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Abstract

Let M be a compact Riemannian manifold with or without boundary, and let−∆ be its Laplace–
Beltrami operator. For any bounded scalar potentialq, we denote byλi(q) the ith eigenvalue of
the Schrödinger type operator−∆ + q acting on functions with Dirichlet or Neumann bounda
conditions in case∂M �= ∅. We investigate critical potentials of the eigenvaluesλi and the eigenvalu
gapsGij = λj − λi considered as functionals on the set of bounded potentials having a given
value onM. We give necessary and sufficient conditions for a potentialq to be critical or to be a
local minimizer or a local maximizer of these functionals. For instance, we prove that a po
q ∈ L∞(M) is critical for the functionalλ2 if and only if q is smooth,λ2(q) = λ3(q) and there
exist second eigenfunctionsf1, . . . , fk of −∆ + q such that

∑
j f 2

j
= 1. In particular,λ2 (as well as

anyλi ) admits no critical potentials under Dirichlet boundary conditions. Moreover, the functionλ2
never admits locally minimizing potentials.
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1. Introduction and statement of main results

Let M be a compact connected Riemannian manifold of dimensiond , possibly with
nonempty boundary∂M , and let−∆ be its Laplace–Beltrami operator acting on functio
with, in the case where∂M �= ∅, Dirichlet or Neumann boundary conditions. In all t
sequel, as soon as the Neumann Laplacian will be considered, the boundary ofM will be
assumed to be sufficiently regular (e.g.,C1, but weaker regularity assumptions may suffi
see [3]) in order to guarantee the compactness of the embeddingH 1(M) ↪→ L2(M) and,
hence, the compactness of the resolvent of the Neumann Laplacian (note that it
known, using standard arguments like in [14, p. 89], that compactness results for S
spaces on Euclidean domains remain valid in the Riemannian setting).

For any bounded real valued potentialq on M , the Schrödinger type operator−∆ + q

has compact resolvent (see [16, Theorem IV.3.17] and observe that a boundedq leads to
a relatively compact operator with respect to−∆). Therefore, its spectrum consists o
nondecreasing and unbounded sequence of eigenvalues with finite multiplicities:

Spec(−∆ + q) = {
λ1(q) < λ2(q) � λ3(q) � · · · � λi(q) � · · ·}.

Each eigenvalueλi(q) can be considered as a (continuous) function of the pote
q ∈ L∞(M) and there are both physical and mathematical motivations to study exis
and properties of extremal potentials of the functionalsλi as well as of the difference
called gaps, between them. A very rich literature is devoted to the existence and t
termination of maximizing or minimizing potentials for the eigenvalues (especially
fundamental one,λ1) and the eigenvalue gaps (especially the first one,λ2 − λ1) under var-
ious constraints often motivated by physical considerations (see, for instance, [1,2
10–13,17,19] and the references therein). Note that, since the functionλi commutes with
constant translations, that is,λi(q + c) = λi(q) + c, such constraints are necessary.

Our aim in this paper is to investigate critical points, including “local minimizers”
“local maximizers,” of the eigenvalue functionalsq → λi(q) and the eigenvalue gap fun
tionals q → λj (q) − λi(q), the potentialsq being subjected to the constraint that th
mean value (or, equivalently, their integral) overM is fixed. All along this paper, the mea
value of an integrable functionq will be denotedq̄, that is,

q̄ = 1

V (M)

∫
M

q dv,

V (M) and dv being respectively the Riemannian volume and the Riemannian vo
element ofM .

Actually, most of the results below can be extended, modulo some slight changes
case where this constraint is replaced by the more general one∫

M

F(q)dv = constant,

whereF : R → R is a continuous function such thatF ′(x) �= 0 if x �= 0, like F(x) = |x|α
or F(x) = x|x|α−1 with α � 1. However, for simplicity and clarity reasons, we prefer
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to focus only on the mean value constraint. Therefore, we fix a constantc ∈ R and conside
the functionals

λi : q ∈ L∞
c (M) �→ λi(q) ∈ R,

whereL∞
c (M) = {q ∈ L∞(M) | q̄ = c}. The tangent space toL∞

c (M) at any pointq is
given by

L∞∗ (M) :=
{
u ∈ L∞(M)

∣∣∣
∫
M

udv = 0

}
.

1.1. Critical potentials of the eigenvalue functionals

Since it is always nondegenerate, the first eigenvalue gives rise to a differen
functional in the sense that, for anyq ∈ L∞

c (M) and anyu ∈ L∞∗ (M), the function
t �→ λ1(q + tu) is differentiable int . A potentialq ∈ L∞

c (M) will be termedcritical for
this functional if d

dt
λ1(q + tu)|t=0 = 0 for anyu ∈ L∞∗ (M).

In the case of empty boundary or of Neumann boundary conditions, the constan
tion 1 belongs to the domain of the operator−∆ + q and one obtains, as a conseque
of the min–max principle, that the constant potentialc is a global maximizer ofλ1 over
L∞

c (M) (see also [6] and [13]). Constant potentialc is actually the only critical one forλ1.
On the other hand, under Dirichlet boundary conditions, the functionalλ1 admits no critical
potentials inL∞

c (M). Indeed, we have the following

Theorem 1.1.

(1) Assume that either∂M = ∅ or ∂M �= ∅ and Neumann boundary conditions are i
posed. Then, for any potentialq in L∞

c (M), we have

λ1(q) � λ1(c) = c,

where the equality holds if and only ifq = c. Moreover, the constant potentialc is the
only critical one of the functionalλ1 overL∞

c (M).
(2) Assume that∂M �= ∅ and that Zero Dirichlet boundary conditions are imposed. T

the functionalλ1 does not admit any critical potential inL∞
c (M).

Higher eigenvalues are continuous but not differentiable in general. Nevertheles
turbation theory enables us to prove that, for any functionu ∈ L∞(M), the function
t �→ λi(q + tu) admits left and right derivatives att = 0 (see Section 2.2). A generaliz
notion of criticality can be naturally defined as follows:

Definition 1.1. A potential q is said to be critical for the functionalλi if, for any u ∈
L∞∗ (M), the left and right derivatives oft �→ λi(q + tu) at t = 0 have opposite signs, th
is

d

dt
λi(q + tu)

∣∣∣∣
t=0+

× d

dt
λi(q + tu)

∣∣∣∣
t=0−

� 0.
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It is immediate to check thatq is critical for λi if and only if for anyu ∈ L∞∗ (M), one
of the two following inequalities holds:

λi(q + tu) � λi(q) + o(t) ast → 0 or

λi(q + tu) � λi(q) + o(t) ast → 0.

In all the sequel, we will denote byEi(q) the eigenspace corresponding to theith
eigenvalueλi(q) whose dimension coincides with the number of indicesj ∈ N such that
λj (q) = λi(q).

As for the first eigenvalue, the functionalsλi , i � 2, admit no critical potentials unde
Dirichlet boundary conditions.

Theorem 1.2. Assume that∂M �= ∅ and that Zero Dirichlet boundary conditions are im
posed. Then,∀i ∈ N

∗, the functionalλi does not admit any critical potential inL∞
c (M).

Under the two remaining boundary conditions, the following theorem gives a nece
condition for a potentialq to be critical for the functionalλi . This condition is also suf
ficient for the indicesi such thatλi(q) > λi−1(q) or λi(q) < λi+1(q), which means tha
λi(q) is the first one or the last one in a cluster of equal eigenvalues.

Theorem 1.3. Assume that either∂M = ∅ or ∂M �= ∅ and Neumann boundary condition
are imposed. Leti be a positive integer.

If q ∈ L∞
c (M) is a critical potential of the functionalλi , thenq is smooth and there

exists a finite family of eigenfunctionsf1, . . . , fk in Ei(q) such that
∑

1�j�k f 2
j = 1.

Reciprocally, ifλi(q) > λi−1(q) or λi(q) < λi+1(q), and if there exists a family o
eigenfunctionsf1, . . . , fk ∈ Ei(q) such that

∑
1�j�k f 2

j = 1, thenq is a critical potential
of the functionalλi .

Note that the identity
∑

1�j�k f 2
j = 1, with f1, . . . , fk ∈ Ei(q), immediately implies

another one (that we obtain from∆
∑

1�j�k f 2
j = 0):

q = λi(q) −
∑

1�j�k

|∇fj |2,

from which we can deduce the smoothness ofq.

Remark 1.1.

(1) The identity
∑

1�j�k f 2
j = 1 with −∆fj + qfj = λi(q)fj , means that the mapf =

(f1, . . . , fk) from M to the Euclidean sphereSk−1 is harmonic with energy densit
|∇f |2 = λi(q) − q (see [5]). Hence, a necessary (and sometime sufficient) cond
for a potentialq to be critical for the functionalλi is that the functionλi(q) − q is the
energy density of a harmonic map fromM to a Euclidean sphere.

(2) If one replaces the constraint on the mean value1
V (M)

∫
M

q dv = c by the general con

straint
∫

F(q)dv = c, then the necessary and sufficient condition
∑

f 2 = 1

M 1�j�k j
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∑

1�j�k f 2
j =

F ′(q). In particular,q is a critical potential of the functionalλ1 if and only if F ′(q) � 0

andF ′(q)
1
2 is a first eigenfunction of−∆ + q, see [1,12] for a discussion of the ca

F(q) = |q|α .

Under each one of the boundary conditions we consider a constant function can
be an eigenfunction associated to an eigenvalueλi(q) with i � 2. Hence, an immediat
consequence of Theorem 1.3 is the following

Corollary 1.1. If q ∈ L∞
c (M) is a critical potential of the functionalλi with i � 2, then

the eigenvalueλi(q) is degenerate, that isλi(q) = λi−1(q) or λi(q) = λi+1(q).

If {f1, . . . , fk} is anL2-orthonormal basis ofEi(−∆), then the function
∑

1�j�k f 2
j is

invariant under the isometry group ofM . Indeed, for any isometryρ of M , {f1 ◦ ρ, . . . ,

fk ◦ ρ} is also an orthonormal basis ofEi(−∆) and then, there exists a matrixA ∈ O(d)

such that(f1 ◦ ρ, . . . , fd ◦ ρ) = A.(f1, . . . , fd). In particular, ifM is homogeneous, tha
is, the isometry group acts transitively onM , then

∑
1�j�k f 2

j would be constant. Anothe
consequence of Theorem 1.3 is then the following

Corollary 1.2. If M is homogeneous, then constant potentials are critical for all the f
tionalsλi such thatλi(−∆) < λi+1(−∆) or λi(−∆) > λi−1(−∆).

Recall that Euclidean spheres, projective spaces and flat tori are examples of ho
neous Riemannian spaces.

A potentialq ∈ L∞
c (M) is said to be alocal minimizer(respectivelylocal maximizer)

of the functionalλi (in a weak sense) if, for anyu ∈ L∞∗ (M), the functiont �→ λi(q + tu)

admits a local minimum (respectively maximum) att = 0. The result of Corollary 1.1 take
the following more precise form in the case of a local minimizer or maximizer.

Theorem 1.4. Letq ∈ L∞
c (M) andi � 2.

(1) If q is a local minimizer of the functionalλi , thenλi(q) = λi−1(q).
(2) If q is a local maximizer of the functionalλi , thenλi(q) = λi+1(q).

Since the first eigenvalue is simple, we always haveλ2(q) > λ1(q). The previous results
applied to the functionalλ2 can be summarized as follows.

Corollary 1.3. Assume that either∂M = ∅ or ∂M �= ∅ and Neumann boundary cond
tions are imposed. A potentialq ∈ L∞

c (M) is critical for the functionalλ2 if and only if,
q is smooth,λ2(q) = λ3(q) and there exist eigenfunctionsf1, . . . , fk in E2(q) such that∑

1�j�k f 2
j = 1.

Moreover, the functionalλ2 admits no local minimizers inL∞
c (M).

In [6], Ilias and the first author have proved that, under some hypotheses onM , sat-
isfied in particular by compact rank-one symmetric spaces, irreducible homogeneou
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mannian spaces and some flat tori, the constant potentialc is a global maximizer ofλ2 over
L∞

c (M). In [8,9], they studied the critical points ofλi considered as a functional on the s
of Riemannian metrics of fixed volume onM .

1.2. Critical potentials of the eigenvalue gaps functionals

We consider now the eigenvalue gaps functionalsq �→ Gij (q) = λj (q) − λi(q), where
i andj are two distinct positive integers, and define their critical potentials as in D
ition 1.1. These functionals are invariant under translations, that isGij (q + c) = Gij (q).
Therefore, critical potentials ofGij with respect to fixed mean value deformations are a
critical with respect to arbitrary deformations.

Theorem 1.5. If q ∈ L∞
c (M) is a critical potential of the gap functionalGij = λj − λi ,

then there exist a finite family of eigenfunctionsf1, . . . , fk in Ei(q) and a finite family of
eigenfunctionsg1, . . . , gl in Ej(q), such that

∑
1�p�k f 2

p = ∑
1�p�l g

2
p.

Reciprocally, ifλi(q) < λi+1(q) andλj (q) > λj−1(q), and if there existf1, . . . , fk in
Ei(q) and g1, . . . , gl in Ej(q) such that

∑
1�p�k f 2

p = ∑
1�p�l g

2
p, thenq is a critical

potential ofGij .

In the particular case of the gap between two consecutive eigenvalues, we ha
following

Corollary 1.4. A potentialq ∈ L∞
c (M) is critical for the gap functionalGi,i+1 = λi+1−λi

if and only if, eitherλi+1(q) = λi(q), or there exist a family of eigenfunctionsf1, . . . , fk

in Ei(q) and a family of eigenfunctionsg1, . . . , gl in Ei+1(q), such that
∑

1�p�k f 2
p =∑

1�p�l g
2
p.

Remark 1.2. The characterization of critical potentials ofGij given in Theorem 1.5 re
mains valid under the constraint

∫
M

F(q)dv = c.

An immediate consequence of Theorem 1.5 is the following

Corollary 1.5. Letq ∈ L∞
c (M) be a critical potential of the gap functionalGij = λj − λi .

If λi(q) (respectivelyλj (q)) is nondegenerate, thenλj (q) (respectivelyλi(q)) is degener-
ate.

The following is an immediate consequence of the discussion above concerning
geneous Riemannian manifolds.

Corollary 1.6. If M is a homogeneous Riemannian manifold, then, for any positive
ger i, constant potentials are critical points of the gap functionalGi,i+1 = λi+1 − λi .

Potentialsq such thatλi+1(q) = λi(q) are of course global minimizers of the gap fun
tional Gi,i+1. These potentials are also the only local minimizers ofGi,i+1. Indeed, we
have the following
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Theorem 1.6. If q ∈ L∞
c (M) is a local minimizer of the gap functionalGij = λj − λi ,

then, eitherλi(q) = λi+1(q), or λj (q) = λj−1(q). If q is a local maximizer ofGij , then,
eitherλi(q) = λi−1(q), or λj (q) = λj+1(q).

In particular,q is a local minimizer of the gap functionalGi,i+1 = λi+1 −λi if and only
if Gi,i+1(q) = 0.

Finally, let us apply the results of this section to the first gapG1,2.

Corollary 1.7. A potentialq ∈ L∞
c (M) is critical for the gap functionalG1,2 = λ2 − λ1

if and only ifλ2(q) is degenerate and there exists a family of eigenfunctionsg1, . . . , gl in
E2(q) such that

∑
1�j�l g

2
j = f 2, wheref is a basis ofE1(q).

The functionalG1,2 does not admit any local minimizer inL∞
c (M).

2. Proof of results

2.1. Variation formula and proof of Theorem 1.1

Given on M a potentialq and a functionu ∈ L∞(M), we consider the family o
operators−∆ + q + tu. Suppose thatΛ(t) is a differentiable family of eigenvalues
−∆+ q + tu and thatft is a differentiable family of corresponding normalized eigenfu
tions, that is,∀t ,

(−∆ + q + tu)ft = Λ(t)ft ,

and ∫
M

f 2
t dv = 1,

with ft |∂M = 0 or ∂ft

∂ν
|∂M = 0 if ∂M �= ∅. The following formula, giving the derivativ

of Λ, is already known at least in the case of Euclidean domains with Dirichlet bou
conditions.

Proposition 2.1.

Λ′(0) =
∫
M

uf 2
0 dv.

Proof. First, we have, for allt ,

Λ(t) = Λ(t)

∫
M

(ft )
2 dv =

∫
M

ft(−∆ + q + tu)ft dv.

Differentiating att = 0, we get

Λ′(0) = d

dt

(∫
ft (−∆ + q)ft dv + t

∫
u(ft )

2 dv

)∣∣∣∣
t=0

.

M M
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Now, noticing that the functiond
dt

ft |t=0 satisfies the same boundary conditions asf0 in
case∂M �= ∅, and using integration by parts, we obtain

d

dt

∫
M

ft(−∆ + q)ft dv|t=0 = 2
∫
M

(−∆ + q)f0
d

dt
ft

∣∣∣∣
t=0

dv

= 2Λ(0)

∫
M

f0
d

dt
ft

∣∣∣∣
t=0

dv

= Λ(0)
d

dt

∫
M

f 2
t dv

∣∣∣∣
t=0

= 0.

On the other hand, we have

d

dt

(
t

∫
M

uf 2
t dv

)∣∣∣∣
t=0

=
∫
M

uf 2
0 dv +

(
t

∫
M

u
d

dt
f 2

t dv

)∣∣∣∣
t=0

=
∫
M

uf 2
0 vg.

Finally, Λ′(0) = ∫
M

uf 2
0 dv. �

Proof of Theorem 1.1. (i) First, let us show that constant potentials are maximizing forλ1.
Indeed, letc be a constant potential and letq be an arbitrary one inL∞

c (M). From the
variational characterization ofλ1(−∆ + q) in the case∂M = ∅ as well as in the case o
Neumann boundary conditions, we get

λ1(−∆ + q) = inf
f ∈H1(M)

∫
M

(|∇f |2 + qf 2) dv

‖f ‖2
L2(M)

�
∫
M

(|∇1|2 + q12) dv

‖1‖2
L2(M)

=
∫
M

q dv

V (M)
= c.

Hence,λ1(q) � λ1(c) and the constant potentialc maximizes the functionalλ1 onL∞
c (M).

In particular, constant potentials are critical for this functional.
Now, suppose thatq ∈ L∞

c (M) is a critical potential forλ1. For anyu ∈ L∞∗ (M), we
consider a differentiable familyft of normalized eigenfunctions corresponding to the fi
eigenvalue of(−∆ + q + tu) and apply the variation formula above to obtain:

d

dt
λ1(q + tu)

∣∣∣∣
t=0

=
∫
M

uf 2
0 dv.

Hence,
∫
M

uf 2
0 dv = 0 for anyu ∈ L∞∗ (M), which implies thatf0 is constant onM . Since

(−∆ + q)f0 = qf0 = λ1(q)f0, the potentialq must be constant onM .
(ii) Let f0 be the first nonnegative Dirichlet eigenfunction of−∆ + q satisfying∫

M
f 2

0 dv = 1. The functionu = V (M)f 2
0 − 1 belongs toL∞∗ (M) and we have

d

dt
λ1(q + tu)

∣∣∣∣
t=0

=
∫
M

uf 2
0 dv = V (M)

∫
M

f 4
0 dv − 1 > 0,

where the last inequality comes from Cauchy–Schwarz inequality and the fact thaf0 is
not constant (recall thatf0|∂M = 0). Therefore, the potentialq is not critical forλ1. �



A. El Soufi, N. Moukadem / J. Math. Anal. Appl. 314 (2006) 195–209 203

f
to the
of
s

2.2. Characterization of critical potentials

Let i be a positive integer and letm � 1 be the dimension of the eigenspaceEi(q)

associated to the eigenvalueλi(q). For any functionu ∈ L∞∗ (M), perturbation theory o
unbounded self-adjoint operators (see for instance Kato’s book [16]) that we apply
one parameter family of operators−∆ + q + tu, tells us that, there exists a family
m eigenfunctionsf1,t , . . . , fm,t associated with a family ofm (non ordered) eigenvalue
Λ1(t), . . . ,Λm(t) of −∆+q + tu, all depending analytically int in some interval(−ε, ε),
and satisfying

• Λ1(0) = · · · = Λm(0) = λi(q),
• ∀t ∈ (−ε, ε), them functionsf1,t , . . . , fm,t are orthonormal inL2(M).

From this, one can easily deduce the existence of two integersk � m and l � m, and a
smallδ > 0 such that

λi(q + tu) =
{

Λk(t) if t ∈ (−δ,0),

Λl(t) if t ∈ (0, δ).

Hence, the functiont �→ λi(q + tu) admits a left sided and a right sided derivatives att = 0
with

d

dt
λi(q + tu)

∣∣∣∣
t=0−

= Λ′
k(0) =

∫
M

uf 2
k,0 dv and

d

dt
λi(q + tu)

∣∣∣∣
t=0+

= Λ′
l(0) =

∫
M

uf 2
l,0 dv.

To any functionu ∈ L∞∗ (M) and any integeri ∈ N, we associate the quadratic formQi
u

onEi(q) defined by

Qi
u(f ) =

∫
M

uf 2 dv.

The corresponding symmetric linear transformationLi
u : Ei(q) → Ei(q) is given by

Li
u(f ) = Pi(uf ),

wherePi : L2(M) → Ei(q) is the orthogonal projection ofL2(M) ontoEi(q).
It follows immediately that

Proposition 2.2. If the potentialq is critical for the functionalλi , then,∀u ∈ L∞∗ (M), the
quadratic formQi

u(f ) = ∫
M

uf 2 dv is indefinite on the eigenspaceEi(q).

The following lemma enables us to establish a converse to this proposition.

Lemma 2.1. ∀k, l � m, we have∫
ufk,0fl,0 dv =

{
0 if k �= l,

Λ′
k(0) if k = l.
M
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In other words,Λ′
1(0), . . . ,Λ′

m(0) are the eigenvalues of the symmetric linear trans
mationLi

u : Ei(q) → Ei(q) and the functionsf1,0, . . . , fm,0 constitute an orthonorma
eigenbasis ofLi

u.

Proof. Differentiating att = 0 the equality(−∆ + q + tu)fk,t = Λk(t)fk,t , we obtain

ufk,0 + (−∆ + q)
d

dt
fk,t

∣∣∣∣
t=0

= Λ′
k(0)fk,0 + Λk(0)

d

dt
fk,t

∣∣∣∣
t=0

,

and then,∫
M

ufk,0fl,0 dv = Λ′
k(0)

∫
M

fk,0fl,0 dv + Λk(0)

∫
M

fl,0
d

dt
fk,t

∣∣∣∣
t=0

dv

−
∫
M

fl,0(−∆ + q)
d

dt
fk,t

∣∣∣∣
t=0

dv.

Integration by parts gives, after noticing thatΛk(0) = Λl(0) = λi(q) and that the function
d
dt

fk,t |t=0 satisfy the considered boundary conditions,∫
M

fl,0(−∆ + q)
d

dt
fk,t

∣∣∣∣
t=0

dv =
∫
M

d

dt
fk,t

∣∣∣∣
t=0

(−∆ + q)fl,0 dv

= Λk(0)

∫
M

fl,0
d

dt
fk,t

∣∣∣∣
t=0

dv,

and finally,∫
M

ufk,0fl,0 dv = Λ′
k(0)

∫
M

fk,0fl,0 dv = Λ′
k(0)δkl . �

Proposition 2.3. Assume thatλi(q) > λi−1(q) or λi(q) < λi+1(q). Then the following
conditions are equivalent:

(i) the potentialq is critical for λi ;
(ii) ∀u ∈ L∞∗ (M), the quadratic formQi

u(f ) = ∫
M

uf 2 dv is indefinite on the eigenspac
Ei(q);

(iii) ∀u ∈ L∞∗ (M), the linear transformationLi
u admits eigenvalues of both signs.

Proof. Conditions (ii) and (iii) are clearly equivalent and the fact that (i) implies (ii) w
established in Proposition 2.2. Let us show that (iii) implies (i). Assume thatλi(q) >

λi−1(q) and letu ∈ L∞∗ (M) andΛ1(t), . . . ,Λm(t) be as above. For smallt , we will have,
for continuity reasons,∀k � m, Λk(t) > λi−1(q + tu) and then,λi(q + tu) � Λk(t). Since
λi(q + tu) ∈ {Λ1(t), . . . ,Λm(t)}, we get

λi(q + tu) = min
k�m

Λk(t).

It follows that
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ce
pace

the

e

(in

.2).
d

dt
λi(q + tu)

∣∣∣∣
t=0−

= max
k�m

Λ′
k(0) and

d

dt
λi(q + tu)

∣∣∣∣
t=0+

= min
k�m

Λ′
k(0).

Thanks to Lemma 2.1, condition (iii) implies that mink�m Λ′
k(0) � 0 � maxk�m Λ′

k(0)

which implies the criticality ofq.
The caseλi(q) < λi+1(q) can be treated in a similar manner.�

2.3. Proof of Theorems 1.2 and 1.3

Let q be a potential inL∞
c (M). To prove Theorem 1.2 we first notice that, sin

f |∂M = 0 for anyf ∈ Ei(q), the constant function 1 does not belong to the vector s
F generated inL2(M) by {f 2 | f ∈ Ei(q)}. Hence, there exists a functionu orthogonal
to F and such that〈u,1〉L2(M) < 0. The functionu0 = u − ū belongs toL∞∗ (M) and the
quadratic formQi

u0
(f ) = ∫

M
u0f

2 dv = −ū‖f ‖2
L2(M)

is positive definite onEi(q). Hence,
the potentialq is not critical forλi (see Proposition 2.2).

The proof of Theorem 1.3 follows directly from the two propositions above and
following lemma.

Lemma 2.2. Let i be a positive integer. The two following conditions are equivalent:

(i) ∀u ∈ L∞∗ (M), the quadratic formQi
u(f ) = ∫

M
uf 2 dv is indefinite on the eigenspac

Ei(q);
(ii) there exists a family of eigenfunctionsf1, . . . , fk in Ei(q) such that

∑
1�j�k f 2

j = 1.

Proof. To see that (i) implies (ii) we introduce the convex coneC generated inL2(M) by
the set{f 2 | f ∈ Ei(q)}, that isC = {∑j∈J f 2

j | fj ∈ Ei(q), J ⊂ N, J is finite}. Con-
dition (ii) is then equivalent to the fact that the constant function 1 belongs toC. Let us
suppose, for a contradiction, that 1/∈ C. Then, applying classical separation theorems
the finite dimensional vector subspace ofL2(M) generated by{f 2 | f ∈ Ei(q)} and 1, see
[18]), we prove the existence of a functionu ∈ L2(M) such thatū = 1

V (M)

∫
M

u · 1dv < 0

and
∫
M

uf 2 dv � 0 for anyf ∈ C. Hence, the functionu0 = u − ū belongs toL∞∗ (M) and
satisfies,∀f ∈ Ei(q),

Qi
u0

(f ) =
∫
M

uf 2 dv − 1

V (M)

∫
M

udv

∫
M

f 2 dv � −ū‖f ‖2
L2(M)

.

The quadratic formQi
u0

is then positive definite which contradicts (i) (see Proposition 2
Reciprocally, the existence off1, . . . , fk in Ei(q) satisfying

∑
1�j�k f 2

j = 1 implies
that,∀u ∈ L∞∗ (M),

∑
j�k

Qi
u(fj ) =

∑
j�k

∫
M

uf 2
j dv =

∫
M

u = 0,

which implies that the quadratic formQi
u is indefinite onEi(q). �
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ym-
Finally, let us check that the condition
∑

1�j�k f 2
j = 1, with fj ∈ Ei(q), implies that

q is smooth. Indeed, sinceq ∈ L∞(M), we have, for any eigenfunctionf ∈ Ei(q), ∆f ∈
L2(M) and then,f ∈ H 2,2(M). Using standard regularity theory and Sobolev embedd
(see, for instance, [15]), we obtain by an elementary iteration, thatf ∈ H 2,p(M) for some
p > n, and, then,f ∈ C1(M). From

∑
1�j�k f 2

j = 1 and∆
∑

1�j�k f 2
j = 0, we get

q = λi(q) −
∑

1�j�k

|∇fj |2,

which implies thatq is continuous. Again, elliptic regularity theory tells us that the eig
functions of−∆ + q are actually smooth, and, hence,q is smooth.

2.4. Proof of Theorem 1.4

Assume that the potentialq is a local minimizer of the functionalλi onL∞
c (M) and let

us suppose for a contradiction thatλi(q) > λi−1(q). Let u be a function inL∞∗ (M) and let
Λ1(t), . . . ,Λm(t) be a family ofm eigenvalues of−∆+q + tu, wherem is the multiplicity
of λi(q), depending analytically int and such thatΛ1(0) = · · · = Λm(0) = λi(q). For
continuity reasons, we have, for sufficiently smallt and anyk � m, Λk(t) > λi−1(q + tu).
Hence,∀k � m and∀t sufficiently small,

Λk(t) � λi(q + tu) � λi(q) = Λk(0).

Consequently,∀k � m, Λ′
k(0) = 0. Applying Lemma 2.1 above, we deduce that the s

metric linear transformationLi
u and, then, the quadratic formQi

u is identically zero on
the eigenspaceEi(q). Therefore,∀u ∈ L∞∗ (M) and∀f ∈ Ei(q), we have

∫
M

uf 2vg = 0.
In conclusion,∀f ∈ Ei(q), f is constant onM which is impossible fori � 2. The same
arguments work to prove assertion (ii).

2.5. Proof of Theorem 1.5

Let q be a potential and leti andj be two distinct positive integers such thatλi(q) �=
λj (q). We denote bym (respectivelyn) the dimension of the eigenspaceEi(q) (respec-
tively Ej(q)). Given a functionu in L∞∗ (M), we consider, as above,m (respectivelyn)
L2(M)-orthonormal families of eigenfunctionsf1,t , . . . , fm,t (respectivelyg1,t , . . . , gn,t )
associated withm (respectivelyn) families of eigenvaluesΛ1(t), . . . ,Λm(t) (respectively
Γ1(t), . . . ,Γn(t)) of −∆ + q + tu, all depending analytically int ∈ (−ε, ε), such that
Λ1(0) = · · · = Λm(0) = λi(q) (respectivelyΓ1(0) = · · · = Γn(0) = λj (q)). Hence, there
exist four integersk � m, k′ � m, l � n andl′ � n, such that

d

dt
(λj − λi)(q + tu)

∣∣∣∣
t=0−

= Γ ′
l (0) − Λ′

k(0) =
∫
M

u
(
g2

l,0 − f 2
k,0

)
dv

and

d

dt
(λj − λi)(q + tu)

∣∣∣∣
t=0+

= Γ ′
l′(0) − Λ′

k′(0) =
∫

u
(
g2

l′,0 − f 2
k′,0

)
dv.
M



A. El Soufi, N. Moukadem / J. Math. Anal. Appl. 314 (2006) 195–209 207

that it
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nable
Recall that (Lemma 2.1) the eigenfunctionsf1,0, . . . , fm,0 (respectivelyg1,0, . . . , gn,0)
constitute anL2(M)-orthonormal basis ofEi(q) (respectivelyEj(q)) which diagonalizes

the quadratic formQi
u (respectivelyQj

u). Therefore, the family(fk,0 ⊗ gl,0)k�m,l�n con-

stitutes a basis of the spaceEi(q) ⊗ Ej(q) which diagonalizes the quadratic formSi,j
u

given by

S
i,j
u (f ⊗ g) = ‖f ‖2

L2(M)
Q

j
u(g) − ‖g‖2

L2(M)
Qi

u(f )

=
∫
M

u
(‖f ‖2

L2(M)
g2 − ‖g‖2

L2(M)
f 2)dv.

The corresponding eigenvalues are(Γ ′
l (0)−Λ′

k(0))k�m,l�n. The criticality ofq for λj −λi

then implies that this quadratic form admits eigenvalues of both signs, which means
is indefinite.

On the other hand, in the case whereλi(q) < λi+1(q) andλj (q) > λj−1(q), we have,
as in the proof of Proposition 2.3, for sufficiently smallt , λi(q + tu) = maxk�m Λk(t) and
λj (q + tu) = minl�n Γl(t), which yields

d

dt
(λj − λi)(q + tu)

∣∣∣∣
t=0−

= max
l�n

Γ ′
l (0) − min

k�m
Λ′

k(0) = max
k�m,l�n

(
Γ ′

l (0) − Λ′
k(0)

)

and

d

dt
(λj − λi)(q + tu)

∣∣∣∣
t=0+

= min
l�n

Γ ′
l (0) − max

k�m
Λ′

k(0) = min
k�m,l�n

(
Γ ′

l (0) − Λ′
k(0)

)
.

One deduces the following

Proposition 2.4. If the potentialq ∈ L∞
c (M) is critical for the functionalGij = λj − λi ,

then,∀u ∈ L∞∗ (M), the quadratic formS
i,j
u is indefinite onEi(q) ⊗ Ej(q).

Reciprocally, if λi(q) < λi+1(q) and λj (q) > λj−1(q), and if, ∀u ∈ L∞∗ (M), the

quadratic formS
i,j
u (g) is indefinite onEi(q) ⊗ Ej(q), thenq is a critical potential of

the functionalGij .

The following lemma will completes the proof of Theorem 1.5.

Lemma 2.3. The two following conditions are equivalent:

(i) ∀u ∈ L∞∗ (M), the quadratic formS
i,j
u is indefinite onEi(q) ⊗ Ej(q).

(ii) There exist a finite family of eigenfunctionsf1, . . . , fk in Ei(q) and a finite family of
eigenfunctionsg1, . . . , gl in Ej(q), such that

∑
1�p�k f 2

p = ∑
1�p�l g

2
p.

The proof of this lemma is similar to that of Lemma 2.2. Here, we consider the
convex conesCi andCj in L2(M) generated respectively by{f 2 | f ∈ Ei(q), f �= 0} and
{g2 | g ∈ Ej(q), g �= 0}. Condition (ii) is then equivalent to the fact that these two co
admit a nontrivial intersection. As in the proof of Lemma 2.2, separation theorems e
us to prove that, ifCi ∩ Cj = ∅, then there exists a functionu such that

∫
uf 2 dv < 0 for
M
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in the

variété
anyf ∈ Ei(q), and
∫
M

ug2 dv � 0 for anyf ∈ Ej(q), which implies thatSi,j
u is positive

definite onEi(q)⊗Ej(q). SinceSi,j

1 = 0, we have,Si,j
u = S

i,j
u0 with u0 = u− ū ∈ L∞∗ (M).

Proposition 2.4 enables us to conclude.
Reciprocally, assume the existence off1, . . . , fk ∈ Ei(q) andg1, . . . , gl ∈ Ej(q) satis-

fying
∑

1�p�k f 2
p = ∑

1�p�l g
2
p. Then,∀u ∈ L∞∗ (M),

∑
1�p�k

∑
1�p′�l

S
i,j
u (fp ⊗ gp′) = · · · = 0,

which implies thatSi,j
u is indefinite onEi(q) ⊗ Ej(q).

2.6. Proof of Theorem 1.6

Let q be a local minimizer ofGij = λj − λi and let us suppose, for a contrad
tion, that λi(q) < λi+1(q) and λj (q) > λj−1(q). Given a functionu in L∞∗ (M), we
consider, as above,m (respectivelyn) families of eigenvaluesΛ1(t), . . . ,Λm(t) (respec-
tively Γ1(t), . . . ,Γn(t)) of −∆ + q + tu, with m = dimEi(q) andn = dimEj(q), such
that Λ1(0) = · · · = Λm(0) = λi(q) and Γ1(0) = · · · = Γn(0) = λj (q). As in the proof
of Theorem 1.4, we will have for sufficiently smallt , λi(q + tu) = maxk�m Λk(t) and
λj (q + tu) = minl�n Γl(t). Hence,∀k � m andl � n,

Γl(t) − Λk(t) � λj (q + tu) − λi(q + tu) = Gij (q + tu)

� Gij (q) = Γl(0) − Λk(0).

It follows that,∀k � m andl � n, Γ ′
l (0) − Λ′

k(0) = 0 and, then, the quadratic formSi,j
u is

identically zero onEi(q) ⊗ Ej(q) (recall thatΓ ′
l (0) − Λ′

k(0) are the eigenvalues ofSi,j
u ).

This implies that,∀f ∈ Ei(q) and∀g ∈ Ej(q), the function‖f ‖2
L2(M)

g2 − ‖g‖2
L2(M)

f 2 is
constant equal to zero (since its integral vanishes) which is clearly impossible unlessi = j .
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