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Abstract

In this paper we consider the sobifity of the boundary value problem
(0p@") +210p) = f@) +h(),  u(©) =u(T)=0,

wherep > 1, op(u) = ulP~2u. By using generalized polar coordinates transformation method, we
improve and generalize some results obtained recently in [J. Differential Equations 151 (1999) 386].
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1. Introduction

In this paper, we are concerned with thevadility of the following Dirichlet boundary
value problem
(9p @) +r10p) = f) +h(t) in (0, T), (1.2)
u(0)=u(T)=0, (1.2)
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wherep > 1, T >0, ¢,(u) = |u|p72u, M= (p—Dm,/T)P, np=2n/(psin(z/p)),
f € C(R) is bounded and lign, 1 f (1) =: f(400) exists,h € L*(0, T).
Forp =2, f(u) =0, (1.1)—(1.2) redces to the linear problem

u' + () T)%u =h(), (1.3)
u(0) = u(T) =0, (1.4)

whose solvability is fully described by theadsical linear Fredholm alternative, that is,
(1.3)—(1.4) is solvable if and only if

T
/h(t) sin(%t) dt=0 forheL®(0,T). (1.5)

However, forp # 2, f(u) =0, (1.1) reduces to

(0p@")) + r10p () = h(2). (1.6)

In this case, the situation is quite different. For example, in [1] a counter-example is given,
which shows that the following condition

T
/h(t)sin,,(%pt) dt=0 2.7)
0

is not necessary for the solvability of problem (1.6)—(1.2), whergsis the unigue solu-
tion of the initial value problem

(0p@h)) + (p — Dppu) =0, (1.8)
u(0) =0, u'(0)=1. (1.9)

A more surprising result is obtained recenity[5], the authors obtained the following
result.

Theorem A. Let us assume thate C1[0, T, h # 0, satisfies conditiogl.7). Then prob-
lem (1.6)—(1.2)has at least one solution. Moreover,jif£ 2, then the set of all possible
solutions is bounded ia'1[0, 7.

Since forp = 2, the solution set of (1.3)—(1).46 an unbounded continuum constituted
by a one-dimensional linear manifold. Theorem A and the example in [1] reveal a striking
difference between the cage# 2 andp = 2. Moreover, in Theorem 1.1, is assumed to
be inC1[0, T, while in linear casek need only to be in.>°(0, T'). The authors claimed
in [5] that they do not know whether th&' assumption o can be weakened to require
h € L*°(0, T). For more recent results on this research area, we refer [2—4,6,7] and the
references therein.

In this paper, by using a different approach, we give an affirmative answer to this ques-
tion, moreover, we consider the more general problem (1.1)—(1.2).

The main result of this papé&s the following theorem.
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Theorem 1. Assumeh € L*°(0,T), f is continuous and bounded, moreover the limit
liMy, - 400 f (1) =: f(400) exists andH (1) = f(4o0) + h(t) # 0. Let

T
IH=/H(t)sinp<nT”t) dt. (2.10)
0

If Iy =0andlim,_, (o0 [x|P 1 f(x) — f(+00)] =0, then problen{1.1)—(1.2)has at least
one solution. Moreover, if # 2, the set of all possible solutions is boundediH0, 7.

Remark 1. After the submission of the original manuscript, the referees informed the
author of the reference [7]. In [7], the authors obtained the similarly results, but the methods
used in [7] and in this paper are different, neither contains the other. Moreover, Eq. (1.1)
is more general than the equation in [5] afdl §nd the method used in this paper can be
easily applied to the Riik like asymmetric nonlinearity which contains (1.1) as a special
case, see the result obtained in Section 4.

2. Generalized polar coordinates

Letu = sin, ¢ be the solution of (1.8)—(1.9). Then from [5], foe [0, 7,,/2], it can be
implicitly given by the formula

sin,
_ ds
r= 1 —sP)lp
0
and fort € [m,/2, ], sin, t = sin,(r, — t); for t € [n}, 2m,], sin, t = —sin, (2w, —

t). Moreover sin ¢ is a 2t,-periodic C? function. Letg = p/(p — 1) be the conjugate
exponent ofp, then Eq. (1.1) can be written as first order differential system

u' = gq(v), v ==, () + f () + h(1). (2.1)

For simplicity, we can assunie =, in (1.1)—(1.2) in the rest of this paper. In this case,
A1 =p—1and (1.10) becomes

p
IH=/H(t)sinptdt. (2.2)
0

First, we introduce the generalized polar coordinates.(8ét), C (7)) be the solution of
the auxiliary system
=00y, Y =—hgpx) (2.3)
satisfying the initial conditior{S(0), C(0)) = (0, 1).
Then it is easy to verify thaiS(z), C(¢)) is 2r,-periodic and
S(t) =sin, 1, Ct)=¢,(S' 1), (2.4)
lco|?+[S®|" =1, 1[0, 27,). (2.5)
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Under the generalized polar coordinates transformdfiotr, 6) — (u, v):
T: u=r125@), v=rP2C©H), r>0,0¢el0,2m,] (2.6)

and by using (2.5), system (2.1) is transformed into the following system:

ar_ 2 a2 _ 1S @) £(+250)) + h(t
T (p=DSO[f( ®) +h®)],
‘;—f =1—r"PR2S@O)[f(r1?S©)) + h(n]. 1€, T). (2.7)

Condition (1.2) can be seen a80) =0 or6(0) =n,, 6(rp) =km,, k € Z. It is easy to
seed(0) = 0 andf(0) = r,, implies thatu’(0) > 0 andu’(0) < O, respectively. Without
loss of generality, we may assumié) = 0.

Letp =rP/2, F(pS(0)) = f(pYP~D5()), then (2.7) can be further simplified as

d
d—/; =(p—DSO[F(pS®) + h(1)],

do

= 1- o7 SO[F(pS©®) +h®)], te© ). (2.8)

Let (p(2),6(t)) be the solution of (2.8) with initial valuéo (0), 6(0)) = (0o, 0). Then for
o> 1, we have the following estimates.

Lemmal. Assumef € C(R) and f is bounded with finite limiim,,_, 1 o f (1) = f(+00),
heL*(0,r,). Then

0(tp) =y —Ir/po+ O(py?) (2.9)

as pp — +o00, whereO(,ogz) is uniform with respect to alf + & with || f + k| L~ < Co
for someCyp > 0 fixed and

p
Ir = / H(t)sin, tdt
0

Tp

= f(+00)z(p — 1)2/173(3, 1- 1) +/h(t)sinptdt, (2.10)
p p r)

whereB(r, s) = folt”l(l —1)*"1dt is theg function forr > 0, s > 0.

Proof. Sincef andh are bounded, we obtain from the first equation of (2.8)

t
p(t)=po+(p—1) / S'(0@)[F(pS(6(1))) +h(D)]dx, (2.11)
0

and
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t
P70 = pyt—pgi(p— 1) / S'(6(D)[F +hldt + 0(p53), 1€ (0,mp).
0

(2.12)
Substituting (2.12) into the second equation of (2.8) yields
o .
Frie 1—pg SOLF + h]
1
+(p—Dpg2SO)F +h] / S'(0(D)[F + hldz + O(pg ). (2.13)
0
Fromé(0) = 0, we obtain for € [0, ,],
13
0(t)=1— pglfs(e(r))[F(pS(e(z))) +h(v)]dt
0
+ png S'(6(0))[F + h] / S(O())[F + hldxdt
0 0
t X
+(p— 1)p52/ S(6x))[F +h] / S'((0))[F +hldtdx + O(py )
0 0
13
=1— pglfsu)[F +hldT + 0(py?). (2.14)
0
It follows from (2.14) that
O(rp) =7, — pglf H®)S@)dt + 0(py?). (2.15)
0
SinceS(¢) = sin, ¢, we obtain from (1.8)—(1.9) that= sin, ¢ satisfies the equation
du
Hence
T Tp/2 1 4
. uau
0 0 0

1
2 2 2 1
:—/vz/pl(l—v)l/Pdvz—B(—,l——>,
r) p \p = p

which leads to (2.10), where we used the transformatieau”. 0O
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Lemma 2. Let the conditions of Lemniahold and/y = 0. Moreover, we assume

im 1P (0 = f(+00)] =0.
Then

0(p) =7y + polu +0(p5°),
where

T,/2
Jo_2=p[ [ UTES@HE@AY?
=2 / |S' (D)1

0
/2 Tp/2 2
+/- (/‘t p S/(ﬂp—l')H(t)dr) o
) |S" () — T)|P :

Proof. Sincely =0, it follows from (2.14) that

Tp
O(m,) =m, —p(;l/S(t)[F(p(z)s(e(t))) — f(+o00)]dt
0

TTp t
+p02[(p—1)/S(t)(/S’(r)[FJrh]dr)(FJrh)dt
0

0
TTp t

+ / S'(0LF + h] ( / S(LF + h]dr) dr} +0(pg ).

0 0
From limy_ 400 [x 1?7 f(x) — f(+00)] =0, we have
Tp

/S(t)[F(p(t)S(G(t))) — f(+00)]dt
0

lim

-1
po—>+00 Po

Tp

< lim f |5)] 05 [ (p0S(1)) — £ (+00)]| dt =O.

0
It follows from (2.20) and (2.21) that

TTp t

JH=/S'(t)H(t)</S(t)H(t)dr> dt

0 0
TTp t

—|—(p—1)/S(t)H(t)(/S’(r)H(r)dr)dt.
0

0

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)
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Setu(r) = [y S(t1)H(t)dz, v(t) = [y §'(x)H(v) dt, then byu(n,) = Iy = 0, we obtain

Tp Tp

Ju =/u(t)v/(t)dt+(p—1)/u’(t)v(t)dt
0

0
p p
:u(t)v(t)|gp +(p—2)/u’(t)v(t)dt=(p—Z)/u’(t)v(t)dt.
0 0

Seta =, /2 and

T[p a T[p
L=/u'(t)v(t)dt=/u/(t)v(t)dt+/u/(t)v(t)dt =:L1+ Lo.
0 0 a

ThenJy =(p —2)L and

a 13 a a

L1=/S(t)H(t)(/S/(t)H(r)dt) dt:/(/ S(t)H(t)dr)S/(t)H(t)dt.
0 0 0

t
SetU (1) = [ §'(x)H(x)dz, V() [ = S(r)H (r)d7, then

a a

L1=—/U'(t)V(t)dt:U(O)V(O)+/U(t)V/(t)dt
0 0
—UO)V(0) + / voOUroso
S'(t)
0
~ 1U200S0 [ 1 [ S()S" ()

Claim 1. lim;_, U%(t)S(t)/S' (1) = 0.

In fact, by the definition ot/, S and L'Hospital’s rule, we obtain

2 2 2 l
iim D50 _ iy VO e sy = fim L0 _ i VOV O

t—a  S§'(t) T i>a S'(t) t—a t—a §'(t) T g S (1)
L =2UMIS'(O)1P72S' (1)
= lim =
t—a |S(1)|P=28(z)

Claim 2. 1— S(1)S"(1)/(S' ()2 =1/|S' (1)|".

(2.23)
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In fact, from (2.5) and5(¢) satisfiesu’|P~2u” + |u|?~2u = 0, we obtain

1 S@®)S" (1)

=1+ |S®)|"/|S®)|" =

(8(1))? ISP
It follows from (2.23), Claims 1 and 2 that
B 1 [ ([*S()H (1) dr)?
L1=U0)V () — 5/ o dt. (2.24)
0

Now we calculateL: let A(r) = [, S'(t)H(v)dt, B(t) = [, S(r)H(v)dt, then from
Iy =0, we haveB(r,) =0 and

p Tp
L2=/A(I)B/(t)dt:—A(a)B(a)—/A/(t)B(t)dt.

Letr =m, —x, T =m, —y, thenitis easy to verify that
TTp a x

/A/(t)B(t)dtsz'(np—x)H(np—x)(/S(np—y)H(np—y)dy)dx.

a 0 0

Similar to the calculation of.1, we can verify that

S'(mp —1)H ()p — 7)dT)?

dt. (2.25)
|S'(rp —1)|P

Ly=—A(a)B(a) — %/ Ui
0
Itis evident thatA(a) = U (0), B(a) = V(0), hence we obtain from (2.23)—(2.25)

a4 )
L=L1+L2=_%|:/ (/7 $'(r)H (r)dr) u

1S ()P

0
+/(ftaS'(np—r)H(np—t)dr)zdt g
J |S"(p — 1)]7

Remark 2. Let f =0, S(t) =sin, , §'(r) = cos, t. ThenJy reduces to

JH

cos, ¢

which differs fromJ;, in [5] only by a constant.
Moreover, the expression of, in [5] contains a typing errorr, should ber,/2 =a
in the upper limit of the second integral.

_2-p [/a ([ h(r)cos, TdT)2 + ([* h(xr) — T) €O, T dT)? dt]
== |
0
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3. Proof of Theorem 1

By using a similar method used in [5], we prove Theorem 1.
Let X = C3[0,7,] = {u € CYO, 7,]: u(0) = u(w,) = 0} and RT = [0, +-00). For
u€R, F(u,-) e L®0,7,) andr € RT, define an operata; : X — X by G, z(v) =
u if and only if
((pp(u/))/:k[F(v,kl/pt) —op(W)], (3.1,)
u(0) =u(m,) =0. (3.2)
Standard arguments based on the&la—Ascoli theorem implies tha¥, - is a well-
defined operator which is compact frakin X*. Moreover,G, ; depends continuously

on the perturbations of and.
The following lemma is a direct consequence of the results of [5] and [6].

Lemma 3. Letded! — G, r; Br(0), 0] be the Leray—Schauder degreelof G, j with
respect toBr (0) and 0, whereR > 0 and Bg(0) = {u € X: |lu|| < R}, I is the identity
operator. Then fob < ¢ <« 1 and anyR > 0,

ded/ — G1—.0; Br(0),0] =1, (3.3)
ded/ — G14¢,0; Br(0),0] = —1. (3.4)

Proof of Theorem 1. We distinguish between the two cases p <2 andp > 2.

Casel < p <2. By (2.19),Jy > 0 and fort > m,,, we extendH to [0, 2r,] as aL™
function.

We claim that there exists a constaht- O such that for any € [1, 1+ ¢] the boundary
value problem

(#p") +1(p = Dep) = A[f ) + hOHP1)], (3.5)
u0) =u(r,) =0 (3.6)

has no solution with|u ”Cl[O,rrp] > R.
Suppose on the contrary that there exist sequefgg§® ; C Ccl,[O, 7pl, {An}eq C
[1,1 + &], such thatA, — A € [1,1+ ¢] and ||u,,||C1[0’,Tp] — oo and u,, A, satisfy

(3.5)—(3.6). From (2.6) ang = r?/2, we know thatpg, — +oo. In this casey,(r) =
u, (A~Y/7r) solves the equation

(0p(W)) + (p — Dpp(va) = f(va) + A1),
vn(o) =0,

with pg, — +oo and u,(w,) = v,,()»,%/”np) = 0. But Lemma 2 andly = 0 imply
0, (mp) > mp for n > 1. This contradicts the faat,(7,) = v,,(k,%/”np) = 0 because
1<, <1+ ¢foralln e N. Thus the claim is verified.

By this claim we see that for @ ¢ <« 1, the homotopyd :[1, 1+ ¢] x X — X defined
by H(u,A) =u — G, j (u), whereFy = f(u) + h(A*/P1), satisfiesH (u, 1) # 0 for all
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Ar€e[l,1+¢] and lullctjor,) = R Thus, from the homotopy invariance property of the
Leray—Schauder degree, we obtain by (3.4),

ded/ — Gy z; Br(0),0] =ded/ — Gy, f, ; Br(0),0] = -1

This proves that for giverF = f + h satisfying/y = 0, the problem (1.1)—(1.2) has at
least one solution. Moreover, it follows from above discussions that all possible solutions
of (1.1)—(1.2) are priori bounded in th&'[0, p] norm.

The casep > 2 can be proved similarly. Thus Theorem 1 is proverh

Remark 3. With only minor modifications, we can consider the following more general
problem:
(9p@") + (p = Doy (ut) = Bop(u™)] = f (. ), 3.7)
u(0) =u(Tog) =0, (3.8)

wherep > 1, To = o= YPx),, u™ = max{£u, 0}, f is bounded and ligL, 4o f (1, 1) =
H(t) e L*(,Tp),«>0,8>0and

a VP4 gl — 2 (3.9)
In this case (2.9) becomes
0(To) = To— pg 1 + O(pg %), po> 1, (3.10)

and
To
IH=/H(I)S(t)dt,
0

where(S(t), C(t)) is the solution of the initial value problem

u' = g4(v), v/=—a(pp(u+) +,3(pp(u_) (3.11)
u(0) =0, v(0)=1, (3.12)
which can be given by
Sy = a~ P sin, (a/P1), t € [0, Tol,
| -B7YPsin, (BYP(t — To)), 1 €[To, 2],
Ct)=¢p(S'®), 1€l0,27,). (3.13)
If Iy =0 and

i p—1 _ _
xﬂToo Ix[P~H[ f(x,t) = H(t)] =0,
then
0(To) = To+ pg 2 Ju + 0(pg 2),

where
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To/2
;. _2-p /°/ (T2 8/ (1) H (v) dT)?
=2 KOG

To/2

|S"(To —0)IP

0
To/2
AT
0

which implies that if/y = 0 andH (¢) # 0, then the conclusions of Theorem 1 still hold.

S'(To — 1) H (1) d1)? }
dt |,

4. Neumann boundary value problem

In this section, we state without proof thelability of the following Neumann bound-
ary value problem

(¢p@h) + (p = D]ag, (™) = Bep(u™)] = fu, 1) in (0, To), (4.1)

u'(0) =u'(Tp) =0, 4.2)
whereTo =a Y77, a, > 0 and

a VP g7l =2 (4.3)

Let (S(¢), C(r)) be the solution of the following system:
=0y, V== -D]ag,(xT) = Bep(x7)]
x(0)=1, y(0)=0.

Then we have the following theorem.

Theorem 2. Supposef is continuous and bounded, the limit
lim f(u,t)=H(®)

u— =100

exists andH (1) € L*°(0, Tp). Then
1 -
0(To) =To— —1In + O(py?), po> 1,
o0

where

To

Iy :/S‘(I)H(I)dt.
0

If « > 0,8 > 0 satisfy (4.3) andy =0, H(r) 0. L < 400 whereL > 0 is given by

To/2

L 2 I _ _ 2
i_ / [(fo S(MH@)dr) di + (JoS (To —7)H(To — ) d7) dt:|,
|S"(D)|P |S"(To — 0)|7
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then

0(To) = To— po Tn +0(pg )

_ — 2\ -
1H=(p7>L.

In this case, the problem (4.1)—(4.2dat least one solution. Moreoverpit 2, then the
set of all possible solutions is boundeddA[0, To).

with

5. Nonhomogeneous problems

In this section, we deal with the solitity of the following nonhomogeneous problem:

/7 - 1
((pp(u/)) +%¢q(”):f(ust)s te (07 npq)v (51)

u(0) =u(mwpy) =0, (5.2)

whereg > p > 1,

1
_/‘ ds —2B 1 p
T A= T g \g p-1)
0

f is bounded and continuous.

If ¢ = p, then (5.1)—(5.2) reduces to (1.1)—(1.2) wijtku, r) = f (1) + h(t). Therefore
we discuss the cage> p only.

Similar to the results of [4], one can define (with minor modification) the following
2r »q-periodic functioru = sin,, ¢t as the solution of the following initial value problem:

(¢p () 9 oy (u) =0, (5.3)

w0 =0, & 0)=1 (5.4)

)/+(P—1)
p

which forz € [0, 4 /2] can be given implicitly by the formula

Sinpy t

ds
‘= / — (5.5)
and sin,, t = sinpy (py — 1) for t € [mp4/2, wpgl, SNyt = —Siny, (2mp, — 1) for ¢ €
[7 g+ 27 pq | Define cog, 1 = 4 (sin,, ). Then
Isin,g 1|9 +|cos,,t|P =1, teR. (5.6)
Let (S(r), C (1)) be the solution of the following first order system:
x'=@p(y), y' = —zwq(x) (5.7)

)4
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satisfying(S(0), C(0)) = (0, 1), wherep* = p/(p — 1). Then we can verify that

S(t) = siny, t, C()=¢(5'®) = p(C0SHq 1) (5.8)
Moreover, they satisfy

IS)|? +|C1)|" =1, teRr. (5.9)
Rewrite (5.1) as

W' =gy (), v/=—§¢q<u>+f<u,r) (5.10)
and define the generalized potarordinates transformation

u=r""1250), v=r12C®), r>0,0€cR. (5.11)
Then one can verify that system (5.10) is changed into the form

d .

L= (p-1IO) f@.n. (5.12)

do -

=07 =Lp 50 ), (5.13)

t q

wherep = /2, u = p?"/1§(6), 0 = (¢ — p)/(q(p — 1)) > 0.

Theorem 3. Letg > p and f: R x [0, 7,,] — R be continuous and bounded. Then the
problem(5.1)—(5.2)has infinitely many solutions, (¢) and the number of zeros of, in
(0, ) increases tawo asn — oo, moreover|u,|| — oo asn — oo.

Sketch of the proof. Now supposed(0) = 0, then (5.2) is equivalent t@(w,,) =
kmpq, k € Z. The assumptiog > p implieso > 0. Let p(0) = pg > 1, then it follows
form (5.12)

p(t)=po+ O

and

p ) =pyt+o(pgt), tel0mpql. (5.14)
Substituting (5.14) into (5.13), we get

0(Tpg) = PG 7 pq +0(0g) = PG pq (1 + 0(D)). (5.15)

From (5.14) and the fact tha{x ,,) depends continuously qs, we know that there exist
infinitely manyn € N such that

0(7pg) = nmpq

andpg, — oo asn — co. O
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