x s 0 « n x s 1,Ž . Ž .
1² :g x s 0, a g ­ g x « a , n x G l x .Ž . Ž . Ž . Ž .2

THEOREM 6.1. The set M is a LNR.

Proof. Let h: R n = R ª R n be the flow generated by the Cauchy
problem

­h
x , t s yn h x , tŽ . Ž .Ž .

­ t

h x , 0 s x .Ž .

Ž .Since h ?, y1 is a homeomorphism, the set

U s h x , y1 : g x - 0� 4Ž . Ž .

n w xis open in R . The same arguments as in 6, Lemma 3.4 show that

; x g M : g h x , 1 - 0,Ž .Ž .

Ž .so that M : U. Finally, for every x g U with g x G 0 there exists one
Ž . w w Ž Ž Ž ...and only one t x g 0, 1 such that g h x, t x s 0 and the function t

Ž . y1Ž .is locally Lipschitzian with t x s 0 on g 0 . Then

h x , t x if x g U and g x G 0Ž . Ž .Ž .
r x sŽ . ½ x if g x F 0Ž .

is a locally Lipschitzian retraction of U onto M.
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LEMMA 6.2. For e¨ery compact subset K : M there exist c, r ) 0 such
that

1 y t x q t y y rn y g MŽ . Ž .Ž .

< < w xwhene¨er x g M, y g K, c x y y F r F r, and t g 0, 1 .
1Proof. By contradiction, let c s h, let r s , and let x g M, y g K,h hh

1< < w xh x y y F r F , and t g 0, 1 be such thath h h hh

g 1 y t x q t y y r n y ) 0.Ž . Ž .Ž .Ž .h h h h h h

Of course, we have r ) 0 and t ) 0. Also, up to a subsequence, we haveh h
Ž .y ª y g K. It follows that x ª y and g y s 0. By Lebourg’s theoremh h

w x Ž Ž .. Ž .7 , we may find z between x and y y r n y and a g ­ g z suchh h h h h h h
that

² :t a , y y r n y y x ) 0,Ž .Ž .h h h h h h

namely,

y y xh h ² :a , ) a , n y .Ž .h h h¦ ;rh

Ž . ² Ž .:Up to a subsequence, we have a ª a g ­ g y . It follows that a , n yh
F 0, which is absurd.

2Ž n. � 4 Ž . Ž .Now let X and f : L 0, 1; R ª R j q` be defined as in 3.6 , 3.7 .

Ž .THEOREM 6.3. For e¨ery g g X, l ) f g , and « ) 0, there exist d ) 0
and a map

5 5 w xHH : h g X : h y g - d , f h - l q d = 0, 1 ª X� 4Ž .2

2Ž n.such that HH is continuous from the topology of L 0, 1; R = R to that of
2Ž n.L 0, 1; R and

HH h , t y h F « t ,Ž . `

'HH h , t y h F « q 8l t ,Ž . Ž .1, 2

f HH h , t F f h q t f g y f h q « .Ž . Ž . Ž . Ž .Ž . Ž .

Žw x.Proof. Let K s g 0, 1 and let c, r ) 0 be given by the previous
lemma. Let

g s s g s y rn g s ,Ž . Ž . Ž .Ž .ˆ
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x xwhere r g 0, r is such that
« «

5 5 5 5g y g F , g y g F , f g F f g q « .Ž . Ž .ˆ ˆ ˆ` 1, 22 2

Let d ) 0 be such that
«

2' '8l q d q 4d F q 8l ,
2

r «
5 5 5 5;h g X : h y g - d , f h - l q d « h y g F min , .Ž .2 ` ½ 5c 2

Then, from Lemma 6.2 we deduce that

HH h , t [ 1 y t h q tg g XŽ . Ž . ˆ
5 5 Ž . w xwhenever h g X, h y g - d , f h - l q d , and t g 0, 1 . Of course, HH2

is continuous from the topology of L2 = R to that of L2. Moreover, we
have

5 5 5 5 5 5HH h , t y h s t g y h F g y g q g y h t F « t ,Ž . Ž .ˆ ˆ` ` ``

5 5 5 5 5 5HH h , t y h s t g y h F g y g q g y h tŽ . Ž .ˆ ˆ1, 2 1, 2 1, 21, 2

« 1r22 22 5 5 5 5F q d q 2 g 9 q 2 h9 tŽ .2 2ž /2
« 1r22s q d q 4 f g q 4 f h tŽ . Ž .Ž .ž /2
« 1r22F q d q 8l q 4d tŽ .ž /2

'F « q 8l t .Ž .
Finally, we have

f HH h , t s f h q t g y h F f h q t f g y f hŽ . Ž . Ž . Ž . Ž .Ž . Ž . Ž .ˆ ˆ
F f h q t f g y f h q « ,Ž . Ž . Ž .Ž .

whence the assertion.

Now we can prove the main result of this section.

Ž . Ž . Ž .THEOREM 6.4. For e¨ery g , l g epi f with l ) f g , we ha¨e
< <Ž .d GG g , l s 1.f

1 Ž Ž .. x xProof. Let s s l y f g , let « g 0, s , and let5

5 5 w xHH : h g X : h y g - d , f h - l q d = 0, 1 ª X� 4Ž .2

5 Ž . 5be as in the previous theorem. In particular, it is HH h, t y h F « t.2
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By reducing d , we can assume that

d F 1, d F s , d f g q s F s .Ž .Ž .
Define

w xKK: B g , l l epi f = 0, d ª epi fŽ . Ž . Ž .Ž .d

ŽŽ . . Ž Ž . .by KK h, m , t s HH h, t , m y s t .
Ž .If f h G l y 3s , we have

f HH h , t F f h y f h y f g y s t F f h y s t F m y s t .Ž . Ž . Ž . Ž . Ž .Ž . Ž .
Ž .On the other hand, if f h F l y 3s , we have

f HH h , t F 1 y t f h q t f g q «Ž . Ž . Ž . Ž .Ž . Ž .
F 1 y t l y 3s q t f g q sŽ . Ž . Ž .Ž .
F l y 2s F l y d y s F m y s t .

Ž .Therefore KK takes actually its values in epi f . Since

2 2'd KK h , m , t , h , m F « q s t ,Ž . Ž .Ž .Ž .
we have

s
< <dGG g , l GŽ .f 2 2'« q s

and the assertion follows from the arbitrariness of « .

7. PROOF OF THE MAIN RESULT

2Ž n. � 4Proof of Theorem 1.1. Let X and f : L 0, 1; R ª R j q` be
Ž . Ž . ndefined as in 3.6 , 3.7 . Since M is closed in R , f is lower semicontinu-

ous.
Assume first that M is simply connected. Consider also the continuous

Ž . Ž .0function GG : epi f ª R. It is easy to see that GG is homeomorphic tof f
qŽŽ .0. � 4M. From Theorem 6.1 and Corollary 5.5 we deduce that H GG s 0f

qŽ Ž .. � 4 Ž .and H epi f / 0 for some q g N. Of course, epi f , endowed with
the metric of L2 = R, is complete. Since M is compact, it is readily seen

Ž .b Ž .that GG is compact for any b g R. In particular, GG satisfies PS forf f c
Ž . Ž .any c g R. By Theorem 2.7 there exists g , l g epi f with l ) 0 and

< <Ž . Ž .d GG g , l s 0. From Theorem 6.4 it follows that l s f g . Thereforef
< <Ž .df g s 0 and g g X is not a constant curve. From Theorem 3.8 the
assertion follows.
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Now assume that M is not simply connected. The set

� 4X s g g X : g is not contractible in M1

1, 2Ž n.is sequentially weakly closed in W 0, 1; R and nonempty by Theorem
6.1 and Proposition 5.6. Since M is compact, it is easy to show that f

< <Ž .restricted to X admits a minimum point g . Of course, df g s 0 and g1
is not constant. As in the previous case, we get the existence of a
nonconstant closed geodesic on M.
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