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Abstract

Let M be a compact Riemannian manifold with or without boundary, and lethe its Laplace—
Beltrami operator. For any bounded scalar potentialve denote by; (¢) the ith eigenvalue of
the Schrodinger type operaterA + ¢ acting on functions with Dirichlet or Neumann boundary
conditions in cas@ M # . We investigate critical potentials of the eigenvalagand the eigenvalue
gapsG;; = »; — A; considered as functionals on the set of bounded potentials having a given mean
value onM. We give necessary and sufficient conditions for a potengti be critical or to be a
local minimizer or a local maximizer of these functionals. For instance, we prove that a potential
g € L°°(M) is critical for the functional., if and only if g is smooth,A2(g) = 23(¢) and there
exist second eigenfunctions, ..., f; of —A + ¢ such thath sz =1. In particular), (as well as
anyA;) admits no critical potentials under Dirichlet boundary conditions. Moreover, the functignal
never admits locally minimizing potentials.
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1. Introduction and statement of main results

Let M be a compact connected Riemannian manifold of dimengjgmossibly with
nonempty boundar§M, and let— A be its Laplace—Beltrami operator acting on functions
with, in the case wheré M # ¢, Dirichlet or Neumann boundary conditions. In all the
sequel, as soon as the Neumann Laplacian will be considered, the boundéryititfbe
assumed to be sufficiently regular (e @1, but weaker regularity assumptions may suffice,
see [3]) in order to guarantee the compactness of the embedtlioy) — L2(M) and,
hence, the compactness of the resolvent of the Neumann Laplacian (note that it is well
known, using standard arguments like in [14, p. 89], that compactness results for Sobolev
spaces on Euclidean domains remain valid in the Riemannian setting).

For any bounded real valued potentjabn M, the Schrddinger type operatetA + ¢
has compact resolvent (see [16, Theorem 1V.3.17] and observe that a bapuietett to
a relatively compact operator with respect-tal). Therefore, its spectrum consists of a
nondecreasing and unbounded sequence of eigenvalues with finite multiplicities:

Sped—A + q) = {r1(g) < A2(q) < r3(g) < -+ <hilg) <--+}.

Each eigenvalué.;(¢) can be considered as a (continuous) function of the potential

g € L°(M) and there are both physical and mathematical motivations to study existence
and properties of extremal potentials of the functiorialas well as of the differences,
called gaps, between them. A very rich literature is devoted to the existence and the de-
termination of maximizing or minimizing potentials for the eigenvalues (especially the
fundamental one),1) and the eigenvalue gaps (especially the first @pe; A1) under var-

ious constraints often motivated by physical considerations (see, for instance, [1,2,4,6,7,
10-13,17,19] and the references therein). Note that, since the fungtmmmmutes with
constant translations, that is,(¢ + ¢) = A;(¢) + ¢, such constraints are necessary.

Our aim in this paper is to investigate critical points, including “local minimizers” and
“local maximizers,” of the eigenvalue functionals— 1;(¢) and the eigenvalue gap func-
tionalsg — X;(g) — 1;(g), the potentialsy being subjected to the constraint that their
mean value (or, equivalently, their integral) owdris fixed. All along this paper, the mean
value of an integrable functiap will be denotedj, that is,

1

N

1 V(M)/q v
M

V(M) anddv being respectively the Riemannian volume and the Riemannian volume
element ofM.

Actually, most of the results below can be extended, modulo some slight changes, to the
case where this constraint is replaced by the more general one

/ F(q) dv = constant
M

whereF : R — R is a continuous function such that(x) £ 0 if x #£ 0, like F(x) = |x|*
or F(x) = x|x|*"1 with & > 1. However, for simplicity and clarity reasons, we preferred
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to focus only on the mean value constraint. Therefore, we fix a constaRtand consider
the functionals

hitq € LX(M) > 1i(g) €R,

where L°(M) = {g € L>°(M) | g = c}. The tangent space tb2°(M) at any pointg is
given by

Lf@@::{uewa@‘/@dvzo}
M

1.1. Critical potentials of the eigenvalue functionals

Since it is always nondegenerate, the first eigenvalue gives rise to a differentiable
functional in the sense that, for anye L2°(M) and anyu € L3°(M), the function
t = A1(g + tu) is differentiable ins. A potentialg € L2°(M) will be termedcritical for
this functional if%z\l(q + tu)|;=0 =0 for anyu € L°(M).

In the case of empty boundary or of Neumann boundary conditions, the constant func-
tion 1 belongs to the domain of the operatenr + ¢ and one obtains, as a consequence
of the min—max principle, that the constant potentiaé a global maximizer of1 over
L2°(M) (see also [6] and [13]). Constant potentia actually the only critical one fox;.

On the other hand, under Dirichlet boundary conditions, the functionadimits no critical
potentials inL2°(M). Indeed, we have the following

Theorem 1.1.

(1) Assume that eithed M = @ or 9M # ¥ and Neumann boundary conditions are im-
posed. Then, for any potentiglin L2° (M), we have

Ar1(g) < A1(o) =c,

where the equality holds if and onlydf= c. Moreover, the constant potentialis the
only critical one of the functional; over L2°(M).

(2) Assume thad M # ¢ and that Zero Dirichlet boundary conditions are imposed. Then
the functionali; does not admit any critical potential ih2° (M).

Higher eigenvalues are continuous but not differentiable in general. Nevertheless, per-
turbation theory enables us to prove that, for any functioa L°°(M), the function
t — X; (g + tu) admits left and right derivatives at= 0 (see Section 2.2). A generalized
notion of criticality can be naturally defined as follows:

Definition 1.1. A potential ¢ is said to be critical for the functional; if, for any u €
L3°(M), the left and right derivatives of— A;(g + fu) attr = 0 have opposite signs, that
is

iarml  xLugrm| <o
™ mordr 1=0-
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It is immediate to check that is critical for &; if and only if for anyu € L°(M), one
of the two following inequalities holds:

ri(g +tu) <Ai(g)+o(t) ast—0 or
Ai(g +tu) > Ai(q) +o(t) ast— 0.

In all the sequel, we will denote b¥;(¢) the eigenspace corresponding to fille
eigenvalue); (¢) whose dimension coincides with the number of indigesN such that
rj(q) = Li(q).

As for the first eigenvalue, the functionalg, i > 2, admit no critical potentials under
Dirichlet boundary conditions.

Theorem 1.2. Assume thad M # ¢ and that Zero Dirichlet boundary conditions are im-
posed. Theryi € N*, the functional; does not admit any critical potential ih2° (M).

Under the two remaining boundary conditions, the following theorem gives a necessary
condition for a potentiay to be critical for the functional;. This condition is also suf-
ficient for the indices such that\;(¢) > A;—1(g) or A;(¢) < A;+1(g), which means that
Ai (g) is the first one or the last one in a cluster of equal eigenvalues.

Theorem 1.3. Assume that eithetM = @ or 9M # ¢ and Neumann boundary conditions
are imposed. Let be a positive integer.
If g € L2°(M) is a critical potential of the functional;, theng is smooth and there
exists a finite family of eigenfunctiorfs, ..., fi in E;(g) such thatzlgjgk sz =1
Reciprocally, ifA;(g) > Ai—1(q) or Xi(¢) < Ai+1(g), and if there exists a family of
eigenfunctionsf, ..., fx € Ei(g) such thatzlgjgk f/.2 =1, theng is a critical potential
of the functional;. "

Note that the identit;[lgjgk f].2 =1, with f1, ..., fr € Ei(¢), immediately implies
another one (that we obtain fromzlgjgk f,? =0):

g=nrg)— Y IVl

1<j<k

from which we can deduce the smoothnesg.of
Remark 1.1.

(1) The identityd 1<, /7 =1 with —Af; +qf; = %i(q) f;, means that the map =
(f1, ..., fr) from M to the Euclidean sphei®~1 is harmonic with energy density
IV f12 = xi(q) — ¢ (see [5]). Hence, a necessary (and sometime sufficient) condition
for a potentialy to be critical for the functional; is that the function; (¢) — ¢ is the
energy density of a harmonic map frami to a Euclidean sphere.

(2) If one replaces the constraint on the mean v@% [3; @ dv = c by the general con-

straint ,, F(q)dv = c, then the necessary and sufficient conditi ; <, sz =1
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of Theorem 1.3 becomes (even under Dirichlet boundary condit@p\)jgk sz =
F’(gq). In particularg is a critical potential of the functional if and only if F'(¢) > 0

and F’(q)% is a first eigenfunction of A + ¢, see [1,12] for a discussion of the case
F(q) =1q|*.

Under each one of the boundary conditions we consider a constant function can never
be an eigenfunction associated to an eigenvalig) with i > 2. Hence, an immediate
consequence of Theorem 1.3 is the following

Corollary 1.1. If ¢ € L®(M) is a critical potential of the functional; with i > 2, then
the eigenvalue.; (¢) is degenerate, that i5; (¢) = A;—1(g) or x;(q¢) = 1 +1(q).

If {f1,..., fx}is anL?-orthonormal basis of; (—A), then the functio"; ¢ ; < sz is
invariant under the isometry group #1. Indeed, for any isometry of M, {f10p,...,
fx o p} is also an orthonormal basis & (—A) and then, there exists a mattixe O (d)
suchthat(fiop,..., fiop)=A.(f1,..., fa)- In particular, if M is homogeneous, that
is, the isometry group acts transitively of, thenzlgjgk sz would be constant. Another
consequence of Theorem 1.3 is then the following

Coroallary 1.2. If M is homogeneous, then constant potentials are critical for all the func-
tionals; such thath; (—A) < A;41(—A) or A;(—A) > r;_1(—A).

Recall that Euclidean spheres, projective spaces and flat tori are examples of homoge-
neous Riemannian spaces.
A potentialg € L2°(M) is said to be docal minimizer(respectivelylocal maximizey
of the functionalr; (in a weak sense) if, for any € L°(M), the functiort — A; (g + fu)
admits a local minimum (respectively maximumy at 0. The result of Corollary 1.1 takes
the following more precise form in the case of a local minimizer or maximizer.

Theorem 1.4. Letg € L2°(M) andi > 2.

(1) If g is alocal minimizer of the functional;, theni;(¢) = A;—1(g)-
(2) If g is a local maximizer of the functiona}, theni;(g) = A;+1(g).

Since the first eigenvalue is simple, we always higMg) > 11(q). The previous results,
applied to the functional, can be summarized as follows.

Corollary 1.3. Assume that eithedM = @ or aM # ¥ and Neumann boundary condi-
tions are imposed. A potentigle L2°(M) is critical for the functionali, if and only if,
g is smooth2(g) = A3(q) and there exist eigenfunctions, ..., fx in E2(g) such that

2
Zlgjgkszl- ) . A .
Moreover, the functional, admits no local minimizers ih2°(M).

In [6], llias and the first author have proved that, under some hypothesés, @at-
isfied in particular by compact rank-one symmetric spaces, irreducible homogeneous Rie-
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mannian spaces and some flat tori, the constant poteriia global maximizer of, over
L°(M). In[8,9], they studied the critical points @f considered as a functional on the set
of Riemannian metrics of fixed volume a.

1.2. Critical potentials of the eigenvalue gaps functionals

We consider now the eigenvalue gaps functiogals G;;(q) = A ;(q) — 1;(q), where
i andj are two distinct positive integers, and define their critical potentials as in Defin-
ition 1.1. These functionals are invariant under translations, th@t;i§; + ¢) = G;;(q).
Therefore, critical potentials a¥;; with respect to fixed mean value deformations are also
critical with respect to arbitrary deformations.

Theorem 1.5. If ¢ € L2°(M) is a critical potential of the gap functional;; = x; — 1;,
then there exist a finite family of eigenfunctiofis.. ., fi in E;(¢) and a finite family of
eigenfunctiongy, ..., g in E;(g), suchthatdy_; .« f5=>"1<,< &3

Reciprocally, ifA;(g) < Xi+1(g) andi;(g) > A;j_1(q), and if there existfy, ..., fr in
Ei(g) andgy,..., g in Ej(g) such that); i f2 =31, &5 theng is a critical
potential ofG;;.

In the particular case of the gap between two consecutive eigenvalues, we have the
following

Corollary 1.4. A potentialg € L2°(M) is critical for the gap functionaG; ;11 =Xi+1—A;
if and only if, eitherr;11(g) = ;i (g), or there exist a family of eigenfunctiorfs, ..., fi
in E;(¢g) and a family of eigenfunctiong, ..., g in E;11(g), such thatzlgpgk flf =

2
2agp<i 8y

Remark 1.2. The characterization of critical potentials 6f; given in Theorem 1.5 re-
mains valid under the constraiﬁlgj F(g)dv=c.

An immediate consequence of Theorem 1.5 is the following

Corollary 1.5. Letg € L2°(M) be a critical potential of the gap functional;; = A; — A;.
If 1;(q) (respectively. ;(g)) is nondegenerate, theky (q) (respectively;(q)) is degener-
ate.

The following is an immediate consequence of the discussion above concerning homo-
geneous Riemannian manifolds.

Corollary 1.6. If M is a homogeneous Riemannian manifold, then, for any positive inte-
geri, constant potentials are critical points of the gap functioGal+1 = Aj41 — 2.

Potentialsy such that;11(g) = ;(¢) are of course global minimizers of the gap func-
tional G; ;1. These potentials are also the only local minimizersspf, 1. Indeed, we
have the following
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Theorem 1.6. If g € L2°(M) is a local minimizer of the gap functionat;; = A; — ;,
then, eitheri; (¢) = Ai+1(q), or A;(g) = A;_1(q). If ¢ is a local maximizer of5;;, then,
eitheri;(¢) = 1i-1(q), or Aj(q) = 1;+1(q).

In particular, g is a local minimizer of the gap function@l; ; 1 = A; 11 — A; if and only
if Giit1(q) =0.

Finally, let us apply the results of this section to the first Gap.

Corollary 1.7. A potentialg € L2°(M) is critical for the gap functionalG1> =12 — A1
if and only ifA2(q) is degenerate and there exists a family of eigenfunctians.., g; in
E2(q) suchthaty_; ;¢ gjz = f2, wheref is a basis ofE1(g).

The functionalG1, > does not admit any local minimizer Ip°(M).

2. Proof of results
2.1. Variation formula and proof of Theorem 1.1

Given on M a potentialg and a functionu € L*°(M), we consider the family of
operators— A + g + tu. Suppose thati(¢z) is a differentiable family of eigenvalues of
—A+ g +tu and thatf; is a differentiable family of corresponding normalized eigenfunc-
tions, that isyr,

(=A+q+1tu) fi = AW fr,

and
f fPdv=1,
M

with f;|op =0 or %MM =0 if 9M # @. The following formula, giving the derivative
of A, is already known at least in the case of Euclidean domains with Dirichlet boundary
conditions.

Proposition 2.1.

A'(0) = f ufédv.

M

Proof. First, we have, for alt,

A = AQ) / (fi2dv = f F—A+q -+ fdv.
M M

Differentiating atr = 0, we get

d
A'(0) = E(fft(—A-i-Q)fth-l-l‘/u(ft)sz)
M M

=0
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Now, noticing that the functio% fil:=0 satisfies the same boundary conditionsfasn
casedM #+ ¢, and using integration by parts, we obtain

dv
t=0

d d
Efft(—A+CI)fth|t=O=2/(—A+C])fOEft
M M

dv
t=0

d
=2A(0)/foaft
M

=0.

=0
2
= f ufo Ug.
=0
M

d
- A(O)E / fZdv
M

On the other hand, we have

i(t/ufzdv> =/uf2dv+(tfuif2dv>
dt ! —o 70 dr’’
M M M

Finally, A(0) = [, ufédv. O

Proof of Theorem 1.1. (i) First, let us show that constant potentials are maximizing for
Indeed, letc be a constant potential and letbe an arbitrary one iL2°(M). From the
variational characterization ofi(—A + ¢) in the casedM = ¢ as well as in the case of
Neumann boundary conditions, we get

JuAVS2+afBdv _ [, (VL2 +q1% dv
rerton  f1%20, 152,
_ [yadv _.
V(M) '
Hence1(g) < A1(c) and the constant potenti@amaximizes the functional; on L2°(M).
In particular, constant potentials are critical for this functional.
Now, suppose thaj € L°(M) is a critical potential fori1. For anyu € L (M), we

consider a differentiable family; of normalized eigenfunctions corresponding to the first
eigenvalue of —A + ¢ + ru) and apply the variation formula above to obtain:

=/uf02dv.
t=0

M

M(=A+q)=

d)»( +1u)
— u
7

Hence,[,, ufozdv = 0 for anyu € L°(M), which implies thatfy is constant or/. Since
(—A + q) fo=qfo = r1(q) fo, the potentialy must be constant oM.

(ii) Let fo be the first nonnegative Dirichlet eigenfunction efA + ¢ satisfying
[y fédv = 1. The functioru = V(M) & — 1 belongs ta.2°(M) and we have

d
—A t
P 1(g +tu)

=0 M

where the last inequality comes from Cauchy—Schwarz inequality and the facgftisat
not constant (recall thafp|y) = 0). Therefore, the potentiglis not critical forr1. O
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2.2. Characterization of critical potentials

Let i be a positive integer and let > 1 be the dimension of the eigenspa€gq)
associated to the eigenvalug(q). For any functioru € L (M), perturbation theory of
unbounded self-adjoint operators (see for instance Kato’s book [16]) that we apply to the
one parameter family of operatorsA + g + tu, tells us that, there exists a family of
m eigenfunctionsfi, ..., fm associated with a family of: (non ordered) eigenvalues
A1(t), ..., Ay (t) of —A+¢g +tu, all depending analytically inin some interval—e, ¢),
and satisfying

e A1(0)="---=A,(0)=2i(q),
o Vi € (—¢,¢), them functionsfi;, ..., f., are orthonormal irL.?(M).

From this, one can easily deduce the existence of two intégers: and/ < m, and a
smallé > 0 such that
. | Ar(@@) ifre(=4,0),
ri(g +1u) = {A,(z) if 1¢(0,9).
Hence, the function— A; (g + tu) admits a left sided and a right sided derivatives-at0
with

d)»'( + tu)
T

:A;(O):/ufk%odu and
t=0"

d
dt =01 ’
M
To any functionu € L (M) and any integer € N, we associate the quadratic forj,
on E;(¢q) defined by

0./ = [ ura.
M
The corresponding symmetric linear transformatign E; (¢) — Ei(q) is given by

Li,(f) = Pi(uf),
whereP; : L2(M) — E;(q) is the orthogonal projection df?(M) onto E; (¢).
It follows immediately that

Proposition 2.2. If the potentialg is critical for the functionalr;, then,vu € L (M), the
quadratic formQ;,(f) = fM uf?dv is indefinite on the eigenspad&(q).

The following lemma enables us to establish a converse to this proposition.

Lemma2.1. Vk,l < m, we have

0 kL
/”fkﬂﬁ’od”:{A;(O) hia

M



204 A. El Soufi, N. Moukadem / J. Math. Anal. Appl. 314 (2006) 195-209

In other words,A7(0), ..., A;,(0) are the eigenvalues of the symmetric linear transfor-
mation L!, : E; (@) — Ei(q) and the functionsfio, ..., fm,0 constitute an orthonormal
eigenbasis oL!,.

Proof. Differentiating atr = 0 the equalitf—A + g + tu) fr.r = Ax(?) fr.r, we obtain

3

d
= AL(0) fr,0 + Ak (0)— fis
dt t=0

d
ufro+ (—A+ Q)Efk,t

=0
and then,

dv
t=0

d
/”fk,ofl,odvIA;((O)/fk,OfI,OdU-i-Ak(O)/fl,OEfk,t
M

M

dv.
t=0

M
d
- / fro(=4A +61)Efk,z
M

Integration by parts gives, after noticing that(0) = A;(0) = 1, (¢) and that the functions
%fk,, |;—o satisfy the considered boundary conditions,

d / d fi
V= — Jk,t
/=0 dt

M

d
=Ak(0)/fl,05fk,z
M

(=4 +4q) fiodv
0

=

d
f Jro(=A+ Q)Efk,t
M

dv,
=0

and finally,

/”fk,Ofl,OdU = A;(0) / fr.ofi,odv = A(0)8y. O
M

M

Proposition 2.3. Assume that;(q) > A;—1(g) or A;(g) < X;+1(q). Then the following
conditions are equivalent

(i) the potentialy is critical for A;; .
(ii) Yu e L3°(M), the quadratic formQ!, (f) = [,, uf?dv is indefinite on the eigenspace
Ei(q);
(i) Yu € L (M), the linear transformatior.!, admits eigenvalues of both signs.

Proof. Conditions (ii) and (iii) are clearly equivalent and the fact that (i) implies (ii) was
established in Proposition 2.2. Let us show that (iii) implies (i). Assume xh@t) >
Ai—1(g) and letu € L°(M) and A1(¢), ..., A, (¢) be as above. For small we will have,

for continuity reasonstk < m, Ax(t) > A;i—1(q +tu) and thenp; (g + tu) < A (t). Since
ri(g +tu) € {A1(2), ..., Ay (1)}, we get

Ai tu) = min Ag(2).
i(q +rtu) o k(@)

It follows that
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d

—\ t =maxA;(0) and
T i(g +1tu) L e A0
dA~( + tu) = min A, (0)

dt ' q " =0t _k<m k '

Thanks to Lemma 2.1, condition (iii) implies that mig, A, (0) < 0 < max.g, A;(0)
which implies the criticality of;.
The case\;(g) < Ai+1(¢g) can be treated in a similar mannei

2.3. Proof of Theorems 1.2 and 1.3

Let ¢ be a potential inL>°(M). To prove Theorem 1.2 we first notice that, since
flam =0 forany f € E;(¢g), the constant function 1 does not belong to the vector space
F generated in.2(M) by {2 | f € Ei(q)}. Hence, there exists a functienorthogonal
to F and such thatu, 1), 2(,,, < 0. The functionug = u — u belongs toL{°(M) and the
quadratic formQ’, o) = fM uof2dv= ””f”LZ ) is positive definite orE; (¢). Hence,
the potential is not critical fora; (see Proposmon 2.2).

The proof of Theorem 1.3 follows directly from the two propositions above and the
following lemma.

Lemma 2.2. Leti be a positive integer. The two following conditions are equivalent

(i) Vu € LL (M), the quadratic formQ! () = Iy uf?dv is indefinite on the eigenspace

Ei(q);
(ii) there exists a family of eigenfunctioifis, ..., fx in E;(g) such thatzlgjgk sz =1

Proof. To see that (i) implies (i) we introduce the convex cahgenerated ir.2(M) by

the set{ f2 | f € Ei(¢)}, that isC = {Z cJ f | fj € Ei(g), J CN, Jisfinite}. Con-
dition (ii) is then equivalent to the fact that the constant function 1 belongs tcet us
suppose, for a contradiction, thatlC. Then, applying classical separation theorems (in
the finite dimensional vector subspaceu?tM) generated by 2| f € Ei(¢)} and 1, see
[18]), we prove the existence of a functiare L?(M) such thaii = ﬁ Jyu-1dv<0
andf,, uf?dv >0foranyf e C. Hence, the functionp = u — it belongs tal.2° (M) and
satisfiesy f € E;(g),

L,(,(f)—/ uf2dv _W udv/fzdv>—ﬁ||flliz(M)-
M

The quadratic fornQuO is then positive definite which contradicts (i) (see Proposition 2.2).
Reciprocally, the existence of;, ..., fi in E;(g) satisfyingzlgjgk fj2 =1 implies
that,Vu € L (M),

ZQ’(f,)—Z/uf dv—/ =
j<k i<k M

which implies that the quadratic for@’, is indefinite onE; (¢). O
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Finally, let us check that the conditioﬁlgjgk sz =1, with f; € E;(¢), implies that
q is smooth. Indeed, sineee L>*(M), we have, for any eigenfunctiofi€ E;(q), Af €
L?(M) and then,f € H>2(M). Using standard regularity theory and Sobolev embeddings
(see, for instance, [15]), we obtain by an elementary iteration,ftraf %7 (M) for some
p>n,and, thenf € C1(M). From)_; ., sz =landAY i sz =0, we get

g=xr)— Y IVl
1<jsk
which implies thay is continuous. Again, elliptic regularity theory tells us that the eigen-
functions of— A + ¢ are actually smooth, and, hengeis smooth.

2.4. Proof of Theorem 1.4

Assume that the potentialis a local minimizer of the functional; on L (M) and let
us suppose for a contradiction thatg) > 1;_1(g). Letu be a function inL$°(M) and let
A1(D), ..., Ay (t) be afamily ofm eigenvalues of- A + g +tu, wherem is the multiplicity
of A;(q), depending analytically im and such thatA1(0) = --- = A,,(0) = A;(¢). For
continuity reasons, we have, for sufficiently smadind anyk < m, Ax(¢) > A;—1(q + tu).
Hence vk < m andVr sufficiently small,

Ar(t) 2 rilg +1u) = Ai(q) = Ar(0).

Consequentlyyk < m, A, (0) = 0. Applying Lemma 2.1 above, we deduce that the sym-
metric linear transformatiod.!, and, then, the quadratic for@’, is identically zero on
the eigenspacé; (q). ThereforeYu € L° (M) andV f € E;(g), we havefM ufzvg =0.

In conclusiony f € E;(q), f is constant onM which is impossible fot > 2. The same
arguments work to prove assertion (ii).

2.5. Proof of Theorem 1.5

Let g be a potential and letand j be two distinct positive integers such thatg) #
Aj(gq). We denote byn (respectivelyn) the dimension of the eigenspagg(q) (respec-
tively E;(g)). Given a functiorw in L°(M), we consider, as above;, (respectivelyn)
L?(M)-orthonormal families of eigenfunctionf ;. ..., fn., (respectivelygi ;. ..., gn.r)
associated witln (respectivelyr) families of eigenvaluegi1(¢), ..., A, () (respectively
In(),..., @) of —A + g + tu, all depending analytically in € (—¢, ¢), such that
A1(0) = --- = A,,(0) = A;(¢) (respectivelyl’1(0) = --- = I},(0) = 1 (¢g)). Hence, there
exist four integerg <m, k' <m, [ <n and!’ < n, such that

d / / 2 2
S0j a0 rm| =IO - A0 = / u(g2o— £20) dv
M

t=0—

and

=170 —A;(,(O)zfu(glz,’o—sz,’o)dv.
M

d
E()\j —Ai)(g +tu)

=0t
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Recall that (Lemma 2.1) the eigenfunctiofigo, ..., fu.0 (respectivelygio, ..., gn.0)
constitute an..2(M)-orthonormal basis oF; (¢) (respectivelyE ; (¢)) which diagonalizes
the quadratic fornQ (respectlverQu) Therefore, the family fi.0 ® g1,0)k<m,i<n CON-

stitutes a basis of the spadg(q) ® E;(¢) which diagonalizes the quadratic forﬂjj
given by

Sl (f ® 8) =11 1122031, Q0 (2) = 121225, QL ()
= [0 o8~ Vsl £2)

M

The corresponding eigenvalues af‘¢(0) - A}((O))kgm,zgn. The criticality ofg for A; — 1,
then implies that this quadratic form admits eigenvalues of both signs, which means that it
is indefinite.
On the other hand, in the case whegg) < A;11(¢) andi;(g) > A;_1(¢q), we have,
as in the proof of Proposition 2.3, for sufficiently smalk; (¢ + tu) = max.<, Ax () and
Aj(g + tu) = ming, I7(2), which yields

d
E()\j —Ai)(g +tu)

_maxFl (0) — ][ninA}((O)z max (I3 (0) — A,(0))

t=0— I<n <m <mLI<n

and

d
E(Aj —Ai)(g +tu)

=minI}(0) — ]r(n<axA}<(O) o m|n (I7(0) — 4,(0)).

=0t <n m <m,I<n

One deduces the following

Proposition 2.4. If the potentialg € L2°(M) is critical for the functionalG;; = A; — 4,
then,Yu € L°(M), the quadratic forms’’ is indefinite on; (¢) ® E;j(q).

Reciprocally, if1;(¢) < 2i+1(¢) and 1;(¢) > 1;_1(¢g), and if, Vu € L (M), the
quadratic formS,i‘j(g) is indefinite onE;(q) ® E;(q), theng is a critical potential of
the functionalG;;.

The following lemma will completes the proof of Theorem 1.5.

Lemma 2.3. The two following conditions are equivalent

(i) Yu € L (M), the quadratic forme,’j is indefinite onE; (¢) ® Ej(q).
(i) There exist a finite family of eigenfunctiofis ..., fx in E;(¢) and a finite family of
eigenfunctiong, ..., g in E;(q), suchthaty"y ¢ fZ2=>"1c,< &5

The proof of this lemma is similar to that of Lemma 2.2. Here, we consider the two
convex coneg’; andC; in L?(M) generated respectively By? | f € E;(q), f # 0} and
(g% g€ E;(g), g # 0}. Condition (ii) is then equivalent to the fact that these two cones
admit a nontrivial intersection. As in the proof of Lemma 2.2, separation theorems enable
us to prove that, it’; N C; = ¢, then there exists a functionsuch thatf,, uf2dv < 0 for
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any f € Ei(¢), and [}, ug?dv>0foranyf e E;(g), which implies thatSf;j is positive
definite onE; (¢) ® Ej(¢). SinceS;’ = 0, we haveS,’ = S,J with uo=u —ii € L (M).
Proposition 2.4 enables us to conclude.

Reciprocally, assume the existencefef..., fi € Ei(¢) andg, ..., g € E;(g) satis-

Y Y S, @) ==0,

1<p<k 1</

which implies thaiSL’j is indefinite onE; (¢) ® E;(q).
2.6. Proof of Theorem 1.6

Let g be a local minimizer ofG;; = »; — A; and let us suppose, for a contradic-
tion, that;(¢) < A;y1(g) and x;(g) > Aj_1(g). Given a functionu in LY (M), we

consider, as above; (respectivelyn) families of eigenvaluesi1(z), ..., A, (¢) (respec-
tively I (¢), ..., I, (1)) of —A + g + tu, with m = dimE;(¢g) andn = dimE;(g), such
that A1(0) =--- = A,,(0) = 4;(¢g) and I'1(0) = --- = I},(0) = A;(¢g). As in the proof

of Theorem 1.4, we will have for sufficiently small A; (¢ + ru) = max.<,, Ax(t) and
Aj(g +tu) =mimg, I(t). Hence Yk <m and! < n,

Ii@) — Ax(@®) 2 1j(q +tu) — Ai(g +tu) = Gij(q + tu)
2 Gij(q) = T1(0) — Ax(0).

It follows that,Vk < m and! <n, I'/(0) — A;(0) =0 and, then, the quadratic forﬁ,ﬁ’j is
identically zero onE;(¢) ® E j(¢) (recall that/7(0) — A} (0) are the eigenvalues &f,”).

This implies thaty f € E;(q) andVg € E;(q), the function| 12, (M)gz -1 g||§2(M) f2is

constant equal to zero (since its integral vanishes) which is clearly impossible Ligslgss
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