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Abstract

We consider the classes of “Grothendieck-integral” (G-integral) and “Pietsch-integral” (P-int
linear and multilinear operators (see definitions below), and we prove that a multilinear op
between Banach spaces is G-integral (resp. P-integral) if and only if its linearization is G-in
(resp. P-integral) on the injective tensor product of the spaces, together with some related
concerning certain canonically associated linear operators. As an application we give a new p
a result on the Radon–Nikodym property of the dual of the injective tensor product of Banach s
Moreover, we give a simple proof of a characterization of the G-integral operators onC(K,X) spaces
and we also give a partial characterization of P-integral operators onC(K,X) spaces.
 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

In [9], Grothendieck introduced theintegral operators, which we callG-integral, be-
tween Banach spaces (in the more general context of locally convex spaces). La
Pietsch presented another (more restrictive) definition of integral operators, which w
P-integral, closely related to the previous one. Both notions have been deeply stud
applied by many authors in the theory of Banach spaces. More recently, Alencar [
tended the definition of P-integral operators to multilinear operators and polynomial
that notion has been studied by several authors since then. In Section 2, we intro
generalization of G-integral operators modelled on Alencar’s, and we show that a
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linear operator on a product of Banach spaces is P-integral (resp. G-integral) if an
if its linearizationis a P-integral (resp. G-integral) operator on the injective tensor pro
of the spaces, together with some related results concerning certain canonically ass
linear operators. As an application we obtain, with a completely new approach, a re
the Radon–Nikodym property of the dual of the injective tensor product of Banach s
which had already been obtained in [13].

In Section 3 we use the previous results to obtain a simple proof of a result of
characterizing the G-integral operators on spaces of vector valued continuous funct
terms of their representing measures, and we present a similar result partially chara
ing the P-integral operators on these same spaces.

The notations and terminology used along the paper will be the standard in B
space theory, as for instance in [6] or [7]. However, before going any further, we
clear out some terminology:Lk(X1, . . . ,Xk;Y ) will be the Banach space of all the co
tinuousk-linear mappings fromX1 × · · · × Xk into Y . WhenY = K or k = 1, we will
omit them. IfT ∈ Lk(X1, . . . ,Xk;Y ) we shall denote bŷT : X1 ⊗ · · · ⊗ Xk → Y its lin-
earization. As usual,X1⊗̂ε · · · ⊗̂εXk stands for the injective tensor product of the Ban
spacesX1, . . . ,Xk andX1⊗̂π · · · ⊗̂πXk stands for their projective tensor product. The s
≈ between two Banach spaces indicates that they are isomorphic. IfX is a Banach spac
andΣ is aσ -algebra,bvrca(Σ;X) denotes the Banach space of the regular measures
bounded variationµ : Σ → X endowed with the variation norm. For any Banach spaceX,
BX∗ is a compact set when we endow it with the weak∗ topology; we writeΣX∗ for the
Borel σ -algebra ofBX∗ . For any Banach spaceX, kX : X ↪→ C(BX∗) and iX : X ↪→ X∗∗
will denote the canonical isometric inclusions. We will often use that, ifK1,K2 are com-
pact Hausdorff spaces, thenC(K1×K2), C(K1,C(K2)) andC(K1)⊗̂εC(K2) are isometri-
cally isomorphic. Throughout the paper the expressionj : C(K) → L1(µ) will denote that
µ is a scalar regular Borel measure on a compact setK andj is the canonical mapping
This mapping is known to be G-integral, equivalently P-integral, in the sense of Defin
2.2 and 2.3 below.

2. Integral mappings

There are several definitions of “integral” applications which have already been u
the literature. We state presently those which we will need.

Definition 2.1. A multilinear formT ∈ Lk(X1, . . . ,Xk) is integral if T̂ (i.e., its lineariza-
tion) is continuous for the injective(ε) topology onX1 ⊗· · ·⊗Xk . Its norm (as an elemen
of (X1⊗̂ε · · · ⊗̂εXk)∗) is theintegralnorm ofT , ‖T ‖int := ‖T̂ ‖ε .

Definition 2.2. An operatorT ∈ L(X;Y ) is G-integral (G for Grothendieck) if th
associated bilinear form

BT : X × Y ∗ → K, (x, y) �→ y
(
T (x)

)
,

is integral. In that case the G-integral norm ofT , ‖T ‖Gint := ‖BT ‖int. I(X;Y ) denotes the
Banach space of the integral operators fromX into Y , endowed with the integral norm.
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It is known [6, Theorem 5.6] thatT : X → Y is G-integral if and only if for any weak∗
compact norming subsetK ⊂ BX∗ , there exists a scalar regular measureµ on K such that
T admits a factorization

X
T

k

Y
iY

Y ∗∗

b

C(K)
j

L1(µ)

where k is the natural isometric isomorphism defined byk(x)(x∗) = x∗(x). This is
equivalent to the existence of a regular Borel measure of bounded variationG defined
on K and with values inY ∗∗ such that, for everyx ∈ X.

T (x) =
∫
K

x(x∗) dG(x∗).

In that case,‖T ‖Gint = inf{v(G); whereG representsT as above}. It follows from the
proof of [6, Theorem 5.6] that this factorization result remains true ifK is anycompact se
(not necessarily contained inBX∗ ) such thatX is isometrically contained inC(K). If X

is isomorphically (but not isometrically) contained inC(K), then the result remains tru
except for the statement about the norm.

Sincej is always G-integral, it follows trivially from the ideal property of G-integ
operators that the result is also true if there exists one suchK for which the previous
factorization holds.

We will also use later the known fact, that, for anyT ∈ I(Y ;Z∗), the bilinear form
BT : Y × Z → K given byBT (y, z) = T (y)(z) is integral.

Definition 2.3. An operatorT ∈ L(X;Y ) is said to be P-integral (P for Pietsch) if the
exists a regularY -valued Borel measureG of bounded variation onBX∗ such that, for
everyx ∈ X,

T (x) =
∫

BX∗

x∗(x) dG(x∗).

In that case the P-integral norm ofT , ‖T ‖Pint := inf{v(G), whereG representsT as
above}. PI(X;Y ) denotes the Banach space of the P-integral operators fromX into Y ,
endowed with the P-integral norm.

It is known [6, p. 99] thatT is P-integral if and only if for any weak∗ compact norming
subsetK ⊂ BX∗ there exists a scalar regular measureµ on K such thatT admits a
factorization

X
T

k

Y

C(K)
j

L (µ)

b

1
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This is equivalent to the existence of a regular Borel measure of bounded variatG

defined onK and with values inY such that, for everyx ∈ X,

T (x) =
∫
K

x(x∗) dG(x∗).

As in the case of G-integral operators, the result remains true ifK is any compact se
such thatX is contained inC(K). Again, it is clear thatT is P-integral if and only if there
exists oneK andµ as above.

It follows immediately from these comments the existence of a norm one surje
operatorq : bvrca(ΣX∗;Y ) → PI(X;Y ).

It is obvious from the definitions thatC(K) spaces play a prominent role in the study
integral operators. It is known (and we will often use it) that, on these spaces, P-in
G-integral and absolutely summing operators coincide (see [7, Chapter VI], [6]) and
given a compact Hausdorff spaceK and a Banach spaceX, an operatorT ∈ L(C(K);X) is
P-integral (equivalently G-integral) if and only if its representing measureµ has bounded
variation, and, in that case,v(µ) = ‖T ‖Pint = ‖T ‖Gint.

P-integral operators are obviously G-integral. If the image space is complemente
bidual (for example if it is a dual space), then the converse is easily seen to be tru
in general there are G-integral, not P-integral operators, although there seem to be
examples of this. In [8] (see also [5, Appendix D]), the authors show the existence o
integral operator failing to be P-integral. Their example relies on the existence of a B
space with the Approximation Property but without the Bounded Approximation Prop

In [1], Alencar introduced the following extension of the previous definition

Definition 2.4. A multilinear operatorT ∈ Lk(X1, . . . ,Xk;Y ) is said to be P-integral i
there exists a regularY -valued Borel measureG of bounded variation on the produ
BX∗

1
× · · · × BX∗

k
such that

T (x1, . . . , xk) =
∫

BX∗
1
×···×BX∗

k

x∗
1(x1) · · ·x∗

k (xk) dG
(
x∗

1, . . . , x∗
k

)

for all (x1, . . . , xk) ∈ X1 × · · · × Xk . The space of P-integral multilinear operato
Lk

PI(X1, . . . ,Xk;Y ) is a Banach space with the norm‖T ‖Pint = inf{v(G), where G

representsT as above}.

Looking at Definition 2.4 and the comments following Definition 2.2, the follow
extension of Definition 2.2 seems to be natural.

Definition 2.5. A multilinear operatorT ∈ Lk(X1, . . . ,Xk;Y ) is said to be G-integral i
there exists a regularY ∗∗-valued Borel measureG of bounded variation on the produ
BX∗

1
× · · · × BX∗

k
such that

T (x1, . . . , xk) =
∫

BX∗×···×BX∗

x∗
1(x1) · · ·x∗

k (xk) dG
(
x∗

1, . . . , x∗
k

)

1 k
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for all (x1, . . . , xk) ∈ X1 × · · · × Xk. The space of G-integral multilinear operato
Lk

GI(X1, . . . ,Xk;Y ) is a Banach space with the norm‖T ‖Gint = inf{v(G), where G

representsT as above}.

Clearly, as in the linear case, every P-integral multilinear operatorT is G-integral, and
‖T ‖Gint � ‖T ‖Pint; moreover, ifY is complemented in its bidual, then,Lk

GI(X1, . . . ,Xk;Y )

andLk
PI(X1, . . . ,Xk;Y ) are identical spaces with identical norms.

We state now a first result.

Proposition 2.6. LetX1, . . . ,Xk,Y be Banach spaces and consider a multilinear opera
T ∈ Lk(X1, . . . ,Xk;Y ). Then T is G-integral if and only if its linearization̂T its
continuous for the injective topology and

T̂ ∈ I
(
X1⊗̂ε · · · ⊗̂εXk;Y

)
.

In that case‖T ‖Gint = ‖T̂ ‖Gint, so Lk
GI(X1, . . . ,Xk;Y ) and I(X1⊗̂ε · · · ⊗̂εXk;Y ) are

isometrically isomorphic. The result remains true word by word if we replace “G-integ
for “P-integral” throughout.

Proof. If T is G-integral, thenT factorizes as

X1 × · · · × Xk
T

kX1×···×kXk

Y
iY

Y ∗∗

C(BX∗
1
)⊗̂ε · · · ⊗̂εC(BX∗

k
)

j
L1(µ)

b

wherekX1 × · · · × kXk is the multilinear operator given bykX1 × · · · × kXk (x1, . . . , xk) =
kX1x1 ⊗ · · · ⊗ kXkxk . Therefore,̂T factorizes as

X1⊗̂ε · · · ⊗̂εXk
T̂

kX1⊗···⊗kXk

Y
iY

Y ∗∗

C(BX∗
1
)⊗̂ε · · · ⊗̂εC(BX∗

k
)

j
L1(µ)

b

SincekX1 ⊗· · ·⊗ kXk : X1⊗̂ε · · · ⊗̂εXk → C(BX∗
1
)⊗̂ε · · · ⊗̂εC(BX∗

k
) is an isometry, we ge

that T̂ is G-integral and‖T̂ ‖Gint = ‖T ‖Gint (see the comments after Definition 2.2). F
the converse implication we just need to follow backwards this same reasoning. Th
of P-integral operators is entirely analogous.✷

This proposition is crucial for the rest of the paper. It also provides a plentifu
examples of integral multilinear operators. For example, letX1, . . . ,Xn+1 be Banach
spaces, and consider anyS ∈ (X1⊗̂ε · · · ⊗̂εXn+1)∗. Define now

T : X1 × · · · × Xn → X∗
n+1

by

T (x1, . . . , xn)(xn+1) = S(x1 ⊗ · · · ⊗ xn+1).
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SinceT̂ : X1⊗̂ε · · · ⊗̂εXn → X∗
n+1 is G-integral (Definition 2.2), using Proposition 2.6 w

get thatT is a G-integral multilinear operator. In fact, since it takes values in a dual s
it is also P-integral.

We can also prove the following.

Corollary 2.7. Let X1, . . . ,Xk,Y be Banach spaces,T ∈ Lk(X1, . . . ,Xk;Y ) and let
K1, . . . ,Kk be compact Hausdorff spaces such thatXi is isomorphically contained in
C(Ki) (1 � i � k). Call ki : Xi → C(Ki) to the embeddings. ThenT is G-integral(resp. P-
integral) if and only if there exists a regular Borel measureG of bounded variation define
on K1 × · · · × Kk and with values inY ∗∗ (resp. with values inY ) such that

T (x1, . . . , xk) =
∫

K1×···×Kk

j1(x1)(t1) · · ·jk(xk)(tk) dG(t1, . . . , tk).

Moreover, if everyki is an isometry, then‖T ‖Gint = inf{v(G), whereG representsT as
above}, and the same holds for‖T ‖Pint.

Proof. If T is G-integral, then̂T is G-integral. Since

k1 ⊗ · · · ⊗ kk : X1⊗̂ε · · · ⊗̂εXk → C(K1)⊗̂ε · · · ⊗̂εC(Kk)

is an isomorphic embedding (and an isometry if everyki is an isometry), we get that̂T
factorizes as

X1⊗̂ε · · · ⊗̂εXk
T̂

k1⊗···⊗kk

Y
iY

Y ∗∗

C(K1)⊗̂ε · · · ⊗̂εC(Kk)
j

L1(µ)

b

soT factorizes as

X1 × · · · × Xk
T

k1×···×kk

Y
iY

Y ∗∗

C(K1)⊗̂ε · · · ⊗̂εC(Kk)
j

L1(µ)

b

which proves what we wanted. For the converse implication we just have to follow
reasoning backwards. The result about the norms in the isometric case is easy. The
P-integral multilinear operators is entirely analogous.✷

Recall that in [1], Alencar defines ak-homogeneous polynomialP betweenX andY to
beP-integralif there exists aY -valued regular Borel measure of bounded variation defi
on BX∗ such that, for everyx ∈ X,

P (x) =
∫

BX∗

x∗(x)k dG(x∗),

and he proves in [2, Proposition 2] thatP is P-integral if and only if its associate
symmetric multilinear operatorT ∈Lk(X;Y ) is P-integral. Using this and Proposition 2
we get
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Corollary 2.8. A k-homogeneous polynomialP betweenX andY is P-integral if and only
if its associated linear operator̂T ∈ L(⊗̂k

ε,sX;Y ) is P-integral.

Similarly we could define G-integral polynomials and obtain a similar result for th
We recall that an operatorT : X → Y is called nuclear if there exists sequence

(x∗
n) ⊂ X∗, and(yn) ⊂ Y such that

∑∞
n=1 ‖x∗

n‖‖yn‖ < ∞ and such that

T (x) =
∞∑

n=1

x∗
n(x)yn

for all x ∈ X. The known relations between nuclear and integral operators which we u
this paper are the following (X andY Banach spaces).

X∗ has the Radon–Nikodym property if and only if, for everyY , eachT ∈ PI(X;Y ) is
nuclear[1, Theorem 1.3].

Let X be such thatX∗ has the approximation property. ThenX∗ has the Radon–
Nikodym property if and only if, for everyY , everyT ∈ I (X;Y ) is nuclear [7, Theo-
rem VIII.4.6].

Y has the Radon–Nikodym property if and only if for everyX, everyT ∈ PI(X;Y ) is
nuclear[7, Theorem VI.4.8] or [5, D7].

Using results of [1] we obtain the following corollary to Proposition 2.6, a result w
had been already obtained, with a totally different approach, in [13, Theorem 1.9]

Corollary 2.9. Given X and Y Banach spaces,X∗ and Y ∗ have the Radon–Nikody
property if and only if(X⊗̂εY )∗ also has the Radon–Nikodym property.

Proof. SupposeX∗ andY ∗ have the Radon–Nikodym property. According to [1, Th
rem 1.3], it suffices to see that, for every Banach spaceZ, every P-integral operato
T̂ : X⊗̂εY → Z is nuclear. Let then̂T be one such operator. According to Proposition 2
T : X × Y → Z is P-integral. Then, [1, Theorem 2.3] states thatT is nuclear (for the
definition of nuclear bilinear operator see [1]). It follows immediately from the definit
that, in that case,̂T is nuclear, which finishes one half of the proof. The other implica
is clear since the Radon–Nikodym property is stable under closed subspaces.✷

G-integral operators form an operator ideal. This ideal is not injective, but, ifY,Z are
Banach spaces andiZ : Z → Z∗∗ is the canonical injection, then an operatorT : Y → Z is
integral if and only ifiZ ◦ T : Y → Z∗∗ is integral, and, in that case, the integral nor
of T and iZ ◦ T coincide ([7, Theorem VIII.2.8]). Hence, we can define an isome
isomorphism into

h :I(Y ;Z) → I(Y ;Z∗∗)

by

h(T ) = iZ ◦ T .

If T : X × Y → Z is a bilinear operator, then we can consider a linear operatorT1 : X →
L(Y ;Z) given byT1(x)(y) = T (x, y). With this notation, we can state the following resu
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Proposition 2.10. Let X,Y,Z be Banach spaces and letT ∈ L2(X,Y ;Z). Consider the
following statements:

(a) T1 is I(Y ;Z)-valued and G-integral when considering with values in this space.
(b) T̂ is continuous for theε topology and̂T : X⊗̂εY → Z is G-integral.
(c) T : X × Y → Z is G-integral.
(d) T1 is I(Y ;Z)-valued andh ◦ T1 : X → I(Y ;Z∗∗) is G-integral.

Then,(b), (c) and(d) are equivalent and(a) implies all of them.
If (b) holds, then‖T̂ ‖Gint = ‖T ‖Gint = ‖h ◦ T1‖Gint, and, if (a) holds, then‖T ‖Gint �

‖T1‖Gint.
Moreover, consider the following conditions

(1) X is anL∞ space.
(2) Y ∗ has the approximation property and the Radon–Nikodym property.
(3) Z is complemented in its bidual.

Then, any of them suffices to guarantee that(d) implies(a).

Proof. Clearly (a) implies (d).
Suppose now that (d) holds. Then, the formT2 : X⊗̂ε(Y ⊗̂εZ∗) → K associated toh◦T1

is continuous for theε-topologies. So, the operatorT3 : X⊗̂εY → Z∗∗ is G-integral, and
clearly T3 = iZ ◦ T̂ . So, according to the comments preceding this proposition,T̂ is G-
integral and that is (b).

Now, if (b) holds, we can define the associated (continuous) operator

T2 : X⊗̂εY ⊗̂εZ∗ → K.

Now we can consider the G-integral operator

T3 : X → (Y ⊗̂εZ∗)∗ ≈ I(Y ;Z∗∗)

canonically associated toT2. It is easy to check that, for everyx ∈ X and y ∈ Y ,
T3(x)(y) = iZ(T1(x)(y)). Hence,T1 is I(Y ;Z)-valued, andh ◦ T1 = T3 is G-integral, so
(d) holds, and

‖T̂ ‖Gint = ‖T2‖Gint = ‖T3‖Gint = ‖h ◦ T1‖Gint.

The equivalence between (c) and (b) together with the equality‖T̂ ‖Gint = ‖T ‖Gint
follows from Proposition 2.6.

For the rest of the proof, if (1) holds, then [12, Theorem III.3] states that the G-int
operators onX are exactly the absolutely summing operators onX. Since absolutely
summing operators are aninjectiveoperator ideal, if (d) holds, thenj ◦ T1 is absolutely
summing, soT1 is absolutely summing, hence G-integral.

Suppose that (2) holds and let us callN (Y ;Z) to the space of nuclear operators betwe
Y andZ. Then

I(Y ;Z) =N (Y ;Z) ≈ Y ∗⊗̂πZ

and

I(Y ;Z∗∗) =N (Y ;Z∗∗) ≈ Y ∗⊗̂π Z∗∗

(see [7, Theorem VIII.4.6] and [5, Corollary 1, p. 65]).
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Let us recall that ifB : E × F → K is a bilinear form, we can define canonica
an extensionB : E × F ∗∗ → K, so thatB is weak∗ continuous in the second variab
and ‖B‖ = ‖B‖ (see, f.i., [7, VIII.2]). Hence, if we considerT : E⊗̂πF → K, we can
canonically extendT to T : E⊗̂πF ∗∗ → K, with ‖T ‖ = ‖T ‖.

So, we can define the operator

e : Y ∗⊗̂πZ∗∗ → (Y ∗⊗̂π Z)∗∗

by

e(g)(T ) = T (g), for everyg ∈ Y ∗⊗̂πZ∗∗ andT ∈ (Y ∗⊗̂π Z)∗.

It is easy to see thate is continuous and‖e‖ � 1. Moreover, it is clear that the restrictio
of e to Y ∗⊗̂π Z is the canonical inclusion ofY ∗⊗̂πZ into its bidual.

So, if we considere as an operator fromI(Y ;Z∗∗) into I(Y ;Z)∗∗, e ◦ h :I(Y ;Z) →
I(Y ;Z)∗∗ (h defined as above) is the canonical injection of a space into its bidual.

Therefore, ifh◦T1 : X → I(Y ;Z∗∗) is G-integral, thene◦h◦T1 : X → I(Y ;Z)∗∗ is G-
integral, and, as follows from the comments preceding this proposition,T1 : X → I(Y ;Z)

is integral.
If (3) holds, andπ : Z∗∗ → Z is a projection, then the operatorp :I(Y ;Z∗∗) → I(Y ;Z)

defined byp(T ) = π ◦ T is also a projection. The result follows now easily.✷
In the next section we will apply this proposition using the fact thatC(K) spaces are

L∞ spaces.
After writing a preliminary version of this paper we have learnt that parts of P

osition 2.10 can be seen in [11].
For P-integral operators we can give a similar result (but not identical; note tha

implication which we cannot always prove now is reversed).

Proposition 2.11. Let X,Y,Z be Banach spaces and letT ∈ L2(X,Y ;Z). Consider the
following statements:

(a) T1 is PI(Y ;Z)-valued and P-integral when considered with values in this space.
(b) T̂ is continuous for the injective topology and̂T : X⊗̂εY → Z is P-integral.
(c) T : X × Y → Z is P-integral.

Then(b) and (c) are equivalent and they both imply(a). Moreover, ifZ is complemented
in its bidual, then(a) is equivalent to(b) and (c).

Proof. The equivalence between (b) and (c) is Proposition 2.6.
Let us now suppose that (c) holds. ThenT factorizes as

X × Y
T

kX×kY

Z

C(B ∗)⊗̂ C(B ∗)
j

L (µ)

b

X ε Y 1
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The operatorb ◦ j : C(BX∗)⊗̂εC(BY ∗) → Z is P-integral, equivalently G-integral, so, b
Proposition 2.10, the operatorS : C(BX∗) → I(C(BY ∗);Z) given byS(f )(g) = b ◦ j (f ⊗
g) is G-integral, hence P-integral. So,T1 = a ◦ q ◦ S ◦ kX (look at the diagram)

X
kX−→ C(BX∗)

S−→ I(C(BY ∗);Z) ≈ bvrca(ΣY ∗;Z)
q−→ PI(Y ;Z)

a−→L(Y ;Z)

wherea is the natural mapping andq is the already mentioned quotient. This proves (a
Finally, if (a) holds we always have thatT1 : X → I(Y ;Z) is integral, sôT is integral

by Proposition 2.10. Hence, ifZ is complemented in its bidual, then̂T is P-integral, and

‖T̂ ‖Pint = ‖T̂ ‖Gint � ‖T1‖Gint � ‖T1‖Pint,

which finishes the proof. ✷
Remark 2.12. The difficulty when trying to prove that (a) implies (b) in Proposition 2
above is that, givenA ∈PI(Y ;Z), and a compact setK with Borelσ -algebraΣ such that
Y is contained inC(K), we do not know how to selectlinearly a measureG ∈ bvrca(Σ;Z)

which representsA. In the next proposition we show some cases in which we can su
this difficulty.

Proposition 2.13. With the notation of Proposition2.11, if any one of the following
conditions holds:

(1) Y is isomorphic to aC(K) space;
(2) X is isomorphic to a closed subspace of aC(K) space withK scattered;
(3) PI(Y,Z) has the Radon–Nikodym property;
(4) X∗ has the Radon–Nikodym property.

then(a) implies(b) and(c).

Proof. Let us suppose that (a) holds andY ≈ C(K). T1 factorizes as

X
T1

kX

PI(Y ;Z) ≈ I(C(K);Z)

C(BX∗)
j

L1(µ)

b

Sinceb ◦ j : C(BX∗) → I (C(K);Z) is G-integral, we get that the operatorS : C(BX∗)⊗̂ε

C(K) → Z is G-integral, hence P-integral. So,T factorizes as

X × Y
T

kX×i

Z

C(BX∗)⊗̂εC(K)
j

L1(µ)

b

wherei : Y → C(K) is the isomorphism. SoT is P-integral.
Suppose now thatX is isomorphically contained inC(K) with K scattered. In tha

case any regular countably additive Borel measureµ defined onK is purely atomic [10,
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§8, Theorem 10], henceL1(µ) is isomorphic to.1. Suppose then that (a) holds. By t
definitions and the previous comments, we get that there exist an operatorb and a G-
integral operatorh such thatT1 = b ◦ h (see the diagram)

bvrca(ΣY ∗ ;Z)

q

X
T1

kX

PI(Y,Z)

C(K)
h

.1

b

Applying the lifting property of.1, we get that there existsb′ : .1 → bvrca(ΣY ∗ ;Z)

such thatq ◦ b′ = b, whereq is the canonical quotient mapping. So,b′ ◦ h : C(K) →
bvrca(ΣY ∗;Z) ≈ I(C(BY ∗);Z) is G-integral; hence, the associated operatorS : C(K)⊗̂ε

C(BY ∗) → Z is G-integral, equivalently P-integral. So there existµ and b̃ such thatT
factorizes as

X × Y

i×kY

T
Z

C(K)⊗̂εC(BY ∗)
j

L1(µ)

b̃

wherei : X → C(K) is the isomorphic embedding. SoT is P-integral.
Suppose now thatPI(Y ;Z) has the Radon–Nikodym property and that (a) holds

that case, there existi, j , b andµ such thatT1 = b ◦ j ◦ i (see the diagram)

bvrca(ΣY ∗;Z)

q

X
T1

i

PI(Y,Z)

C(BX∗)
j

L1(µ)

b

SincePI(Y ;Z) has the Radon–Nikodym property, we know thatb is representable
Representable operators factor through.1, so again the lifting property of.1 allows us to
assure the existence of an operatorb′ : L1(µ) → bvrca(ΣY ∗ ;Z) such thatq ◦ b′ = b. The
proof now proceeds similarly to the previous cases.

Finally, suppose thatX∗ has the Radon–Nikodym property. In that case, [1, Th
rem 1.3] states that, for every Banach spaceE, everyT ∈ PI(X;E) is a nuclear oper
ator. Suppose then that (a) holds. Then,T1 is nuclear. So, there exist bounded sequen
(x∗

n) ∈ X∗ and(Sn) ∈ PI(Y ;Z) such that
∑∞

n=1 ‖x∗
n‖‖Sn‖Pint < ∞ and so thatT1 can be

written as

T1(x) =
∞∑

x∗
n(x)Sn.
n=1
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For everyn ∈ N, chooseµn ∈ bvrca(ΣY ∗;Z) such thatµn representsSn and such tha
v(µn) < ‖Sn‖Pint + 2−n. Then we can define the (clearly nuclear) operator

S̃ : C(BX∗) → bvrca(ΣY ∗ ;Z) = I
(
C(BY ∗ ;Z)

)
by

S̃(f ) =
∞∑

n=1

δ x∗
n

‖x∗
n‖

(f )µn,

whereδx∗ : ΣX∗ → K is the measure given by

δx∗(A) =
{

1, if x∗ ∈ A,

0, if x∗ /∈ A.

ThenT1 = q ◦ S̃ ◦ kX. SinceS̃ is nuclear, it is G-integral, so the associated operato

S : C(BX∗)⊗̂εC(BY ∗) → Z

is G-integral, equivalently P-integral. So, there existsb such thatT factorizes as

X × Y

kX⊗kY

T
Z

C(BX∗)⊗̂εC(BY ∗)
j

L1(µ)

b

and (c) holds. It is easily seen that the measureG associated toS is the only Borel measur
of bounded variation which verifies that, for everyA ∈ ΣX andB ∈ ΣY ,

G(A × B) =
∞∑

n=1

∥∥x∗
n

∥∥δ x∗
n

‖x∗
n‖

(A)µn(B).

(See [4] for the uniqueness of this measure.)✷
We leave certain questions without answer.

Question 2.14. In Proposition 2.10, does (d) always imply (a), i.e., isT1 G-integral when
considered with values inI(Y ;Z) wheneverT1 is I(Y ;Z)-valued andj ◦ T1 : X →
I(Y ;Z∗∗) is G-integral?

Question 2.14 would have a positive answer if there was a linear operatorS :I(Y ;Z∗∗)

→ I(Y ;Z)∗∗ such that its restriction toI(Y ;Z) is the canonical inclusion into the bidua
The other open question refers to P-integral operators.

Question 2.15. In Proposition 2.11, does (a) always imply (b) and (c), i.e., isT : X × Y →
Z P-integral wheneverT1 isPI(Y ;Z)-valued and P-integral when considered with val
in this space?

It is easy to see that all that needs to be considered to answer this question
generality is the case whenX is isomorphic to aC(K) space.
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Note that the proof of case (4) in Proposition 2.13 above proves that ifT1 : X →
PI(Y ;Z) is nuclear, thenT is P-integral, so a counterexample providing a nega
answer to Question 2.15 should start out by being a P-integral, not nuclear op
T1 : X → PI(Y ;Z).

3. Integral mappings on C(K,X) spaces

In this section,K will always be a compact Hausdorff space andΣ will be its Borelσ -
algebra. IfX is a Banach space,C(K,X) is the Banach space of theX-valued continuous
functions, endowed with the supremum norm.S(Σ,X) is the space of theX-valuedΣ-
simple functions defined onK and B(Σ,X) is the completion ofS(Σ,X) under the
supremum norm. It is well known thatC(K,X)∗ = bvrca(Σ;X∗).

If Σ is aσ -algebra,X a Banach space andY ⊂ X∗, we say that a finitely additive vecto
measurem : Σ → X is σ(X,Y )-regular if, for everyy ∈ Y , the measurey ◦ m : Σ → K is
regular. We will later need the following well known lemma, which can be found,
instance, in [3].

Lemma 3.1. LetΣ be aσ -algebra,X a Banach space andY ⊂ X∗ a subspace normingX.
If m : Σ → X is a strongly additive andσ(X,Y )-regular measure, thenm is regular.

It is well known thatC(K,X) ≈ C(K)⊗̂εX (see, e.g., [7, Example VIII.1.6]). It is als
well known that any operatorT ∈ L(C(K,X);Y ) can be canonically represented throu
a measurem : Σ →L(X;Y ∗∗) [7, p. 182].

The following corollary to Proposition 2.10 is the main result of [14]. The proof gi
in [14] is much longer and, in our opinion, more complicated, relying on measure the
methods rather than tensor product techniques.

Corollary 3.2. LetT ∈L(C(K,X);Y ) and letm be its representing measure. ThenT is G-
integral if and only ifm is I(X;Y )-valued and it has bounded variation when conside
with values in this space.

Proof. If T is G-integral then, according to Proposition 2.10,

T̃ : C(K) → I(X;Y )

is G-integral (and therefore weakly compact). So, ifµ : Σ → I(X;Y ) is the measure
associated tõT , then µ has bounded variation andv(µ) = ‖T̃ ‖Gint = ‖T ‖Gint. From
regularity it follows thatµ = m, which finishes this part of the proof.

Conversely, letT ∈ L(C(K,X);Y ) be an operator such that its associated measurem is
as in the hypothesis. Let us see thatm is regular when considered with values inI(X;Y ):
according to Lemma 3.1, we just have to check thatm is σ(I(X;Y ), D)-regular, with
D ⊂ I(X,Y )∗ a subspace normingI(X;Y ). It is clear thatD′ = X ⊗ Y ∗ ⊂ I(X;Y ∗∗)∗ ≈
(X⊗̂εY ∗)∗∗ is a subspace normingI(X;Y ∗∗). If we call h to the canonical isometri
injection ofI(X;Y ) into I(X;Y ∗∗), it follows from the properties ofm that

h ◦ m : Σ → I(X;Y ∗∗)
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is σ(I(X;Y ∗∗),D′)-regular. If we callD = h∗(D′), thenm is σ(I(X;Y ), D)-regular, and
D ⊂ I(X;Y )∗ is clearly a subspace normingI(X;Y ). So,m is regular and with bounde
variation, and now we can consider the G-integral operator

T1 : C(K) → I(X;Y )

associated to it; then we consider the operator

T2 : C(K)⊗̂εX → Y

associated toT1. By Proposition 2.10,T2 is G-integral, and clearlyT2 = T , which finishes
the proof. ✷

A similar result can be given now (although not in full generality) for P-inte
operators onC(K,X) spaces.

Corollary 3.3. Let T ∈ L(C(K,X);Y ) and letm be its representing measure. IfT is P-
integral thenm is PI(X;Y )-valued and it has bounded variation when considered w
values in this space. IfK is a scattered compact space or ifPI(X;Y ) has the Radon–
Nikodym property then the converse also holds.

Proof. If T is P-integral then, Proposition 2.11 states that

T̃ : C(K) → PI(X;Y )

is P-integral. The proof proceeds now as in Corollary 3.2.
Conversely, letT ∈ L(C(K,X);Y ) be an operator such that its associated measurem is

as in the hypothesis and letT1 : C(K) →L(X;Y ) be the associated operator. The meas
m : Σ → PI(X;Y ) defines an operatorTm : B(Σ) → PI(X;Y ) (see [7, Section VI.1])
Sincev(m) < ∞, [7, Corollary VI.1.4] states thatTm is absolutely summing. Now, usin
the fact thatC(K) is isometrically contained inB(Σ) := B(Σ,K), we define the operato
T ′

m = Tm|C(K)
: C(K) → PI(X;Y ), which is also absolutely summing, hence P-integ

Since, for everyA ∈ Σ , Tm(χA) = m(A), it follows thatT ′
m = T1. Now we just need to

apply Proposition 2.13 to finish the proof.✷
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