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Abstract

We consider the classes of “Grothendieck-integral” (G-integral) and “Pietsch-integral” (P-integral)
linear and multilinear operators (see definitions below), and we prove that a multilinear operator
between Banach spaces is G-integral (resp. P-integral) if and only if its linearization is G-integral
(resp. P-integral) on the injective tensor product of the spaces, together with some related results
concerning certain canonically associated linear operators. As an application we give a new proof of
a result on the Radon—Nikodym property of the dual of the injective tensor product of Banach spaces.
Moreover, we give a simple proof of a characterization of the G-integral operatar6konX) spaces
and we also give a partial characterization of P-integral operato€y &n X) spaces.
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1. Introduction

In [9], Grothendieck introduced thietegral operators, which we calb-integral be-
tween Banach spaces (in the more general context of locally convex spaces). Later on,
Pietsch presented another (more restrictive) definition of integral operators, which we call
P-integral, closely related to the previous one. Both notions have been deeply studied and
applied by many authors in the theory of Banach spaces. More recently, Alencar [1] ex-
tended the definition of P-integral operators to multilinear operators and polynomials, and
that notion has been studied by several authors since then. In Section 2, we introduce a
generalization of G-integral operators modelled on Alencar’s, and we show that a multi-
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linear operator on a product of Banach spaces is P-integral (resp. G-integral) if and only
if its linearizationis a P-integral (resp. G-integral) operator on the injective tensor product

of the spaces, together with some related results concerning certain canonically associated
linear operators. As an application we obtain, with a completely new approach, a result on
the Radon—Nikodym property of the dual of the injective tensor product of Banach spaces
which had already been obtained in [13].

In Section 3 we use the previous results to obtain a simple proof of a result of [14],
characterizing the G-integral operators on spaces of vector valued continuous functions in
terms of their representing measures, and we present a similar result partially characteriz-
ing the P-integral operators on these same spaces.

The notations and terminology used along the paper will be the standard in Banach
space theory, as for instance in [6] or [7]. However, before going any further, we shall
clear out some terminology* (X1, ..., Xx; ¥) will be the Banach space of all the con-
tinuousk-linear mappings fromXy x --- x Xy into Y. WhenY =K or k = 1, we will
omit them. IfT € £¥(X1, ..., Xx; Y) we shall denote by : X1 ® --- ® Xx — Y its lin-
earization. As usual{1®; - - - ®, Xy stands for the injective tensor product of the Banach
spacesXy, ..., Xi andX1®; - - - ®, X, stands for their projective tensor product. The sign
~ between two Banach spaces indicates that they are isomorpiidslia Banach space
andX is ac-algebrapvrca(¥'; X) denotes the Banach space of the regular measures with
bounded variation : ¥ — X endowed with the variation norm. For any Banach spéce
By is a compact set when we endow it with the weabpology; we writeXy+ for the
Borel o-algebra ofBx+. For any Banach spack, kx: X < C(Bx+) andiy : X «— X**
will denote the canonical isometric inclusions. We will often use thaki;if Ko are com-
pact Hausdorff spaces, théfiK1 x K»), C(K1, C(K2)) andC (K1)®,C(K>) are isometri-
cally isomorphic. Throughout the paper the expresgio@(K) — L1(u) will denote that
w is a scalar regular Borel measure on a compacKksand j is the canonical mapping.

This mapping is known to be G-integral, equivalently P-integral, in the sense of Definitions
2.2 and 2.3 below.

2. Integral mappings

There are several definitions of “integral” applications which have already been used in
the literature. We state presently those which we will need.

Definition 2.1. A multilinear form7T e £F(X1, ..., Xy) is integral if7 (i.e., its lineariza-
tion) is continuous for the injective) topology onX1 ® - - - ® Xx. Its norm (as an element
of (X1Q - - - ®: X3)*) is theintegralnorm of T, || T [lint := |7 ||

Definition 2.2. An operatorT € L(X;Y) is G-integral (G for Grothendieck) if the
associated bilinear form

Br:XxY"—K, (x,y)y(TW),

is integral. In that case the G-integral normiaf|| 7 || gint := || Br llint- Z(X; Y) denotes the
Banach space of the integral operators fr&nmto Y, endowed with the integral norm.
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It is known [6, Theorem 5.6] thaf : X — Y is G-integral if and only if for any weak
compact norming subsét C By+, there exists a scalar regular measuren K such that
T admits a factorization

T

X Y C Y**
; ;
C(K)———~ 11w

where k is the natural isometric isomorphism defined bgc)(x*) = x*(x). This is
equivalent to the existence of a regular Borel measure of bounded var@tibefined
on K and with values i’ ** such that, for every € X.

T(x)= /x(x*)dG(x*).

K

In that case)| T ||gint = inf{v(G); whereG representd” as abovg It follows from the
proof of [6, Theorem 5.6] that this factorization result remains trué i anycompact set
(not necessarily contained iBx+) such thatX is isometrically contained i€ (K). If X

is isomorphically (but not isometrically) containedd(K), then the result remains true
except for the statement about the norm.

Sincej is always G-integral, it follows trivially from the ideal property of G-integral
operators that the result is also true if there exists one gudbr which the previous
factorization holds.

We will also use later the known fact, that, for afiye Z(Y; Z*), the bilinear form
Br:Y x Z — K given byBr(y, z) = T (y)(z) is integral.

Definition 2.3. An operatorT € L(X; Y) is said to be P-integral (P for Pietsch) if there
exists a regulal’-valued Borel measur& of bounded variation oBx+ such that, for
everyx € X,

T(x):/x*(x)dG(x*).

Byx

In that case the P-integral norm &, ||T ||pint := inf{v(G), where G represents” as
above. PZ(X; Y) denotes the Banach space of the P-integral operators Xranto Y,
endowed with the P-integral norm.

Itis known [6, p. 99] thaf is P-integral if and only if for any weakcompact norming
subsetK C By there exists a scalar regular measureon K such that7 admits a
factorization

x—T .y

o,

C(K)—L=Li(w)
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This is equivalent to the existence of a regular Borel measure of bounded vaiiation
defined onK and with values ir¥ such that, for every € X,

T(x)= /x(x*) dG(x™).
K

As in the case of G-integral operators, the result remains trieiff any compact set
such thatX is contained inC (K ). Again, it is clear thaf" is P-integral if and only if there
exists onek andu as above.

It follows immediately from these comments the existence of a norm one surjective
operatoly : bvrca( X'x+; Y) — PZ(X; Y).

Itis obvious from the definitions th&t(K) spaces play a prominent role in the study of
integral operators. It is known (and we will often use it) that, on these spaces, P-integral,
G-integral and absolutely summing operators coincide (see [7, Chapter VI], [6]) and that,
given a compact Hausdorff spakeand a Banach spacg an operatof’ € L(C(K); X) is
P-integral (equivalently G-integral) if and only if its representing meagunas bounded
variation, and, in that case(u) = || T ||pint= I T || Gint.

P-integral operators are obviously G-integral. If the image space is complemented in its
bidual (for example if it is a dual space), then the converse is easily seen to be true, but
in general there are G-integral, not P-integral operators, although there seem to be no easy
examples of this. In [8] (see also [5, Appendix D]), the authors show the existence of a G-
integral operator failing to be P-integral. Their example relies on the existence of a Banach
space with the Approximation Property but without the Bounded Approximation Property.

In [1], Alencar introduced the following extension of the previous definition

Definition 2.4. A multilinear operatorT” € £¥(X1, ..., Xx; Y) is said to be P-integral if
there exists a regular-valued Borel measur& of bounded variation on the product
Byy x -+ x By such that

T(x1,...,xk) = / xik(xl)---x:(xk)dG(xI,...,xZ‘)
BX?[X'”XBX}T
for all (x1,...,xx) € X1 x --- x X;. The space of P-integral multilinear operators

[,’,g,(Xl,...,Xk; Y) is a Banach space with the nor{iT'||pint = inf{v(G), where G
representd’ as abovg

Looking at Definition 2.4 and the comments following Definition 2.2, the following
extension of Definition 2.2 seems to be natural.

Definition 2.5. A multilinear operatofl’ € £K(X1, ..., Xx; Y) is said to be G-integral if
there exists a regular**-valued Borel measuré& of bounded variation on the product
Bxx x -+ x By such that

T(x1,...,x5) = / xf(xl)uox,’:(xk)dG(xI,...,x,f)

By XX By
X1 Xx
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for all (x1,...,xx) € X1 x --- x X;. The space of G-integral multilinear operators
E’él(Xl,...,Xk; Y) is a Banach space with the norffT ||gint = inf{v(G), where G
representgd’ as abovg

Clearly, as in the linear case, every P-integral multilinear opefaisrG-integral, and
IT lgint < || T ||lpint; moreover, ifY is complemented in its bidual, theﬁ’él(Xl, L X Y)
andﬁ’,;| (X1, ..., Xx; Y) are identical spaces with identical norms.

We state now a first result.

Proposition 2.6. Let X1, ..., Xk, Y be Banach spaces and consider a muItiIineaerperator
T e LF(X1,...,Xx;Y). ThenT is G-integral if and only if its linearizationT its
continuous for the injective topology and

T eZ(X1®: -+ ®eXs: ).
In that case||T [igint = I llgint, SO £ (X1, ..., Xx; ¥) and Z(X1&; - - 8¢ Xx; ¥) are

isometrically isomorphic. The result remains true word by word if we replace “G-integral
for “P-integral” throughout.

Proof. If T is G-integral, therf" factorizes as

X1 X x Xy r Y

kx1><~~~xkxkl Tb

C(Bxp)®: B C(Byx:) —L—=L1()

whereky, x --- x kx, is the muﬁilinear operator given by, x --- x kx, (x1, ..., x¢) =
kx,x1® -+ ® kx,xx. Therefore T factorizes as

Xl@s"'@sxk L Y

kx1®~~~®kxkl Tb
C(Bx:)®: - ®:C(Bx;) Li(w)
Sinceky, ® - ®kx, : X1®e - - - @ Xi — C(BXi)ég e @SC(BXE) is an isometry, we get
that7 is G-integral and| 7 [lgint = || T llgint (Se€ the comments after Definition 2.2). For

the converse implication we just need to follow backwards this same reasoning. The case
of P-integral operators is entirely analogousi

This proposition is crucial for the rest of the paper. It also provides a plentiful of
examples of integral multilinear operators. For example,Xef..., X,+1 be Banach
spaces, and consider afiye (X1®; - - - ®¢ X,+1)*. Define now

T:X1x--xXy— X, 4
by
T(xg, .. x)(pg1) =S(X1® - - - @ Xp11).
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SinceT : X1®; -+ R Xn — X, is G-integral (Definition 2.2), using Proposition 2.6 we
get thatT is a G-integral multilinear operator. In fact, since it takes values in a dual space,
it is also P-integral.

We can also prove the following.

Corollary 2.7. Let X1,..., Xk, Y be Banach spaced e LK(X1,...,Xx; Y) and let
K1, ..., K; be compact Hausdorff spaces such thatis isomorphically contained in
C(K;) (1<i<k).Callk; : X; — C(K;) to the embeddings. Théhis G-integral(resp. P-
integral) if and only if there exists a regular Borel measureof bounded variation defined
on K1 x --- x K and with values irt** (resp. with values irY) such that

T(x1,...,x¢) = / Ji(x) () - e @) dG (e, .. 1).
Kix--xKg

Moreover, if every; is an isometry, thetj T ||gint = inf{v(G), whereG representsl’ as
abovg, and the same holds fQT || pint.

Proof. If T is G-integral, ther is G-integral. Since
kl ®---Q® kk : Xl@s T @sxk - C(Kl)®e t @sC(Kk)

is an isomorphic embedding (and an isometry if evigrys an isometry), we get that
factorizes as

Xl@s"'@exk L Y

k1®~~®kki Tb

C(K)®; - 8:C(Ky) ——L1()
soT factorizes as

X1 X x Xy r Y

k]_X“'kal Tb

CKD)®: - B: C(Ky) ——L—— L1(u)

which proves what we wanted. For the converse implication we just have to follow the
reasoning backwards. The result about the norms in the isometric case is easy. The case of
P-integral multilinear operators is entirely analogousi

Recall that in [1], Alencar defineskahomogeneous polynomi® betweenX andY to
beP-integralif there exists & -valued regular Borel measure of bounded variation defined
on By+ such that, for every € X,

P = [ 3ot aGan,
By
and he proves in [2, Proposition 2] th& is P-integral if and only if its associated

symmetric multilinear operatdf € £X(X; Y) is P-integral. Using this and Proposition 2.6
we get
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Corollary 2.8. A k-homogeneous polynomi&l betweenX andY is P-integral if and only
if its associated linear operatdf < C(@';SX; Y) is P-integral.

Similarly we could define G-integral polynomials and obtain a similar result for them.
We recall that an operatof : X — Y is called nuclear if there exists sequences
(x}) C X*, and(y,) C Y such thafy_,~ ; llx}||[ly«|l < co and such that

(e.¢]
T(x)=) xi(x)yn
n=1
for all x € X. The known relations between nuclear and integral operators which we use in
this paper are the following{ andY Banach spaces).

X* has the Radon—Nikodym property if and only if, for evEnyeachT € PI(X; Y) is
nuclear[1, Theorem 1.3].

Let X be such thatX* has the approximation property. Thex* has the Radon—
Nikodym property if and only if, for every, everyT € I(X;Y) is nuclear[7, Theo-
rem VII1.4.6].

Y has the Radon—Nikodym property if and only if for ev&ryeveryT € PI(X;Y) is
nuclear[7, Theorem VI.4.8] or [5, D7].

Using results of [1] we obtain the following corollary to Proposition 2.6, a result which
had been already obtained, with a totally different approach, in [13, Theorem 1.9]

Corollary 2.9. Given X and Y Banach spacesX* and Y* have the Radon—Nikodym
property if and only i X®, Y)* also has the Radon—Nikodym property.

Proof. Supposex* andY* have the Radon—Nikodym property. According to [1, Theo-
rem 1.3], it suffices to see that, for every Banach spAceevery P-integral operator
T:X®.Y — Z is nuclear. Let thefl be one such operator. According to Proposition 2.6,
T:X x Y — Z is P-integral. Then, [1, Theorem 2.3] states tifats nuclear (for the
definition of nuclear bilinear operator see [1]). It follows immediately from the definitions
that, in that case] is nuclear, which finishes one half of the proof. The other implication
is clear since the Radon—Nikodym property is stable under closed subspaces.

G-integral operators form an operator ideal. This ideal is not injective, bt 4fare
Banach spaces anig: Z — Z** is the canonical injection, then an operaforY — Z is
integral if and only ifiz o T:Y — Z** is integral, and, in that case, the integral norms
of T andiz o T coincide ([7, Theorem VIII.2.8]). Hence, we can define an isometric
isomorphism into

h:Z(Y;Z)— Z(Y; Z™)
by
WT)=izoT.

If T:X xY — Zis abilinear operator, then we can consider a linear opefatof —
L(Y; Z) givenbyTy(x)(y) = T (x, y). With this notation, we can state the following result.
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Proposition 2.10. Let X, ¥, Z be Banach spaces and I&te £2(X, Y; Z). Consider the
following statements

(@) ThisZ(Y; Z)-valued and G-integral when conS|derlng with values in this space.
(b) T is continuous for the topology andT: X®,Y — Z is G- -integral.

(c) T:X x Y — Z is G-integral.

(d) T1isZ(Y; Z)-valuedandh o T1: X — Z(Y; Z**) is G-integral.

Then,(b), (c) and(d) are equivalent anda)implies all of them.
If (b) holds, then| T ||gint = |IT llGint = II# © T1lint, @nd, if (a) holds, then| T ||int <

I 71l Gint.
Moreover, consider the following conditions

(1) X is anL., space.
(2) Y* has the approximation property and the Radon—Nikodym property.
(3) Z is complemented in its bidual.

Then, any of them suffices to guarantee {daimplies(a).

Proof. Clearly (a) implies (d).

Suppose now that (d) holds. Then, the fdfn X®. (Y ®, Z*) — K associated th o Ty
is continuous forAthe-topologies. So, the operat@g: X®,Y — Z** is G—integﬁal, and
clearly 73 =iz o T. So, according to the comments preceding this proposifiois, G-
integral and that is (b).

Now, if (b) holds, we can define the associated (continuous) operator

T2:X®:.YR:.Z* — K.
Now we can consider the G-integral operator

T3:X > (YR ZH* ~ I(Y; Z*)
canonically associated t@>. It is easy to check that, for every e X andy € Y,
T3(x)(y) = iz(T1(x)(y)). Hence,Ty is Z(Y; Z)-valued, and: o T1 = T3 is G-integral, so
(d) holds, and

1T llgint= I T2llint= I T3llgint= Ik o T1||Gint.

The equivalence between (c) and (b) together with the equmﬁﬂyeim = |IT llGint
follows from Proposition 2.6.

For the rest of the proof, if (1) holds, then [12, Theorem 111.3] states that the G-integral
operators onX are exactly the absolutely summing operatorsXnSince absolutely
summing operators are amjective operator ideal, if (d) holds, thepo T1 is absolutely
summing, sdl; is absolutely summing, hence G-integral.

Suppose that (2) holds and let us ¢8ll{Y; Z) to the space of nuclear operators between
Y andZ. Then

IY:Z2)=NY;Z)~Y*®, Z
and
I(Y; Z¥) = N(Y; Z*) ~ Y* @, Z**
(see [7, Theorem VIIl.4.6] and [5, Corollary 1, p. 65]).
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Let us recall that ifB: E x F — K is a bilinear form, we can define canonically
an extensionB: E x F* — K, so thatB is weak continuous in the second variable
and ||B|| = ||B| (see, f.i., [7 VII1.2]). Hence, if we considef : E®, F — K, we can
canonically extend” to T : EQ, F** — K, with |T|| = ||T|.

So, we can define the operator

e Y @z Z" > (Y*@r Z)™
by
e(g)(T)=T(g), foreverygeY*®,Z* andT € (Y*®,Z)*.

It is easy to see thatis continuous andle|| < 1. Moreover, it is clear that the restriction
of ¢ to Y*®,, Z is the canonical inclusion df*®,, Z into its bidual.

So, if we considee as an operator frofi(Y; Z**) into Z(Y; Z)**, eo h:Z(Y; Z) —
Z(Y; Z)** (h defined as above) is the canonical injection of a space into its bidual.

Therefore,ifho T1: X — Z(Y; Z**) is G-integral, theroho T1: X — Z(Y; Z)** is G-
integral, and, as follows from the comments preceding this propositiarX — Z(Y; Z)
is integral.

If (3) holds, andr : Z** — Z is a projection, then the operatet Z(Y; Z**) — Z(Y; Z)
defined byp(T) = o T is also a projection. The result follows now easilya

In the next section we will apply this proposition using the fact {iak’) spaces are
Lo Spaces.

After writing a preliminary version of this paper we have learnt that parts of Prop-
osition 2.10 can be seen in [11].

For P-integral operators we can give a similar result (but not identical; note that the
implication which we cannot always prove now is reversed).

Proposition 2.11. Let X, ¥, Z be Banach spaces and I&te £2(X, Y; Z). Consider the
following statements

(@) T1is PZ(Y; Z)-valued and P-integral when considered with values in this space.
(b) T is continuous for the injective topology afid X®,Y — Z is P- integral.
(c) T:X x Y — Z is P-integral.

Then(b) and (c) are equivalent and they both imp{g). Moreover, ifZ is complemented
in its bidual, then(a) is equivalent tqb) and (c).

Proof. The equivalence between (b) and (c) is Proposition 2.6.
Let us now suppose that (c) holds. ThHEfiactorizes as

Xxy—L 7

kxXkyl/ Tb

C(Bx*)®:C(By+) — = L1(1)
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The operatob o j: C(Bx+)®,C(By+) — Z is P-integral, equivalently G-integral, so, by
Proposition 2.10, the operatt C(Bx+) — Z(C(By+); Z) givenbyS(f)(g) =boj(f ®
g) is G-integral, hence P-integral. SB,=a o g o S o kx (look at the diagram)

x X C(Bx+) —> T(C(By+): Z) ~ bvrca Sy+: Z) —> PT(Y: Z) - L(Y: Z)

wherea is the natural mapping anglis the already mentioned quotient. This proves (a).
Finally, if (a) holds we always have thdi:X — Z(Y; Z) is integral, sol is integral
by Proposition 2.10. Hence, # is complemented in its bidual, thghis P-integral, and

1T llpint=IIT llgint < [ T1llGint < | T1lIPint,

which finishes the proof. O

Remark 2.12. The difficulty when trying to prove that (a) implies (b) in Proposition 2.11
above is that, gived € PZ(Y; Z), and a compact sé&f with Borelo-algebraX’ such that

Y is contained irC (K ), we do not know how to seletihearly a measuré& < bvrca(Y'; Z)

which representd. In the next proposition we show some cases in which we can surpass
this difficulty.

Proposition 2.13. With the notation of Propositior2.11, if any one of the following
conditions holds

(1) Y is isomorphic to aC(K) space

(2) X is isomorphic to a closed subspace of &K') space withK scattered
(3) PZ(Y, Z) has the Radon—Nikodym property

(4) X* has the Radon—Nikodym property.

then(a) implies(b) and(c).

Proof. Let us suppose that (a) holds aridv C(K). Ty factorizes as

X — = PI(Y: Z) ~I(C(K): Z)

S
C(Bx+) / La(u)

Sinceb o j:C(Bx+) — I(C(K); Z) is G-integral, we get that the operat®rC (Bx«)®s
C(K) — Z is G-integral, hence P-integral. Sb,factorizes as

Xxy—=>L ~7

] !

C(Bx)®:C(K)—L=Li(w)

wherei ;Y — C(K) is the isomorphism. S@ is P-integral.
Suppose now thakX is isomorphically contained i€ (K) with K scattered. In that
case any regular countably additive Borel measurefined onk is purely atomic [10,
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88, Theorem 10], henck1(u) is isomorphic to¢1. Suppose then that (a) holds. By the
definitions and the previous comments, we get that there exist an opgératat a G-
integral operatoh such thatly = b o h (see the diagram)

bvrca Xy+; Z)

q

X— 1 _PIY,7)
I
C(K)—" 2

Applying the lifting property of¢1, we get that there exists : 1 — bvrca( Xy«; Z)
such thatg o b’ = b, whereq is the canonical quotient mapping. 98,0 h:C(K) —
bvrca( Zy+; Z) ~ I(C(By+); Z) is G-integral; hence, the associated operatof (K)®,
C(By+) — Z is G-integral, equivalently P-integral. So there exisandg such thatT
factorizes as

Xxy—71>L -7

iXkyl TZ‘
C(K)®:C(By+)——= L1(1)

wherei : X — C(K) is the isomorphic embedding. Sois P-integral.
Suppose now thaPZ(Y; Z) has the Radon—Nikodym property and that (a) holds. In
that case, there exist j, b andu such thatfs = b o j oi (see the diagram)
bvrca(Xy«; Z)

q
T

X PI(Y,Z)
: Tb
C(Bx+) ——Li(w)

SincePZ(Y; Z) has the Radon—-Nikodym property, we know tlhais representable.
Representable operators factor throdghso again the lifting property of; allows us to
assure the existence of an operatarLi() — bvrca(Xy=; Z) such thaly o b’ = b. The
proof now proceeds similarly to the previous cases.

Finally, suppose thak* has the Radon—Nikodym property. In that case, [1, Theo-
rem 1.3] states that, for every Banach spaceeveryT € PZ(X; E) is a nuclear oper-
ator. Suppose then that (a) holds. Th&njs nuclear. So, there exist bounded sequences
(x}) € X* and(S,) € PZ(Y; Z) such thatd ", ; ||lx[|1Sx |lpint < oo and so thafy can be
written as

Ti(x) =Y x5(xX)Sy.

n=1
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For everyn € N, chooseu,, € bvrca(Xy+; Z) such thatu, representss, and such that
v(un) < ISk lpint+ 27". Then we can define the (clearly nuclear) operator

§:C(Bx+) — bvrca Zy+; Z) = Z(C(By+; Z))
by

S(H=D8 1 (itn.

ne1 Il
wheres,« : Yx+ — K is the measure given by
1, ifx*eA,
0, ifx*¢A.
ThenTi =g o So kx. Since$ is nuclear, it is G-integral, so the associated operator
S:C(Bx+)®:C(By+) > Z

8 (A) = {

is G-integral, equivalently P-integral. So, there exissich thatl’ factorizes as

Xxy—> 57

kx®kyl Tb

C(Bx+)®:C(By+) ——> L1(u)

and (c) holds. It is easily seen that the measuigssociated t§ is the only Borel measure
of bounded variation which verifies that, for evetye X'y andB € Xy,

G(AxB) =) [xx]6 s (Apn(B).

] [Exd]

(See [4] for the uniqueness of this measurer)
We leave certain questions without answer.

Question 2.14. In Proposition 2.10, does (d) always imply (a), i.e.7isG-integral when
considered with values i (Y; Z) wheneverTy is Z(Y; Z)-valued andj o T1: X —
Z(Y; Z**) is G-integral?

Question 2.14 would have a positive answer if there was a linear opérafoy ; Z**)
— Z(Y; Z)** such that its restriction t6 (Y ; Z) is the canonical inclusion into the bidual.
The other open question refers to P-integral operators.

Question 2.15. In Proposition 2.11, does (a) always imply (b) and (c), i.eT, iX x Y —
Z P-integral whenevery is PZ(Y; Z)-valued and P-integral when considered with values
in this space?

It is easy to see that all that needs to be considered to answer this question in full
generality is the case whenis isomorphic to aC' (K) space.
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Note that the proof of case (4) in Proposition 2.13 above proves th#t:ik —
PL(Y; Z) is nuclear, thenl is P-integral, so a counterexample providing a negative
answer to Question 2.15 should start out by being a P-integral, not nuclear operator
:X—PL(Y; 2).

3. Integral mappingson C (K, X) spaces

In this section K will always be a compact Hausdorff space atiavill be its Borelo -
algebra. IfX is a Banach spacé€,(K, X) is the Banach space of th&valued continuous
functions, endowed with the supremum no$iX, X) is the space of th&l-valued X'-
simple functions defined o and B(X, X) is the completion ofS(X, X) under the
supremum norm. It is well known th& (K, X)* = bvrca(X'; X*).

If X isac-algebraX a Banach space andc X*, we say that a finitely additive vector
measuren : ¥ — X iso (X, Y)-regular if, for everyy € Y, the measurg om : ¥ — K is
regular. We will later need the following well known lemma, which can be found, for
instance, in [3].

Lemma3.1. Let X be ac-algebra,X a Banach space and C X* a subspace norming.
If m: X — X is a strongly additive and (X, Y)-regular measure, them is regular.

It is well known thatC (K, X) ~ C(K)®. X (see, e.g., [7, Example VIII.1.6]). Itis also
well known that any operatdr € L(C (K, X); Y) can be canonically represented through
ameasurer: X — L(X; Y*) [7, p. 182].

The following corollary to Proposition 2.10 is the main result of [14]. The proof given
in [14] is much longer and, in our opinion, more complicated, relying on measure theoretic
methods rather than tensor product techniques.

Corollary3.2. LetT € L(C(K, X); Y) and letm be its representing measure. THEIs G-
integral if and only ifm is Z(X; Y)-valued and it has bounded variation when considered
with values in this space.

Proof. If T is G-integral then, according to Proposition 2.10,
T:C(K)— I(X;Y)

is G-integral (and therefore weakly compact). Souif ¥ — Z(X;Y) is the measure
associated td’’, then . has bounded variation and(x) = |7 llgint = IIT llgint. From
regularity it follows thatu = m, which finishes this part of the proof.

Conversely, lefl € L(C(K, X); Y) be an operator such that its associated measlise
as in the hypothesis. Let us see thais regular when considered with valuesziioX; Y):
according to Lemma 3.1, we just have to check thats o (Z(X; Y), D)-regular, with
D CZ(X,Y)* asubspace normiriy(X; Y). Itis clearthatD’ = X @ Y* Cc Z(X; Y**)* ~
(X®.Y*)™ is a subspace norming(X; Y**). If we call 4 to the canonical isometric
injection of Z(X; Y) into Z(X; Y**), it follows from the properties of: that

hom:X — I(X;Y™)
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iso (Z(X; Y**), D)-regular. If we callD = h*(D’), thenm iso (Z(X; Y), D)-regular, and
D CcZ(X; Y)* is clearly a subspace normifgX; Y). So,m is regular and with bounded
variation, and now we can consider the G-integral operator

T1:C(K)—>ZI(X;Y)
associated to it; then we consider the operator
T2:C(K)®:X — Y

associated td@;. By Proposition 2.107> is G-integral, and clearl§> = T, which finishes
the proof. O

A similar result can be given now (although not in full generality) for P-integral
operators orC (K, X) spaces.

Corollary 3.3. Let T € L(C(K, X); Y) and letm be its representing measure.7Ifis P-
integral thenm is PZ(X; Y)-valued and it has bounded variation when considered with
values in this space. K is a scattered compact space orRfZ(X; Y) has the Radon—
Nikodym property then the converse also holds.

Proof. If T is P-integral then, Proposition 2.11 states that
T:C(K)— PI(X;Y)

is P-integral. The proof proceeds now as in Corollary 3.2.

Conversely, lefl € L(C(K, X); Y) be an operator such that its associated measlise
as in the hypothesis and I€t: C(K) — L(X; Y) be the associated operator. The measure
m:Y — PI(X;Y) defines an operatdf,,: B(X) — PI(X;Y) (see [7, Section VI.1]).
Sincev(m) < oo, [7, Corollary VI.1.4] states thak,, is absolutely summing. Now, using
the fact thaiC (K) is isometrically contained iB(X) := B(X, K), we define the operator
T, = mici, - C(K) = PIX; Y), which is also absolutely summing, hence P-integral.
Since, for everyA € X, T,,(xa) = m(A), it follows thatT,, = T1. Now we just need to
apply Proposition 2.13 to finish the proofmO
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