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Abstract

In this paper we consider the solvability of the boundary value problem(
ϕp(u′)

)′ + λ1ϕp(u) = f (u) + h(t), u(0) = u(T ) = 0,

wherep > 1, ϕp(u) = |u|p−2u. By using generalized polar coordinates transformation method
improve and generalize some results obtained recently in [J. Differential Equations 151 (1999
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we are concerned with the solvability of the following Dirichlet boundary
value problem

(
ϕp(u′)

)′ + λ1ϕp(u) = f (u) + h(t) in (0, T ), (1.1)

u(0) = u(T ) = 0, (1.2)
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0022-247X/$ – see front matter 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2004.03.077
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wherep > 1, T > 0, ϕp(u) = |u|p−2u, λ1 = (p − 1)(πp/T )p, πp = 2π/(p sin(π/p)),
f ∈ C(R) is bounded and limu→+∞ f (u) =: f (+∞) exists,h ∈ L∞(0, T ).

Forp = 2, f (u) ≡ 0, (1.1)–(1.2) reduces to the linear problem

u′′ + (π/T )2u = h(t), (1.3)

u(0) = u(T ) = 0, (1.4)

whose solvability is fully described by the classical linear Fredholm alternative, that
(1.3)–(1.4) is solvable if and only if

T∫
0

h(t)sin

(
πt

T

)
dt = 0 for h ∈ L∞(0, T ). (1.5)

However, forp �= 2, f (u) ≡ 0, (1.1) reduces to(
ϕp(u′)

)′ + λ1ϕp(u) = h(t). (1.6)

In this case, the situation is quite different. For example, in [1] a counter-example is
which shows that the following condition

T∫
0

h(t)sinp

(
πpt

Γ

)
dt = 0 (1.7)

is not necessary for the solvability of problem (1.6)–(1.2), where sinp t is the unique solu
tion of the initial value problem(

ϕp(u′)
)′ + (p − 1)ϕp(u) = 0, (1.8)

u(0) = 0, u′(0) = 1. (1.9)

A more surprising result is obtained recentlyin [5], the authors obtained the followin
result.

Theorem A. Let us assume thath ∈ C1[0, T ], h �≡ 0, satisfies condition(1.7). Then prob-
lem (1.6)–(1.2)has at least one solution. Moreover, ifp �= 2, then the set of all possibl
solutions is bounded inC1[0, T ].

Since forp = 2, the solution set of (1.3)–(1.4) is an unbounded continuum constitut
by a one-dimensional linear manifold. Theorem A and the example in [1] reveal a st
difference between the casep �= 2 andp = 2. Moreover, in Theorem 1.1,h is assumed to
be inC1[0, T ], while in linear case,h need only to be inL∞(0, T ). The authors claime
in [5] that they do not know whether theC1 assumption onh can be weakened to requi
h ∈ L∞(0, T ). For more recent results on this research area, we refer [2–4,6,7] an
references therein.

In this paper, by using a different approach, we give an affirmative answer to this
tion, moreover, we consider the more general problem (1.1)–(1.2).

The main result of this paperis the following theorem.
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Theorem 1. Assumeh ∈ L∞(0, T ), f is continuous and bounded, moreover the li
limu→+∞ f (u) =: f (+∞) exists andH(t) = f (+∞) + h(t) �≡ 0. Let

IH =
T∫

0

H(t)sinp

(
πpt

T

)
dt. (1.10)

If IH = 0 andlimu→+∞ |x|p−1[f (x)−f (+∞)] = 0, then problem(1.1)–(1.2)has at least
one solution. Moreover, ifp �= 2, the set of all possible solutions is bounded inC1[0, T ].

Remark 1. After the submission of the original manuscript, the referees informed
author of the reference [7]. In [7], the authors obtained the similarly results, but the me
used in [7] and in this paper are different, neither contains the other. Moreover, Eq
is more general than the equation in [5] and [7] and the method used in this paper can
easily applied to the Fǔcik like asymmetric nonlinearity which contains (1.1) as a spe
case, see the result obtained in Section 4.

2. Generalized polar coordinates

Let u = sinp t be the solution of (1.8)–(1.9). Then from [5], fort ∈ [0,πp/2], it can be
implicitly given by the formula

t =
sinp t∫
0

ds

(1− sp)1/p

and for t ∈ [πp/2,πp], sinp t = sinp(πp − t); for t ∈ [πp,2πp], sinp t = −sinp(2πp −
t). Moreover sinp t is a 2πp-periodicC2 function. Letq = p/(p − 1) be the conjugate
exponent ofp, then Eq. (1.1) can be written as first order differential system

u′ = ϕq(v), v′ = −λ1ϕp(u) + f (u) + h(t). (2.1)

For simplicity, we can assumeT = πp in (1.1)–(1.2) in the rest of this paper. In this ca
λ1 = p − 1 and (1.10) becomes

IH =
πp∫
0

H(t)sinp t dt. (2.2)

First, we introduce the generalized polar coordinates. Let(S(t),C(t)) be the solution of
the auxiliary system

x ′ = ϕq(y), y ′ = −λ1ϕp(x) (2.3)

satisfying the initial condition(S(0),C(0)) = (0,1).
Then it is easy to verify that(S(t),C(t)) is 2πp-periodic and

S(t) = sinp t, C(t) = ϕp

(
S′(t)

)
, (2.4)∣∣C(t)

∣∣q + ∣∣S(t)
∣∣p ≡ 1, t ∈ [0,2πp]. (2.5)
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t

Under the generalized polar coordinates transformationT : (r, θ) → (u, v):

T : u = rq/2S(θ), v = rp/2C(θ), r > 0, θ ∈ [0,2πp] (2.6)

and by using (2.5), system (2.1) is transformed into the following system:

dr

dt
= 2

p
r(2−p)/2(p − 1)S′(θ)

[
f

(
rq/2S(θ)

) + h(t)
]
,

dθ

dt
= 1− r−p/2S(θ)

[
f

(
rq/2S(θ)

) + h(t)
]
, t ∈ (0, T ). (2.7)

Condition (1.2) can be seen asθ(0) = 0 or θ(0) = πp , θ(πp) = kπp , k ∈ Z. It is easy to
seeθ(0) = 0 andθ(0) = πp implies thatu′(0) > 0 andu′(0) < 0, respectively. Withou
loss of generality, we may assumeθ(0) = 0.

Let ρ = rp/2, F(ρS(θ)) = f (ρ1/(p−1)S(θ)), then (2.7) can be further simplified as

dρ

dt
= (p − 1)S′(θ)

[
F

(
ρS(θ)

) + h(t)
]
,

dθ

dt
= 1− ρ−1S(θ)

[
F

(
ρS(θ)

) + h(t)
]
, t ∈ (0,πp). (2.8)

Let (ρ(t), θ(t)) be the solution of (2.8) with initial value(ρ(0), θ(0)) = (ρ0,0). Then for
ρ0 � 1, we have the following estimates.

Lemma 1. Assumef ∈ C(R) andf is bounded with finite limitlimu→+∞ f (u) = f (+∞),
h ∈ L∞(0,πp). Then

θ(πp) = πp − IF /ρ0 + O
(
ρ−2

0

)
(2.9)

asρ0 → +∞, whereO(ρ−2
0 ) is uniform with respect to allf + h with ‖f + h‖L∞ � C0

for someC0 > 0 fixed and

IF =
πp∫
0

H(t)sinp t dt

= f (+∞)
2

p
(p − 1)2/pB

(
2

p
,1− 1

p

)
+

πp∫
0

h(t)sinp t dt, (2.10)

whereB(r, s) = ∫ 1
0 tr−1(1− t)s−1 dt is theβ function forr > 0, s > 0.

Proof. Sincef andh are bounded, we obtain from the first equation of (2.8)

ρ(t) = ρ0 + (p − 1)

t∫
0

S′(θ(τ )
)[

F
(
ρS

(
θ(τ )

)) + h(τ)
]
dτ, (2.11)

and
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ρ−1(t) = ρ−1
0 − ρ−2

0 (p − 1)

t∫
0

S′(θ(τ )
)[F + h]dτ + O

(
ρ−3

0

)
, t ∈ (0,πp).

(2.12)

Substituting (2.12) into the second equation of (2.8) yields

dθ

dt
= 1− ρ−1

0 S(θ)[F + h]

+ (p − 1)ρ−2
0 S(θ)[F + h]

t∫
0

S′(θ(τ )
)[F + h]dτ + O

(
ρ−3

0

)
. (2.13)

Fromθ(0) = 0, we obtain fort ∈ [0,πp],

θ(t) = t − ρ−1
0

t∫
0

S
(
θ(τ )

)[
F

(
ρS

(
θ(τ )

)) + h(τ)
]
dτ

+ ρ−2
0

τ∫
0

S′(θ(τ )
)[F + h]

τ∫
0

S
(
θ(x)

)[F + h]dx dτ

+ (p − 1)ρ−2
0

t∫
0

S
(
θ(x)

)[F + h]
x∫

0

S′(θ(τ )
)[F + h]dτ dx + O

(
ρ−3

0

)

= t − ρ−1
0

t∫
0

S(τ)[F + h]dτ + O
(
ρ−2

0

)
. (2.14)

It follows from (2.14) that

θ(πp) = πp − ρ−1
0

πp∫
0

H(t)S(t) dt + O
(
ρ−2

0

)
. (2.15)

SinceS(t) = sinp t , we obtain from (1.8)–(1.9) thatu = sinp t satisfies the equation

dt = du

(1− up)1/p
. (2.16)

Hence

πp∫
0

S(t) dt = 2

πp/2∫
0

sinp t dt = 2

1∫
0

udu

(1− up)1/p

= 2

p

1∫
0

v2/p−1(1− v)−1/p dv = 2

p
B

(
2

p
,1− 1

p

)
,

which leads to (2.10), where we used the transformation:v = up . �
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Lemma 2. Let the conditions of Lemma1 hold andIH = 0. Moreover, we assume

lim
x→+∞|x|p−1[f (x) − f (+∞)

] = 0. (2.17)

Then

θ(πp) = πp + ρ0JH + o
(
ρ−2

0

)
, (2.18)

where

JH = 2− p

2

[ πp/2∫
0

(
∫ πp/2
t

S′(τ )H(τ) dτ)2

|S′(t)|p dt

+
πp/2∫
0

(
∫ πp/2
t S′(πp − τ )H(τ) dτ)2

|S′(πp − τ )|p dt

]
. (2.19)

Proof. SinceIH = 0, it follows from (2.14) that

θ(πp) = πp − ρ−1
0

πp∫
0

S(t)
[
F

(
ρ(t)S

(
θ(t)

)) − f (+∞)
]
dt

+ ρ−2
0

[
(p − 1)

πp∫
0

S(t)

( t∫
0

S′(τ )[F + h]dτ

)
(F + h) dt

+
πp∫
0

S′(t)[F + h]
( t∫

0

S(τ)[F + h]dτ

)
dt

]
+ O

(
ρ−3

0

)
. (2.20)

From limx→+∞ |x|p−1[f (x) − f (+∞)] = 0, we have

lim
ρ0→+∞

∣∣∣∣∣
πp∫
0

S(t)
[
F

(
ρ(t)S

(
θ(t)

)) − f (+∞)
]
dt

∣∣∣∣∣ρ−1
0

� lim
ρ0→+∞

πp∫
0

∣∣S(t)
∣∣ρ−1

0

∣∣[F (
ρ0S(t)

) − f (+∞)
]∣∣dt = 0. (2.21)

It follows from (2.20) and (2.21) that

JH =
πp∫
0

S′(t)H(t)

( t∫
0

S(τ)H(τ) dτ

)
dt

+ (p − 1)

πp∫
S(t)H(t)

( t∫
S′(τ )H(τ) dτ

)
dt. (2.22)
0 0
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Setu(t) = ∫ t

0 S(τ)H(τ) dτ , v(t) = ∫ t

0 S′(τ )H(τ) dτ , then byu(πp) = IH = 0, we obtain

JH =
πp∫
0

u(t)v′(t) dt + (p − 1)

πp∫
0

u′(t)v(t) dt

= u(t)v(t)
∣∣πp

0 + (p − 2)

πp∫
0

u′(t)v(t) dt = (p − 2)

πp∫
0

u′(t)v(t) dt.

Seta = πp/2 and

L =
πp∫
0

u′(t)v(t) dt =
a∫

0

u′(t)v(t) dt +
πp∫
a

u′(t)v(t) dt =: L1 + L2.

ThenJH = (p − 2)L and

L1 =
a∫

0

S(t)H(t)

( t∫
0

S′(t)H(τ) dτ

)
dt =

a∫
0

( a∫
t

S(τ )H(τ) dτ

)
S′(t)H(t) dt.

SetU(t) = ∫ a

t S′(τ )H(τ) dτ , V (t)
∫ a

t = S(τ)H(τ) dτ , then

L1 = −
a∫

0

U ′(t)V (t) dt = U(0)V (0) +
a∫

0

U(t)V ′(t) dt

= U(0)V (0) +
a∫

0

U(t)U ′(t)S(t)

S′(t)
dt

= U(0)V (0) + 1

2

U2(t)S(t)

S′(t)

∣∣∣∣
a

0
− 1

2

a∫
0

U2(t)

(
1− S(t)S′′(t)

(S′(t))2

)
dt. (2.23)

Claim 1. limt→a U2(t)S(t)/S′(t) = 0.

In fact, by the definition ofU,S and L’Hospital’s rule, we obtain

lim
t→a

U2(t)S(t)

S′(t)
= lim

t→a

U2(t)

S′(t)
lim
t→a

S(t) = lim
t→a

U2(t)

S′(t)
= lim

t→a

2U(t)U ′(t)
S′′(t)

= lim
t→a

−2U(t)|S′(t)|p−2S′(t)
|S(t)|p−2S(t)

= 0.

Claim 2. 1− S(t)S′′(t)/(S′(t))2 = 1/|S′(t)|p .
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In fact, from (2.5) andS(t) satisfies|u′|p−2u′′ + |u|p−2u = 0, we obtain

1− S(t)S′′(t)
(S′(t))2 = 1+ ∣∣S(t)

∣∣p/
∣∣S′(t)

∣∣p = 1

|S′(t)|p .

It follows from (2.23), Claims 1 and 2 that

L1 = U(0)V (0) − 1

2

a∫
0

(
∫ a

t
S(τ )H(τ) dτ)2

|S′(t)|p dt. (2.24)

Now we calculateL2: let A(t) = ∫ t

0 S′(τ )H(τ) dτ , B(t) = ∫ t

0 S(τ)H(τ) dτ , then from
IH = 0, we haveB(πp) = 0 and

L2 =
πp∫
a

A(t)B ′(t) dt = −A(a)B(a) −
πp∫
a

A′(t)B(t) dt.

Let t = πp − x, τ = πp − y, then it is easy to verify that

πp∫
a

A′(t)B(t) dt =
a∫

0

S′(πp − x)H(πp − x)

( x∫
0

S(πp − y)H(πp − y) dy

)
dx.

Similar to the calculation ofL1, we can verify that

L2 = −A(a)B(a) − 1

2

a∫
0

(
∫ a

t
S′(πp − τ )H(πp − τ ) dτ)2

|S′(πp − t)|p dt. (2.25)

It is evident thatA(a) = U(0), B(a) = V (0), hence we obtain from (2.23)–(2.25)

L = L1 + L2 = −1

2

[ a∫
0

(
∫ a

t
S′(τ )H(τ) dτ)2

|S′(t)|p dt

+
a∫

0

(
∫ a

t S′(πp − τ )H(πp − τ ) dτ)2

|S′(πp − t)|p dt

]
. �

Remark 2. Let f ≡ 0, S(t) = sinp t , S′(t) = cosp t . ThenJH reduces to

JH = 2− p

2

[ a∫
0

(
∫ a

t
h(τ )cosp τ dτ)2 + (

∫ a

t
h(πp − τ )cosp τ dτ)2

cospp t
dt

]
,

which differs fromJh in [5] only by a constant.
Moreover, the expression ofJh in [5] contains a typing error:πp should beπp/2 = a

in the upper limit of the second integral.
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3. Proof of Theorem 1

By using a similar method used in [5], we prove Theorem 1.
Let X = C1

0[0,πp] = {u ∈ C1[0,πp]: u(0) = u(πp) = 0} and R+ = [0,+∞). For
u ∈ R, F̄ (u, ·) ∈ L∞(0,πp) andλ ∈ R+, define an operatorGλ,F̄ : X → X by Gλ,F̄ (v) =
u if and only if(

ϕp(u′)
)′ = λ

[
F̄

(
v,λ1/pt

) − ϕp(v)
]
, (3.1λ)

u(0) = u(πp) = 0. (3.2)

Standard arguments based on the Arzela–Ascoli theorem implies thatGλ.F̄ is a well-
defined operator which is compact fromX in X∗. Moreover,Gλ,F̄ depends continuousl
on the perturbations of̄F andλ.

The following lemma is a direct consequence of the results of [5] and [6].

Lemma 3. Let deg[I − Gλ,F ;BR(0),0] be the Leray–Schauder degree ofI − Gλ,F̄ with
respect toBR(0) and 0, whereR > 0 and BR(0) = {u ∈ X: ‖u‖ < R}, I is the identity
operator. Then for0 < ε 
 1 and anyR > 0,

deg
[
I − G1−ε,0;BR(0),0

] = 1, (3.3)

deg
[
I − G1+ε,0;BR(0),0

] = −1. (3.4)

Proof of Theorem 1. We distinguish between the two cases 1< p < 2 andp > 2.

Case1 < p < 2. By (2.19),JH > 0 and fort > πp , we extendH to [0,2πp] as aL∞
function.

We claim that there exists a constantR > 0 such that for anyλ ∈ [1,1+ε] the boundary
value problem(

ϕp(u′)
)′ + λ(p − 1)ϕp(u) = λ

[
f (u) + h(λ1/pt)

]
, (3.5)

u(0) = u(πp) = 0 (3.6)

has no solution with‖u‖C1[0,πp] � R.

Suppose on the contrary that there exist sequences{un}∞n=1 ⊂ C1
0[0,πp], {λn}∞n=1 ⊂

[1,1 + ε], such thatλn → λ̄ ∈ [1,1 + ε] and ‖un‖C1[0,πp] → ∞ and un,λn satisfy

(3.5)–(3.6). From (2.6) andρ = rp/2, we know thatρ0,n → +∞. In this case,vn(t) =
un(λ

−1/pt) solves the equation(
ϕp(v′

n)
)′ + (p − 1)ϕp(vn) = f (vn) + h(t),

vn(0) = 0,

with ρ0,n → +∞ and un(πp) = vn(λ
1/p
n πp) = 0. But Lemma 2 andIH = 0 imply

θn(πp) > πp for n � 1. This contradicts the factun(πp) = vn(λ
1/p
n πp) = 0 because

1 � λn � 1+ ε for all n ∈ N . Thus the claim is verified.
By this claim we see that for 0< ε 
 1, the homotopyH̄ : [1,1+ ε] × X → X defined

by H̄ (u,λ) = u − G ¯ (u), whereF̄λ = f (u) + h(λ1/pt), satisfiesH̄ (u,λ) �= 0 for all
λ,Fλ
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eral
λ ∈ [1,1 + ε] and‖u‖C1[0,πp] � R. Thus, from the homotopy invariance property of t
Leray–Schauder degree, we obtain by (3.4),

deg
[
I − G1,F̄ ;BR(0),0

] = deg
[
I − G1+ε,F̄1+ε

;BR(0),0
] = −1.

This proves that for given̄F = f + h satisfyingIH = 0, the problem (1.1)–(1.2) has
least one solution. Moreover, it follows from above discussions that all possible solu
of (1.1)–(1.2) are priori bounded in theC1[0,πp] norm.

The casep > 2 can be proved similarly. Thus Theorem 1 is proved.�
Remark 3. With only minor modifications, we can consider the following more gen
problem:(

ϕp(u′)
)′ + (p − 1)

[
αϕp

(
u+) − βϕp

(
u−)] = f (u, t), (3.7)

u(0) = u(T0) = 0, (3.8)

wherep > 1, T0 = α−1/pπp , u± = max{±u,0}, f is bounded and limu→+∞ f (u, t) =
H(t) ∈ L∞(0, T0), α > 0, β > 0 and

α−1/p + β−1/p = 2. (3.9)

In this case (2.9) becomes

θ(T0) = T0 − ρ−1
0 IH + O

(
ρ−2

0

)
, ρ0 � 1, (3.10)

and

IH =
T0∫

0

H(t)S(t) dt,

where(S(t),C(t)) is the solution of the initial value problem

u′ = ϕq(v), v′ = −αϕp

(
u+) + βϕp

(
u−)

(3.11)

u(0) = 0, v(0) = 1, (3.12)

which can be given by

S(t) =
{

α−1/p sinp(α1/pt), t ∈ [0, T0],
−β−1/p sinp(β1/p(t − T0)), t ∈ [T0,2πp],

C(t) = ϕp

(
S′(t)

)
, t ∈ [0,2πp]. (3.13)

If IH = 0 and

lim
x→+∞|x|p−1[f (x, t) − H(t)

] = 0,

then

θ(T0) = T0 + ρ−2
0 JH + o

(
ρ−2

0

)
,

where
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.

-

JH = 2− p

2

[ T0/2∫
0

(
∫ T0/2
t

S′(τ )H(τ) dτ)2

|S′(t)|p dt

+
T0/2∫
0

(
∫ T0/2
t S′(T0 − τ )H(τ) dτ)2

|S′(T0 − t)|p dt

]
,

which implies that ifIH = 0 andH(t) �≡ 0, then the conclusions of Theorem 1 still hold

4. Neumann boundary value problem

In this section, we state without proof the solvability of the following Neumann bound
ary value problem(

ϕp(u′)
)′ + (p − 1)

[
αϕp

(
u+) − βϕp

(
u−)] = f (u, t) in (0, T0), (4.1)

u′(0) = u′(T0) = 0, (4.2)

whereT0 = α−1/pπp , α,β > 0 and

α−1/p + β−1/p = 2. (4.3)

Let (S̄(t), C̄(t)) be the solution of the following system:

x ′ = ϕp′(y), y ′ = −(p − 1)
[
αϕp

(
x+) − βϕp

(
x−)]

x(0) = 1, y(0) = 0.

Then we have the following theorem.

Theorem 2. Supposef is continuous and bounded, the limit

lim
u→±∞ f (u, t) = H(t)

exists andH(t) ∈ L∞(0, T0). Then

θ(T0) = T0 − 1

αρ0
ĪH + O

(
ρ−2

0

)
, ρ0 � 1,

where

ĪH =
T0∫

0

S̄(t)H(t) dt.

If α > 0, β > 0 satisfy (4.3) and̄IH = 0, H(t) �≡ 0. L̄ < +∞ whereL̄ > 0 is given by

L̄ =
T0/2∫ [

(
∫ t

0 S̄′(τ )H(τ) dτ)2

|S̄′(t)|p dt + (
∫ t

0 S̄′(T0 − τ )H(T0 − τ ) dτ)2

|S̄′(T0 − t)|p dt

]
,

0
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:

ing
:

then

θ(T0) = T0 − ρ−2
0 ĪH + o

(
ρ−2

0

)
with

ĪH =
(

p − 2

2

)
L̄.

In this case, the problem (4.1)–(4.2) has at least one solution. Moreover, ifp �= 2, then the
set of all possible solutions is bounded inC1[0, T0].

5. Nonhomogeneous problems

In this section, we deal with the solvability of the following nonhomogeneous problem

(
ϕp(u′)

)′ + (p − 1)q

p
ϕq(u) = f (u, t), t ∈ (0,πpq), (5.1)

u(0) = u(πpq) = 0, (5.2)

whereq � p > 1,

πpq =
1∫

0

ds

(1− sq)1/p
= 2

q
B

(
1

q
,

p

p − 1

)
,

f is bounded and continuous.
If q = p, then (5.1)–(5.2) reduces to (1.1)–(1.2) withf (u, t) = f (u) + h(t). Therefore

we discuss the caseq > p only.
Similar to the results of [4], one can define (with minor modification) the follow

2πpq -periodic functionu = sinpq t as the solution of the following initial value problem

(
ϕp(u′)

)′ + (p − 1)q

p
ϕq(u) = 0, (5.3)

u(0) = 0, u′(0) = 1, (5.4)

which for t ∈ [0,πpq/2] can be given implicitly by the formula

t =
sinpq t∫
0

ds

(1− sq )1/p
(5.5)

and sinpq t = sinpq(πpq − t) for t ∈ [πpq/2,πpq], sinpq t = −sinpq(2πpq − t) for t ∈
[πpq,2πpq]. Define cospq t = d

dt
(sinpq t). Then

|sinpq t|q + |cospq t|p ≡ 1, t ∈ R. (5.6)

Let (S̃(t), C̃(t)) be the solution of the following first order system:

x ′ = ϕp∗(y), y ′ = − q
ϕq(x) (5.7)
p
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t

satisfying(S̃(0), C̃(0)) = (0,1), wherep∗ = p/(p − 1). Then we can verify that

S̃(t) = sinpq t, C̃(t) = ϕ
(
S̃′(t)

) = ϕp(cospq t). (5.8)

Moreover, they satisfy∣∣S̃(t)
∣∣q + ∣∣C̃(t)

∣∣p ≡ 1, t ∈ R. (5.9)

Rewrite (5.1) as

u′ = ϕp∗(v), v′ = − q

p∗ ϕq(u) + f (u, t) (5.10)

and define the generalized polarcoordinates transformation

u = rp∗/2S̃(θ), v = rq/2C̃(θ), r > 0, θ ∈ R. (5.11)

Then one can verify that system (5.10) is changed into the form

dp

dt
= (p − 1)S̃′(θ)f (u, t), (5.12)

dθ

dt
= ρσ − p

q
ρ−1S̃(θ)f (u, t), (5.13)

whereρ = rq/2, u = ρp∗/qS̃(θ), σ = (q − p)/(q(p − 1)) > 0.

Theorem 3. Let q > p andf :R × [0,πpq] → R be continuous and bounded. Then
problem(5.1)–(5.2)has infinitely many solutionsun(t) and the number of zeros ofun in
(0,πpq) increases to∞ asn → ∞, moreover,‖un‖ → ∞ asn → ∞.

Sketch of the proof. Now supposeθ(0) = 0, then (5.2) is equivalent toθ(πpq) =
kπpq, k ∈ Z. The assumptionq > p implies σ > 0. Let ρ(0) = ρ0 � 1, then it follows
form (5.12)

ρ(t) = ρ0 + O(1)

and

ρ−1(t) = ρ−1
0 + o

(
ρ−1

0

)
, t ∈ [0,πpq]. (5.14)

Substituting (5.14) into (5.13), we get

θ(πpq) = ρσ
0 πpq + o

(
ρσ

0

) = ρσ
0 πpq

(
1+ o(1)

)
. (5.15)

From (5.14) and the fact thatθ(πpq) depends continuously onρ0, we know that there exis
infinitely manyn ∈ N such that

θ(πpq) = nπpq

andρ0,n → ∞ asn → ∞. �
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