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Abstract

In the paper, we obtain the existence of positive solutions and establish a corresponding iterative scheme
for the following third-order generalized right-focal boundary value problem with p-Laplacian operator:(

φp(u′′)
)′

(t) = q(t)f
(
t, u(t)

)
, 0 � t � 1,

u(0) =
m∑

i=1

αiu(ξi), u′(η) = 0, u′′(1) =
n∑

i=1

βiu
′′(θi).

The main tool is the monotone iterative technique.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The purpose of this paper is to consider the existence of positive solutions and establish a
corresponding iterative scheme for the following third-order generalized right-focal boundary
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value problem with p-Laplacian operator:⎧⎪⎪⎨
⎪⎪⎩

(
φp(u′′)

)′
(t) = q(t)f

(
t, u(t)

)
, 0 � t � 1,

u(0) =
m∑

i=1

αiu(ξi), u′(η) = 0, u′′(1) =
n∑

i=1

βiu
′′(θi),

(1)

where φp(s) = |s|p−2s, 1 < p � 2, and the following conditions hold:

(H1) 1/2 � η � 1; 0 < ξ1 < ξ2 < · · · < ξm < η and θi ∈ (0,1) (i = 1,2, . . . , n);
(H2) 0 � αi < 1 (i = 1,2, . . . ,m) satisfy 0 �

∑m
i=1 αi < 1; 0 � βi < 1 (i = 1,2, . . . , n) satisfy

0 �
∑n

i=1 βi < 1;
(H3) f ∈ C([0,1]× [0,+∞), [0,+∞)); q(t) ∈ L1[0,1] is nonnegative on (0,1) and q(t) is not

identically zero on any compact subinterval of (0,1). Furthermore, q(t) satisfies

0 <

1∫
0

q(t) dt < +∞.

The study of multi-point boundary value problems for linear second-order ordinary differ-
ential equations was initiated by Il’in and Moiseev [1]. Since then, there was much attention
focused on the study of nonlinear multi-point boundary value problems (see [2–5], to name a
few). As for the linear two-point right-focal boundary value problem, many authors have been
published results, we refer the reader to Henderson [6,7], Agarwal and O’Regon [8,9], Wong
and Agarwal [10], Chyan and Davis [11] and references therein. For more on focal problems and
relative topics, see the book by Agarwal [15].

Very recently, in [12–14], Anderson and Davis got the existence of multiple positive solu-
tions for the following third-order three-point, i.e., the generalized right-focal boundary value
problems:{

u′′′ = f (t, u), 0 � t � 1,

u(0) = 0, u′(t1) = 0, γ u(1) + δu′′(1) = 0,
(2)

where γ � 0, δ > 0 (γ = 0, δ = 1 in [12,13]) and t1 > 1/2. It is easy to see that (1) contains (2)
as a special case when γ = 0. The point worth to mention in works [12–14] is that the Green’s
function for the third-order three-point generalized right-focal boundary value problem{

u′′′ = 0, 0 � t � 1,

u(0) = 0, u′(t1) = 0, γ u(1) + δu′′(1) = 0,

was obtained, and the properties of the Green’s function were presented, which make it possible
for [12–14] to use Krasnoselskii’s theorem, Leggett–Williams theorem and five functional fixed-
point theorem as tools.

We recall that the methods used in [6–14] make full use of the fact that u(n)(t) is linear with
respect to u and thus the corresponding Green’s function exists. But, as for (1), when p �= 2,
φp(s) is not linear with respect to s, and thus, the corresponding Green’s function does not exist.
Therefore, the methods used in [6–14] are not available to (1).

On the other hand, one can see that all the results obtained in [1–14] are only the existence
of solutions or positive solutions under some conditions. Seeing such a fact, we may ask “How
can we find the solutions since they exist definitely?” Motivated by this question, in this paper,
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by improving the classical monotone iterative technique of Amann [16], we obtain not only the
existence of positive solutions for (1), but also give an iterative scheme for approximating the
solutions. It is worth stating that the first term of our iterative scheme is a constant function or a
simple function. Therefore, the iterative scheme is significant and feasible. Meanwhile, we give
a way to find the solution which will be useful from an application viewpoint. To our knowledge,
this is the first paper to use the monotone iterative technique to deal with a multi-point boundary
value problem with p-Laplacian operator.

We consider the Banach space E = C[0,1] equipped with norm ‖w‖ = max0�t�1 |w(t)|.
In this paper, a positive solution w∗ of (1) means a solution w∗ of (1) satisfying w∗(t) > 0,
0 < t < 1. We recall that the function w is said to be concave on [0,1], if

w
(
λt2 + (1 − λ)t1

)
� λw(t2) + (1 − λ)w(t1), t1, t2, λ ∈ [0,1].

We denote

C+[0,1] = {
w ∈ C[0,1]: w(t) � 0, t ∈ [0,1]},

P =
⎧⎨
⎩w ∈ C[0,1]

w(t) is concave and nonnegative valued on [0,1]
w(t) is nondecreasing on [0, η]
w(t) is nonincreasing on [η,1]

⎫⎬
⎭ .

It is easy to see that P is a cone in C[0,1]. For w ∈ P , we have ‖w‖ = w(η) and

‖w‖min

{
t

η
,

1 − t

1 − η

}
� w(t) � ‖w‖, t ∈ [0,1]. (3)

We know easily that when p > 1, φp(s) is strictly increasing on (−∞,+∞). So φ−1
p exists.

Moreover, φ−1
p = φq , where 1/p + 1/q = 1. Furthermore, when 1 < p � 2, (φ−1

p )′(s) = φ′
q(s)

is nonnegative and nonincreasing on (−∞,0).
The paper is organized as follows. After this section, some lemmas will be established in

Section 2. In Section 3, we give our main results Theorem 3.1. An example is also given to
demonstrate our results.

2. Preliminary

In this section, we always suppose that (H1)–(H3) hold.

Lemma 2.1. Suppose g(r) ∈ C[0,1] is nonpositive and nondecreasing on [0,1]. Then, for any
t ∈ [0,1], we have

∫ t

0

∫ η

s
g(r) dr ds � 0 (η ∈ [1/2,1] is defined in (1)).

Proof. When t ∈ [0, η], the conclusion is obvious.
When t ∈ [η,1], since g(r) is nondecreasing on [0,1], then

g(0) � g(r) � g(η) � 0, r ∈ [0, η];
g(η) � g(r) � g(1) � 0, r ∈ [η,1].

Thus,

t∫ η∫
g(r) dr ds =

η∫ η∫
g(r) dr ds −

t∫ s∫
g(r) dr ds
0 s 0 s η η
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�
η∫

0

η∫
s

g(η) dr ds −
t∫

η

s∫
η

g(η) dr ds = g(η)t

(
η − t

2

)
� 0. �

For any fixed x ∈ C+[0,1], suppose u is a solution of the following BVP:⎧⎪⎪⎨
⎪⎪⎩

(
φp(u′′)

)′
(t) = q(t)f

(
t, x(t)

)
, 0 � t � 1,

u(0) =
m∑

i=1

αiu(ξi), u′(η) = 0, u′′(1) =
n∑

i=1

βiu
′′(θi).

(4)

Then

u′′(t) = φ−1
p

[
Ax −

1∫
t

q(s)f
(
s, x(s)

)
ds

]
,

we use ξi ∈ (0, η) (i = 1,2, . . . ,m) and the boundary conditions u(0) = ∑m
i=1 αiu(ξi), u′(η) = 0

to obtain

u(t) = − 1

1 − ∑m
i=1 αi

m∑
i=1

αi

ξi∫
0

[ η∫
t

φ−1
p

(
Ax −

1∫
s

q(τ )f
(
τ, x(τ )

)
dτ

)
ds

]
dt

−
t∫

0

[ η∫
s

φ−1
p

(
Ax −

1∫
r

q(τ )f
(
τ, x(τ )

)
dτ

)
dr

]
ds, t ∈ [0,1],

where Ax satisfies the third boundary condition u′′(1) = ∑n
i=1 βiu

′′(θi), i.e.,

φ−1
p (Ax) =

n∑
i=1

βiφ
−1
p

(
Ax −

1∫
θi

q(s)f
(
s, x(s)

)
ds

)
. (5)

Lemma 2.2. For any fixed x ∈ C+[0,1], there exists a unique Ax ∈ (−∞,+∞) satisfying
Eq. (5).

Proof. For any fixed x ∈ C+[0,1], define

Hx(c) = φ−1(c) −
n∑

i=1

βiφ
−1
p

(
c −

1∫
θi

q(s)f
(
s, x(s)

)
ds

)
,

then Hx(c) ∈ C((−∞,+∞),R) and Hx(0) � 0. In what follows, we will consider two cases
to prove that Hx(c) = 0 has a unique solution on (−∞,+∞), which means that there exists a
unique Ax ∈ (−∞,+∞) satisfying Eq. (5).

Case 1. Hx(0) = 0. Then

n∑
i=1

βiφ
−1
p

( 1∫
q(s)f

(
s, x(s)

)
ds

)
= 0.
θi
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So,

βiφ
−1
p

( 1∫
θi

q(s)f
(
s, x(s)

)
ds

)
= 0, i = 1,2, . . . , n.

Therefore,

φp(βi)

1∫
θi

q(s)f
(
s, x(s)

)
ds = 0, i = 1,2, . . . , n.

Then

Hx(c) = φ−1
p (c) −

n∑
i=1

βiφ
−1
p

(
c −

1∫
θi

q(s)f
(
s, x(s)

)
ds

)

= φ−1
p (c) −

n∑
i=1

φ−1
p

(
φp(βi)

[
c −

1∫
θi

q(s)f
(
s, x(s)

)
ds

])

= φ−1
p (c) −

n∑
i=1

φ−1
p

(
φp(βi)c − φp(βi)

1∫
θi

q(s)f
(
s, x(s)

)
ds

)

= φ−1
p (c) −

n∑
i=1

βiφ
−1
p (c) =

(
1 −

n∑
i=1

βi

)
φ−1(c),

Obviously, there exists a unique c = 0 satisfying Hx(c) = 0.

Case 2. Hx(0) �= 0. Then Hx(0) > 0.
(i) When c ∈ (0,+∞),

Hx(c) = φ−1
p (c) −

n∑
i=1

βiφ
−1
p

(
c −

1∫
θi

q(s)f
(
s, x(s)

)
ds

)
� φ−1

p (c) −
n∑

i=1

βiφ
−1
p (c)

=
(

1 −
n∑

i=1

βi

)
φ−1(c) > 0.

So when c ∈ (0,+∞), Hx(c) �= 0.
(ii) When c ∈ (−∞,0),

Hx(c) = φ−1
p (c) −

n∑
i=1

βiφ
−1
p

(
c −

1∫
θi

q(s)f
(
s, x(s)

)
ds

)

= φ−1
p (c)

[
1 −

n∑
βiφ

−1
p

(
1 −

∫ 1
θi

q(s)f (s, x(s)) ds

c

)]
= φ−1

p (c)H̄ (c),
i=1
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where

H̄x(c) = 1 −
n∑

i=1

βiφ
−1
p

(
1 −

∫ 1
θi

q(s)f (s, x(s)) ds

c

)
.

Since Hx(0) > 0, that is
∑n

i=1 βiφ
−1
p (

∫ 1
θi

q(s)f (s, x(s)) ds) > 0. As a result, there must exist

i0 ∈ {1,2, . . . , n} such that βi0φ
−1
p (

∫ 1
θi0

q(s)f (s, x(s)) ds) > 0. Thus, we get that H̄x(c) is strictly

decreasing on (−∞,0);
∫ 1

0 q(s)f (s, x(s)) ds > 0 and
∑n

i=1 βi > 0. Let

c̄ = − φp(
∑n

i=1 βi)

1 − φp(
∑n

i=1 βi)

1∫
0

q(s)f
(
s, x(s)

)
ds,

then c̄ < 0 and we have

H̄x(c̄) = 1 −
n∑

i=1

βiφ
−1
p

(
1 +

[
1 − φp

(∑n
i=1 βi

)] ∫ 1
θi

q(s)f (s, x(s)) ds

φp

(∑n
i=1 βi

) ∫ 1
0 q(s)f (s, x(s)) ds

)
� 0.

So, Hx(c̄) = φ−1
p (c̄)H̄ (c̄) � 0. Remembering Hx(0) > 0, the intermediate value theorem guar-

antees that there exists c0 ∈ [c̄,0) ⊂ (−∞,0) such that Hx(c0) = 0. If there exist two constants
ci ∈ (−∞,0) (i = 1,2) satisfying Hx(c1) = Hx(c2) = 0, then H̄x(c1) = H̄x(c2) = 0. So c1 = c2
since H̄x(c) is strictly decreasing on (−∞,0). Therefore, Hx(c) = 0 has a unique solution on
(−∞,0).

Combing (i), (ii) and Hx(0) �= 0, we obtain that Hx(c) = 0 has a unique solution on
(−∞,+∞).

The proof of Lemma 2.2 is completed. �
Remark 2.1. From the proof of Lemma 2.2, we know that for any fixed x ∈ C+[0,1],

Ax ∈
[
− φp

(∑n
i=1 βi

)
1 − φp

(∑n
i=1 βi

)
1∫

0

q(s)f
(
s, x(s)

)
ds,0

]
.

Moreover, if Hx(0) = 0, then Ax = 0; if Hx(0) �= 0, then Ax �= 0.

For any x ∈ C+[0,1], let Ax be the unique constant satisfying Eq. (5) corresponding to x,
then we have:

Lemma 2.3. Ax :C+[0,1] → R has the following properties:

(a) Ax is continuous with respect to x.
(b) Assume f (t, x) is nondecreasing with respect to x on [0,1] × [0,+∞), then Ax is nonin-

creasing with respect to x on C+[0,1].

Proof. (a) Suppose {xn} ∈ C+[0,1] with xn → x0 ∈ C+[0,1] in C+[0,1]. Let {An} (n =
0,1,2, . . .) be constants decided by Eq. (5) corresponding to xn (n = 0,1,2, . . .). Since xn → x0
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uniformly on [0,1] and f : [0,1] × [0,+∞) → [0,+∞) is continuous, we get that for ε = 1,
there exists N > 0 such that, when n > N , for any r ∈ [0,1],

0 � q(r)f
(
r, xn(r)

)
� q(r)

[
1 + f

(
r, x0(r)

)]
� q(r)

[
1 + max

r∈[0,1]
f

(
r, x0(r)

)]
. (6)

So,

An ∈
[
− φp

(∑n
i=1 βi

)
1 − φp

(∑n
i=1 βi

)
1∫

0

q(s)f
(
s, xn(s)

)
ds,0

]

⊆
[
−φp

(∑n
i=1 βi

)[
1 + maxr∈[0,1] f (r, x0(r))

]
1 − φp

(∑n
i=1 βi

)
1∫

0

q(s) ds,0

]
,

which means that {An} is bounded.
Suppose An does not converge to A0. Then there exist two subsequences {A(1)

nk
} and {A(2)

nk
} of

{An} with A
(1)
nk

→ c1 and A
(2)
nk

→ c2 since {An} is bounded, but c1 �= c2.
By construction of {An} (n = 0,1,2, . . .), we have

φ−1
p

(
A(1)

nk

) =
n∑

i=1

βiφ
−1
p

(
A(1)

nk
−

1∫
θi

q(s)f
(
s, x(1)

nk
(s)

)
ds

)
. (7)

Combing (6) and using Lebesgue’s dominated convergence theorem in (7), we get

φ−1
p (c1) = lim

nk→∞

n∑
i=1

βiφ
−1
p

(
A(1)

nk
−

1∫
θi

q(s)f
(
s, x(1)

nk
(s)

)
ds

)

=
n∑

i=1

βiφ
−1
p

(
lim

nk→∞A(1)
nk

− lim
nk→∞

1∫
θi

q(s)f
(
s, x(1)

nk
(s)

)
ds

)

=
n∑

i=1

βiφ
−1
p

(
c1 −

1∫
θi

q(s)f
(
s, x0(s)

)
ds

)
.

Since {An} (n = 0,1,2,3, . . .) is unique, we get c1 = A0.
Similarly, c2 = A0. So c1 = c2, which is a contradiction. Therefore, for any xn → x0,

An → A0, which means that Ax :C+[0,1] → R is continuous.
(b) For any xi ∈ C+[0,1] (i = 1,2), let Ai (i = 1,2) be two constants decided by Eq. (5)

corresponding to xi (i = 1,2). Suppose x1 � x2; in the following, we will prove A1 � A2.

(i) If A2 = 0, then by Remark 1, we know that A1 � 0 = A2.
(ii) If A1 = 0, then by Remark 1, we know that Hx1(0) = 0, i.e.,

n∑
i=1

βiφ
−1
p

( 1∫
q(s)f

(
s, x1(s)

)
ds

)
= 0.
θi
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Thus,

0 � Hx2(0) =
n∑

i=1

βiφ
−1
p

( 1∫
θi

q(s)f
(
s, x2(s)

)
ds

)

�
n∑

i=1

βiφ
−1
p

( 1∫
θi

q(s)f
(
s, x1(s)

)
ds

)
= 0.

So, Hx2(0) = 0, which means A2 = 0.
(iii) Ai �= 0 (i = 1,2). Then Ai < 0 and Hxi

(0) �= 0 (i = 1,2). By the definition of Ai (i = 1,2),

φ−1
p (Aj ) =

n∑
i=1

βiφ
−1
p

(
Aj −

1∫
θi

q(s)f
(
s, xj (s)

)
ds

)
, j = 1,2.

So,

n∑
i=1

βiφ
−1
p

(
1 −

∫ 1
θi

q(s)f (s, x1(s)) ds

A1

)
=

n∑
i=1

βiφ
−1
p

(
1 −

∫ 1
θi

q(s)f (s, x2(s)) ds

A2

)
.

(8)

Suppose that A1 > A2, then 0 > 1/A2 > 1/A1. Since x1 � x2 and f (t, x) is nondecreasing
with respect to x, we have

1∫
θi

q(s)f
(
s, x1(s)

)
ds �

1∫
θi

q(s)f
(
s, x2(s)

)
ds, i = 1,2, . . . , n.

On the other hand, since Hx2(0) = ∑n
i=1 βiφ

−1
p (

∫ 1
θi

q(s)f (s, x2(s)) ds) �= 0, there must exist

i0 ∈ {1,2, . . . , n} such that βi0φ
−1
p (

∫ 1
θi0

q(s)f (s, x2(s)) ds) �= 0. Thus, when i �= i0,

1

A1

1∫
θi

q(s)f
(
s, x1(s)

)
ds � 1

A1

1∫
θi

q(s)f
(
s, x2(s)

)
ds � 1

A2

1∫
θi

q(s)f
(
s, x2(s)

)
ds;

when i = i0,

1

A1

1∫
θi0

q(s)f
(
s, x1(s)

)
ds � 1

A1

1∫
θi0

q(s)f
(
s, x2(s)

)
ds <

1

A2

1∫
θi0

q(s)f
(
s, x2(s)

)
ds.

Therefore,

n∑
i=1

βiφ
−1
p

(
1 − 1

A1

∫
θi

q(s)f
(
s, x1(s)

)
ds

)
>

n∑
i=1

βiφ
−1
p

(
1 − 1

A2

1∫
θi

q(s)f
(
s, x2(s)

)
ds

)
,

which is a contradiction to (8). As a result, A1 � A2.
The proof of Lemma 2.3 is completed. �
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For any x ∈ C+[0,1], define

(T x)(t) = − 1

1 − ∑m
i=1 αi

m∑
i=1

αi

ξi∫
0

[ η∫
t

φ−1
p

(
Ax −

1∫
s

q(τ )f
(
τ, x(τ )

)
dτ

)
ds

]
dt

−
t∫

0

[ η∫
s

φ−1
p

(
Ax −

1∫
r

q(τ )f
(
τ, x(τ )

)
dτ

)
dr

]
ds, t ∈ [0,1],

where Ax is the unique constant decided in Eq. (5) corresponding to x. By Lemma 2.2, we know
that T x is well defined. It is easy to verify that a fixed point of T in P must be a solution of (1)
in P . Now, we have the following result:

Lemma 2.4. T :P → P is completely continuous, i.e., T is continuous and compact. Moreover,
if f (t, x) is nondecreasing with respect to x on [0,1] × [0,+∞), then T x is also nondecreasing
with respect to x on P .

Proof. Firstly, we show T P ⊆ P . For any x ∈ P , from the definition of T x, we know that
(T x) ∈ C[0,1] and

(T x)′′(t) = φ−1
p

(
Ax −

1∫
t

q(s)f
(
s, x(s)

)
ds

)
, t ∈ [0,1], (9)

(T x)′(t) =
{− ∫ η

t
φ−1

p

(
Ax − ∫ 1

s
q(τ )f (τ, x(τ )) dτ

)
ds, t ∈ [0, η],∫ t

η
φ−1

p

(
Ax − ∫ 1

s
q(τ )f (τ, x(τ )) dτ

)
ds, t ∈ [η,1], (10)

(T x)(0) =
n∑

i=1

αi(T x)(ξi). (11)

By Remark 1, Ax � 0; by (H3), f (s, x(s)) � 0. Thus, from (9), we have (T x)′′(t) � 0, which
means that (T x)(t) is concave on [0,1]. From (10), we have (T x)′(t) � 0, t ∈ [0, η], and
(T x)′(t) � 0, t ∈ [η,1], which means that (T x)(t) is nondecreasing on [0, η] and (T x)(t)

is nonincreasing on [η,1]. From (11) and ξi ∈ (0, η) (i = 1,2, . . . ,m), we have (T x)(0) �∑m
i=1 αi(T x)(0), which means (T x)(0) � 0 since

∑m
i=1 αi < 1. Now, we concentrate on proving

(T x)(1) � 0. In fact, by the definition of T x,

(T x)(1) = − 1

1 − ∑m
i=1 αi

m∑
i=1

αi

ξi∫
0

[ η∫
t

φ−1
p

(
Ax −

1∫
s

q(τ )f
(
τ, x(τ )

)
dτ

)
ds

]
dt

−
1∫

0

[ η∫
s

φ−1
p

(
Ax −

1∫
r

q(τ )f
(
τ, x(τ )

)
dτ

)
dr

]
ds

= (T x)(0) −
1∫ [ η∫

φ−1
p

(
Ax −

1∫
q(τ)f

(
τ, x(τ )

)
dτ

)
dr

]
ds. (12)
0 s r
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Let g(r) = Ax − ∫ 1
r

q(τ )f (τ, x(τ )) dτ . Then, g(r) � 0 and g′(r) = q(r)f (r, x(r)) � 0. By
Lemma 2.1, we have

−
1∫

0

[ η∫
s

φ−1
p

(
Ax −

1∫
r

q(τ )f
(
τ, x(τ )

)
dτ

)
dr

]
ds � 0,

which means that (T x)(1) � 0. By the concavity of T x, it is obvious that (T x)(t) � 0, t ∈ [0,1].
From above all, we conclude T P ⊆ P .
Secondly, we show that T :P → P is completely continuous. The continuity of T is ob-

vious since we have proved that Ax is continuous with respect to x in P in Lemma 2.2.
Now, we prove that T is compact. Let Ω ⊂ P be a bounded set. Then there exists R

such that Ω ⊂ {x ∈ P | ‖x‖ � R}. For any x ∈ Ω , we have 0 �
∫ 1

0 q(s)f (s, x(s)) ds �
maxs∈[0,1],u∈[0,R] f (s,u)

∫ 1
0 q(s) ds =: M . From Remark 1, we get

|Ax | � φp

(∑n
i=1 βi

)
M

1 − φp

(∑n
i=1 βi

) .

Therefore,

∥∥(T x)
∥∥ �

η
(
1 − ∑m

i=1 αi + ∑m
i=1 αiξi

)
φ−1

p (M)(
1 − ∑m

i=1 αi

)
φ−1

p

(
1 − φp

(∑n
i=1 βi

)) ,

∥∥(T x)′
∥∥ �

ηφ−1
p (M)

φ−1
p

(
1 − φp

(∑n
i=1 βi

)) .

The Arzela–Ascoli theorem guarantees that T Ω is relatively compact in C[0,1], which means
that T is compact.

At last, we show that T x is nondecreasing with respect to x on P if f (t, x) is nondecreasing
with respect to x on [0,1] × [0,+∞). For any xi ∈ P (i = 1,2) with x1 � x2, let Ai (i = 1,2)
be the unique constant decided in Eq. (5) corresponding to xi (i = 1,2). From the definition of
T x, we get, for any t ∈ [0,1],

(T x1)(t) − (T x2)(t) = − 1

1 − ∑m
i=1 αi

m∑
i=1

αi

ξi∫
0

η∫
t

[
φ−1

p

(
A1 −

1∫
r

q(τ )f
(
τ, x1(τ )

)
dτ

)

− φ−1
p

(
A2 −

1∫
r

q(τ )f
(
τ, x2(τ )

)
dτ

)]
dr dt

−
t∫

0

η∫
s

[
φ−1

p

(
A1 −

1∫
r

q(τ )f
(
τ, x1(τ )

)
dτ

)

− φ−1
p

(
A2 −

1∫
q(τ)f

(
τ, x2(τ )

)
dτ

)]
dr ds. (13)
r
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By Lemma 2.2, we know

A1 −
1∫

r

q(τ )f
(
τ, x1(τ )

)
dτ � A2 −

1∫
r

q(τ )f
(
τ, x2(τ )

)
dτ � 0.

Thus, the first part on the right-hand side of Eq. (13) is obviously nonnegative. As for the second
part, let, for r ∈ [0,1],

g(r) = φ−1
p

(
A1 −

1∫
r

q(τ )f
(
τ, x1(τ )

)
dτ

)
− φ−1

p

(
A2 −

1∫
r

q(τ )f
(
τ, x2(τ )

)
dτ

)
.

Then, g(r) � 0 and

g′(r) = (
φ−1

p

)′
(

A1 −
1∫

r

q(τ )f
(
τ, x1(τ )

)
dτ

)
q(r)f

(
r, x1(r)

)

− (
φ−1

p

)′
(

A2 −
1∫

r

q(τ )f
(
τ, x2(τ )

)
dτ

)
q(r)f

(
r, x2(r)

)
.

Since 1 < p � 2, we have that (φ−1
p )′(s) is nonnegative and nonincreasing on (−∞,0). Thus,

(
φ−1

p

)′
(

A1 −
1∫

r

q(τ )f
(
τ, x1(τ )

)
dτ

)
�

(
φ−1

p

)′
(

A2 −
1∫

r

q(τ )f
(
τ, x2(τ )

)
dτ

)
� 0,

combining f (τ, x1(τ )) � f (τ, x2(τ )) � 0, we obtain g′(r) � 0. Lemma 2.1 guarantees that the
second part on the right-side of Eq. (13) is nonnegative. Thus, for any t ∈ [0,1], (T x1)(t) �
(T x2)(t), which means that T x is nondecreasing with respect to x in P . �
3. Existence and iteration of solution for (1)

Define, for t ∈ [0,min{ξ1,1 − η}],

y(t) =
∑m

i=1 αi

∫ ξi

t

[∫ η

s
φ−1

p

(∫ 1−t

r
q(τ ) dτ

)
dr

]
ds

1 − ∑m
i=1 αi

+
η∫

t

[ η∫
s

φ−1
p

( 1−t∫
r

q(τ ) dτ

)
dr

]
ds.

Then by (H3), y(t) > 0 is continuous on [0,min{ξ1,1 − η}].
Denote

A =
(
1 − ∑m

i=1 αi

)
φ−1

p

(
1 − φp

(∑n
i=1 βi

))
[∑m

i=1 αiξi(η − ξi

2 ) + η2

2

(
1 − ∑m

i=1 αi

)]
φ−1

p

(∫ 1
0 q(s) ds

) > 0,

B = 1

mint∈[0,min{ξ1,1−η}] y(t)
> 0. (14)

Theorem 3.1. Assume (H1)–(H3) hold. If there exist a constant δ ∈ (0,min{ξ1,1 − η}) and two
positive numbers b < a, such that
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(H4) f : [0, a] → [0,+∞) is nondecreasing;
(H5) supt∈[0,1] f (t, a) � (aA)p−1, inft∈[δ,1−δ] f (t, δ

η
b) � (bB)p−1,

then problem (1) has at least two solutions w∗, v∗ ∈ P with

b � ‖w∗‖ � a and lim
n→+∞T nw0 = w∗, where w0(t) = a, t ∈ [0,1],

b � ‖v∗‖ � a and lim
n→+∞T nv0 = v∗, where v0(t) = b min

{
t

η
,

1 − t

1 − η

}
, t ∈ [0,1].

Proof. We denote P [b, a] = {w ∈ P : b � ‖w‖ � a}. In what follows, we first prove T P [b, a] ⊂
P [b, a].

Let w ∈ P [b, a], then

0 � w(t) � ‖w‖ � a.

Since δ ∈ (0,min{ξ1,1 − η}), by (1) we have:

min
t∈[δ,1−δ]w(t) � ‖w‖min

{
δ

η
,

δ

1 − η

}
= δ

η
‖w‖ � δ

η
b.

So, by assumptions (H4) and (H5), we have

0 � f
(
t,w(t)

)
� f (t, a) � sup

t∈[0,1]
f (t, a) � (aA)p−1, t ∈ [0,1]; (15)

f
(
t,w(t)

)
� f

(
t,

δ

η
b

)
� inf

t∈[δ,1−δ]f
(

t,
δ

η
b

)
� (bB)p−1, t ∈ [δ,1 − δ]. (16)

For any w(t) ∈ P [b, a], by Lemma 2.4 we know that T w ∈ P and, as a result,

‖T w‖ = (T w)(η)

= − 1

1 − ∑m
i=1 αi

m∑
i=1

αi

ξi∫
0

[ η∫
t

φ−1
p

(
Aw −

1∫
s

q(τ )f
(
τ,w(τ)

)
dτ

)
ds

]
dt

−
η∫

0

[ η∫
s

φ−1
p

(
Aw −

1∫
r

q(τ )f
(
τ,w(τ)

)
dτ

)
dr

]
ds.

Since we have proved in Lemma 2.2 that

Aw ∈
[
− φp

(∑n
i=1 βi

)
1 − φp

(∑n
i=1 βi

)
1∫

0

q(s)f
(
s,w(s)

)
ds,0

]
,

therefore, by (15) and (16),

‖T w‖ � 1

1 − ∑m
i=1 αi

m∑
i=1

αi

ξi∫
0

[ η∫
t

φ−1
p

(
φp

(∑n
i=1 βi

)
1 − φp

(∑n
i=1 βi

)
1∫

0

q(s)f
(
s,w(s)

)
ds

+
1∫
q(τ)f

(
τ,w(τ)

)
dτ

)
ds

]
dt
s
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+
η∫

0

[ η∫
s

φ−1
p

(
φp

(∑n
i=1 βi

)
1 − φp

(∑n
i=1 βi

)
1∫

0

q(s)f
(
s,w(s)

)
ds

+
1∫

r

q(τ )f
(
τ,w(τ)

)
dτ

)
dr

]
ds

� 1

1 − ∑m
i=1 αi

m∑
i=1

αi

ξi∫
0

[ η∫
t

φ−1
p

(
φp

(∑n
i=1 βi

)
1 − φp

(∑n
i=1 βi

)
1∫

0

q(s)f
(
s,w(s)

)
ds

+
1∫

0

q(τ)f
(
τ,w(τ)

)
dτ

)
ds

]
dt

+
η∫

0

[ η∫
s

φ−1
p

(
φp

(∑n
i=1 βi

)
1 − φp

(∑n
i=1 βi

)
1∫

0

q(s)f
(
s,w(s)

)
ds

+
1∫

0

q(τ)f
(
τ,w(τ)

)
dτ

)
dr

]
ds

=
∑m

i=1 αiξi(η − ξi

2 ) + η2

2

(
1 − ∑m

i=1 αi

)
(
1 − ∑m

i=1 αi

)
φ−1

p

(
1 − φp

(∑n
i=1 βi

)) φ−1
p

( 1∫
0

q(s)f
(
s,w(s)

)
ds

)

�
[∑m

i=1 αiξi(η − ξi

2 ) + η2

2

(
1 − ∑m

i=1 αi

)]
φ−1

p

( ∫ 1
0 q(s) ds

)
(
1 − ∑m

i=1 αi

)
φ−1

p

(
1 − φp

(∑n
i=1 βi

)) Aa = a

and

‖T w‖ � 1

1 − ∑m
i=1 αi

m∑
i=1

αi

ξi∫
0

[ η∫
t

φ−1
p

( 1∫
s

q(τ )f
(
τ, x(τ )

)
dτ

)
ds

]
dt

+
η∫

0

[ η∫
s

φ−1
p

( 1∫
r

q(τ )f
(
τ, x(τ )

)
dτ

)
dr

]
ds

� 1

1 − ∑m
i=1 αi

m∑
i=1

αi

ξi∫
δ

[ η∫
t

φ−1
p

( 1−δ∫
s

q(τ )f
(
τ, x(τ )

)
dτ

)
ds

]
dt

+
η∫

δ

[ η∫
s

φ−1
p

( 1−δ∫
r

q(τ )f
(
τ, x(τ )

)
dτ

)
dr

]
ds

� Bb

[
1

1 − ∑m
i=1 αi

m∑
i=1

αi

ξi∫ [ η∫
φ−1

p

( 1−δ∫
q(τ) dτ

)
ds

]
dt
δ t s
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+
η∫

δ

[ η∫
s

φ−1
p

( 1−δ∫
r

q(τ ) dτ

)
dr

]
ds

]

= Bby(δ) � b.

Thus, we get b � ‖T w‖ � a, which means T P [b, a] ⊂ P [b, a].
Let w0(t) ≡ a, t ∈ [0,1], then w0(t) ∈ P [b, a]. Let w1 = T w0, then w1 ∈ P [b, a]. We denote

wn+1 = T wn = T n+1w0, n = 0,1,2, . . . . (17)

Since T P [b, a] ⊂ P [b, a], we have wn ∈ P [b, a], n = 0,1,2, . . . . From Lemma 2.4, T is
compact, we assert that {wn}∞n=1 has a convergent subsequence {wnk

}∞k=1 and there exists
w∗ ∈ P [b, a] such that wnk

→ w∗.
Now, since w1 ∈ P [b, a] ⊂ P , we have

0 � w1(t) � ‖w‖ � a = w0(t).

By Lemma 2.4, we know that T w1 � T w0, which means w2(t) � w1(t),0 � t � 1.
By induction, then wn+1(t) � wn(t), 0 � t � 1 (n = 0,1,2, . . .). Hence, we assert that

wn → w∗. Let n → ∞ in (17) to obtain T w∗ = w∗ since T is continuous. Since ‖w∗‖ � b > 0
and w∗ is a nonnegative concave function on [0,1], we conclude that w∗(t) > 0, t ∈ (0,1).

It is well known that the fixed point of operator T is a solution of problem (1). Therefore, w∗
is a positive, concave solution of (1).

Let v0(t) = b min{ t
η
, 1−t

1−η
}, t ∈ [0,1], then ‖v0‖ = b, and v0 ∈ P [b, a]. Let v1 = T v0, then

v1 ∈ P [b, a]. We denote

vn+1 = T vn = T n+1v0, n = 0,1,2, . . . . (18)

Similarly to {wn}∞n=1, we assert that {vn}∞n=1 has a convergent subsequence {vnk
}∞k=1 and there

exists v∗ ∈ P [b, a] such that vnk
→ v∗.

Now, since v1 ∈ P [b, a], we have by (3):

v1(t) � ‖v1‖min

{
t

η
,

1 − t

1 − η

}
� b min

{
t

η
,

1 − t

1 − η

}
= v0(t), t ∈ [0,1].

By Lemma 2.4, we know that T v1 � T v0, which means v2(t) � v1(t), 0 � t � 1.
By induction, vn+1(t) � vn(t), 0 � t � 1 (n = 0,1,2, . . .). Hence, we assert that vn → v∗,

T v∗ = v∗ and v∗(t) > 0, t ∈ (0,1). Therefore, v∗ is a positive, concave solution of (1). �
Remark 3.1. We can easily get that w∗ and v∗ are the maximal and minimal solutions of (1) in
P [b, a].

Remark 3.2. When p = 2, condition (H5) is weaker than the corresponding ones, namely, (C1),
(C2) in Refs. [12,13]. Furthermore, we get not only the existence but also the iteration of pos-
itive solutions for a multi-point boundary value problem, while only the existence of a positive
solution for a three-point boundary value problem is obtained in Refs. [12,13].

Corollary 3.2. Assume (H1)–(H3) hold. If there exists a constant δ ∈ (0,min{ξ1,1 − η}) such
that

(H6) f : [0,+∞) → [0,+∞) is nondecreasing;
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(H7) liml→0 inft∈[δ,1−δ] f (t,l)

lp−1 � (
Bη
δ

)p−1 and lim l→+∞ supt∈[0,1]
f (t,l)

lp−1 � (A)p−1 ( particularly,

liml→0 inft∈[δ,1−δ] f (t,l)

lp−1 = +∞ and lim l→+∞ supt∈[0,1]
f (t,l)

lp−1 = 0), where A,B are de-
fined as in (14).

Then, there exist two constants a > 0 and b > 0 such that problem (1) has two positive, concave
solutions w∗, v∗ ∈ P with

b � ‖w∗‖ � a and lim
n→+∞T nw0 = w∗, where w0(t) = a, t ∈ [0,1],

b � ‖v∗‖ � a and lim
n→+∞T nv0 = v∗, where v0(t) = b min

{
t

η
,

1 − t

1 − η

}
, t ∈ [0,1].

Proof. Since (H4) and (H5) can be obtained from (H6) and (H7), we omit the proof. �
Example. Suppose 0 < k, m < 1/2 and consider the following differential:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(|u′′|−1/2u′′)′
(t) = 1

t (1 − t)

[(
u(t)

)m + ln
((

u(t)
)k + 1

)]
, t ∈ [0,1],

u(0) =
m∑

i=1

αiu(ξi), u′(2/3) = 0, u′′(1) =
n∑

i=1

βiu(θi).

(19)

Corresponding to (1), we have p = 3/2, η = 2/3, f (t, u) = um + ln(uk + 1), and

lim
l→0

inf
t∈[0,1]

f (t, l)

lp−1
= lim

l→0
inf

t∈[0,1]
lm + ln(lk + 1)

l1/2
= +∞,

lim
l→+∞

sup
t∈[0,1]

f (t, l)

lp−1
= lim

l→+∞ inf
t∈[0,1]

lm + ln(lk + 1)

l1/2
= 0.

By Corollary 3.2, we can get not only the existence but also the iteration of two concave
and positive solutions for problem (19) for any ξi ∈ (0,2/3) (i = 1,2, . . . ,m), θi ∈ (0,1) (i =
1,2, . . . , n) and αi , βi satisfying (H1), (H2).
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