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Abstract

We construct a symplectic realization of the KM-system and obtain the higher order Poisson tensors and
commuting flows via the use of a recursion operator. This is achieved by doubling the number of variables
through Volterra’s coordinate transformation. An application of Oevel’s theorem yields master symmetries,
invariants and deformation relations.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The Kac—van Moerbeke system (KM-system), also known as the Volterra system, is defined
by

"‘tizui(ui-i-l_ui—l)v i=1,2,...,l’l, (1)

where ug = u,+1 = 0. It has been used as a model for predator—prey evolution systems [12],
as well as a discretization of the Korteweg—de Vries equation. Its integrability was established
in [7,9]. In [7], Kac and van Moerbeke formulated the inverse scattering technique in a discrete
setting and applied it on Egs. (1) to produce explicit solutions. Moser using a different method,
namely continued fractions, has also integrated the model.
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A diffeomorphism is established between the KM-system (1) and the celebrated Toda lattice
equations

di=ai(bi+1_bi)’ i=1,...,n_1,
13,':2(611-2—512 1), i=1,...,n,

l' —_
via a transformation of Hénon

1 .
a; = _EN/MZiUZi—l» i=1,...,n—1,

1 .
bi = 5(“21’—1 tuz-), i=1...,n

Thus, the hierarchy of Poisson tensors, Hamiltonian functions, constants of motion and master
symmetries known for the Toda lattice and expressed in Flaschka’s coordinates (a, b), can be
mapped to the corresponding ones for the KM-system in u-coordinates [2]. We note that the
number of variables for the Toda lattice is odd and therefore we restrict our attention to the
KM-system with an odd number of variables.

A Hamiltonian description of the KM-system can be found in the book of Fadeev and Takhta-
jan [4]. Later on, in [2] two polynomial Poisson tensors of degree two and three are considered
and placed in an infinite sequence of Poisson tensors that satisfy Lenard type relations. The
quadratic Poisson bracket, w3, is defined by the formulas

{ui, uiv1} =wuiuiqr, (2)
and all other brackets are zero. Using H = Z[Z’;Il u; as the Hamiltonian and the Poisson
bracket 7>, the Volterra equations are written in Poisson form, u; = {u;, H}.

We will follow [2] and use the Lax pair of that reference. It has the advantage of making the

equations homogeneous, polynomial. The Lax pair is given by
L=[B,L], 3)
where

uj 0 Juuo 0 0
0 uy+uy 0 Juzuz :

Juiup 0 Uy +us
L= 0 NITYTE
: A U2n—2U2n—1

U2p—2 + Uy—1 0

U2n—2Un—1 0 U1

and

S =)
S S
D=
=] <
<
S
D=
< S
)
<
w
=)

—%4/141142 0 0

1
34/ U2n—2U2n—1
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This is an example of an isospectral deformation; the entries of L vary over time but the eigen-
values remain constant. It follows that the functions H; = ll Tr L are constants of motion.

The cubic Poisson bracket, which corresponds to the second KdV bracket in the continuum
limit, is defined by

{uisuiv1} =ujuipr(ui +uitr),
{ui, uito} = ujuiyiuiqo,

and all other brackets are zero. We denote this bracket by 73. The Lenard relations take the form
m3VH; =mVH.

The higher order Poisson brackets are constructed using a sequence of master symmetries Y;,
i=0,1,.... We define Y to be the Euler vector field

2n—1

where
Ui =G+ Dujui + I/tl2 + Q2 —Duj—1u;.

One can verify that the bracket 73 is obtained from 7, by taking the Lie derivative in the direction
of Yj.

The brackets p and w3 are just the beginning of an infinite family constructed in [2] using
master symmetries. We quote the result:

Theorem 1. There exists a sequence of Poisson tensors 7w and a sequence of master symme-
tries Y such that:

(1) m; are all Poisson.
(ii) The functions H; are in involution with respect to all of the 7 ;.
(iii) ¥;(H;) = (i + j)Hiy .
(iv) Lymj=(j —1i—2)miyj.
™) Wi, Y= (= Y.
(Vi) wjVH; =m;j 1V H;1, where it denotes the Poisson matrix of the tensor ;.

The KM-system is a special case of the more general Lotka—Volterra equations, which have
the form

N
Lii:Zaikuiuk, i=12,...,N, S
k=1

where (a;;) is a fixed matrix.

In the early work on (4), Volterra introduced a transformation from R*Y to R¥ | in his attempt
to provide a Hamiltonian formulation; see, for example, [5]. Specifically he doubled the number
of variables by defining
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t

qj(t):/”i(f)dfv (%)
0
| N
pi(t) =In(g;) — > Zaiqu, (6)
k=1
i=1,..., N, for a skew-symmetric (a;;).

The explicit form of Volterra’s transformation from R?Y to R¥ is
wj =Ptk =12 . N. ()

The Hamiltonian function is given by

N

N
H=Y 0= u. ®
i=1

i=1

which takes the form
N N
H=Y" ePits il aikdk ©)

i=1

System (4) can then be expressed in the following form:

. oH
qi = P) Z{Qi,H}’ (10)
Di
. oH
pi=—3 ={pi, H}, (11)
qi

where the Poisson bracket in (¢, p) coordinates in R*V is the canonical one. We note that for the
KM-system in u-space both Poisson tensors 7> and 73 are degenerate. Therefore, an application
of the theory of recursion operators is hindered.

In this paper we consider the KM-system in R?”~! and obtain a symplectic realization of the
system by increasing the dimension of the space. Namely, the number of variables is doubled
through Volterra’s coordinate transformation. We produce the higher order Poisson tensors and
flows for the system via the use of a recursion operator. We define a conformal symmetry in
symplectic space and apply Oevel’s theorem to produce deformation relations, which can then
be projected to give the deformation relations for the Volterra system in R** !,

2. Master symmetries and recursion operators

Let us consider the differential equation x = X'(x) on a manifold M defined by the Hamil-
tonian vector field X'. Below we give the definition of master symmetries, due to Fokas and
Fuchssteiner [6], and briefly mention their basic properties. A vector field Z is a symmetry of
the equation if [Z, X'] = 0. In the case that Z = Z(¢, x), Z is a time-dependent symmetry if

8Z~|—[Z X]1=0
ot AT

A more general definition is that of a generator of symmetries. Z is called a generator of degree
zero if [Z, X] =0, and a generator of degree one if [[Z, X], X] = 0. A generator of degree k is
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the one that satisfies [...[Z, X],...] =0, where there are k 4+ 1 nested Lie brackets. We remark
that if Z is a generator of degree k then [Z, X] is a generator of degree k — 1. Also, if Z is a
generator of degree k then Z is a generator of degree i > k. A symmetry is a generator of degree
zero. A generator of degree one that is not a generator of degree zero is called a master symmetry.
Oevel’s theorem provides a useful method for constructing master symmetries.

Suppose that we have a bi-Hamiltonian system [8] with a symplectic Poisson tensor. Namely,
a pair of Poisson tensors Py and P;, with Py symplectic and a pair of Hamiltonian functions
H,, H; that give rise to the same system, i.e.,

PoVH, = P,VH]. (12)

Then a recursion operator R is defined by R = P; P(;1 , and gives rise to a family of Hamiltonian
vector fields that are defined recursively as

X =R,
and higher order Poisson tensors
P, =R P 3)

The Hamiltonians H; corresponding to the vector fields &; are given by VH; = (R*)'V Hy.
These higher order flows have a multi-Hamiltonian formulation,

X;4j = P;VH;. (14)

Magri’s theorem [8] states that the flows X; pairwise commute. Also the functions H; are con-
stants of motion for each flow and commute with respect to all higher order Poisson tensors. We
thus have an infinite sequence of involutive Hamiltonian flows. Furthermore, Oevel’s theorem
provides a method for constructing master symmetries [10]. We quote the theorem.

Theorem 2. Suppose that X is a conformal symmetry for both w1, mo and Hi, i.e., for some
scalars A, u, and v we have

Lx,m1 = Ay, Lx,m = ums, Lx,H =VvH;. (15)
Then the vector fields X; = R' X are master symmetries and we have
(@ Lx;Hj=W+( =1+ —2))Hiyj;

®) Lx;mj=@+ (G —i—=2)(r—A)7itj;
© [Xi, Xjl=m -2 —D)Xitj-

As a corollary to Oevel’s theorem we have the existence of the following time-dependent
symmetries for each flow in the hierarchy:
Yy, =Xi+t(u+v+ (G —Dp—0))Xy;, i,j=12,.... (16)

In the next section we will formulate the bi-Hamiltonian Volterra system in a symplectic setting
so that we can apply the theory described in this section and obtain the results stemming out of
the theorems of Magri and Oevel.

3. Symplectic setting

We consider the Volterra map
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W R2Qn-D , p2n-1

wp=ePta@n ) = op -, (17)
where go = g2, = 0. We note that ug = u, = 0. The Hamiltonian in (g, p) coordinates is given
by

2n—1

hy = Z epi+%(fli+1*11i—l)7 (18)

and together with the standard, symplectic Poisson tensor

0 I(2n—l))
P = ,
? <—1<2n—1> 0

where [,, denotes the n x n identity matrix, corresponds to the KM-system (1) under the map-
ping (17). To avoid confusion, a Poisson tensor is symplectic (by definition) if it is invertible.
We call it standard symplectic since its inverse is the standard, canonical, symplectic two-form
in R2@n=D 1p particular, the degenerate quadratic Poisson tensor w5, defined in Section 1, is
lifted to P, via transformation (17). To find the pre-image of the cubic bracket 73, we will lift
the master symmetry Y; of Section 1 from the u-space in R**~! to a master symmetry X in
the symplectic space (¢, p) € R*® =D 1In fact, £ x, P> = P3, where X projects to Y7 using the
Volterra map. One possible definition for X is the following:

2n—1 2n—1

ZA +233p (19)
i=1 !

where
2n—1
Aj = Z cj)iel’j+%(q_/+l_‘Ij—l)’
j=1
Bi=(+ 1)ePi+1+%(4i+2—q1‘) + epi+%(qi+l_‘h'—l) +@2- i)epi71+%(qf—qi72)

12n—1 |
+ 3 Z (Cjio1— Cj’i_i_l)epj"rj(qj-%—l_‘h'—l)’
Jj=1
fori =1,2,...,2n — 1. The constants c; ; are given by
Ci,j=0, i=1,...,2n-2, j>1i,

cj=-1, i=2,....2n—1, j<i,
ci=i—1, i=1,....,2n—1.

We note that ¢ o = ¢ 2, = 0. The constant matrix C := (c; ;) takes the form

0 0 0 0 0
—1 1 0 0 0
-1 -1 2 0 0
C=1 . TS .. :
-1 ... ... =1 2n-3 0

-1 ... —1 2n -2
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Taking the Lie derivative of the symplectic bracket P, in the direction of X; we obtain the
Poisson bracket P3,

{qi’qj}=epj+%(qj+l_11j—l)’ i<j,

(g1, p1) = eP1 T30 4 L patl@s—an
K 2 b

{gi, pi} = %e’”%(""“““*” + %e”i“*%“’fﬂ‘qf), i=2,...2n—1,
{gi, pit1} = %ep”ﬁ%(q’“_‘”“), i=1,...,2n -2,
(g2, p1) = P 2@=an),

{qz‘,Pi—l}=%e”"+%(”"*‘_q""), i=3,...,2n—1,
{qi, Pj} — _%epjfl'F%(qj_qj*Z) + %epj+l+%(qj+2_‘]j)’ ji>i+2,
{qzwpl}=%ep’dr%(q"“*q"*l), i=3,...,2n—1,
{p1, po} = %epﬁ%% + %epz+%(613*(11) _ lepfr%(tpﬁqz)7

{pi, pit1) = %el’i+%(4i+l_9i—l) + %ePiJrH‘%(CIHZ_%’), i=2.....2n—2,
{p1, p3} = %e[’ﬁ'%(%—‘h) _ ie””%(%_%),

{Pi,Pi+2}=%E""“Jr%(q"“_q"), i=2,...,2n-3,
{p1,pj}= —%e”f+l+%<qf+2‘qf) + }Lel’f—ﬁ%(%—qf—z), j=4,...2m—1, (20)

and all other brackets are zero. We recall that P23 @nt1=42n-1) — uz, = 0. The Jacobi identity
for the bracket P3 can be rigorously checked by considering the following four cases: (a) three ¢,
(b) three p, (c) two p and one ¢, and (d) two g and one p. For example, the Jacobi identity
for gi,qj,qr for 1 <i < j <k <2n — 1 can be broken up to two subcases: (al) k = j + 1, and
(a2) k > j +2. In a similar manner one can consider the other three cases. We remark that a result
of Sergyeyev that appears in [11] provides an elegant alternative around the Jacobi identity. We
quote the relevant theorem. Given a Poisson structure P its Lie derivative Lx P along a vector
field X defines another Poisson structure compatible with P if and only if [L§( P, P]=0. Whatis
more, if P is a Poisson tensor of locally constant rank and dim P < 1 then all Poisson structures
compatible with P are of the form Ly P where X is a vector field such that L%P = Lx/ P for
some other vector field X’. In our particular case if we set X = X| and P = P, then a necessary
and sufficient condition for P;3 to be Poisson is that [L%1 P>, P,] = 0. One finds that L%ﬁ P,=0
and thus the condition is satisfied and P; is indeed a Poisson structure.
Under the Volterra transformation, P, maps to w3 and P3 to m3. The function

2n—1 2n—2
E 2Pitdi+1—4i-1 + § :ePi+Pi+l+%((1i+2+(1i+l*(11‘*!11'—1)

i=1 i=1

1

hy = =
273
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corresponds under mapping (17) to a constant multiple of H, = %Tr(L)z. We recall that Hy, H
and m, 73 constitute a bi-Hamiltonian pair

o VHy =m3VH,. 2n
However, both Poisson tensors are degenerate. The Volterra map places this bi-Hamiltonian pair
in a symplectic setting. That is,

P,Vhy, = P3Vhy, (22)

and a recursion operator is defined as R = P3 Pz_l. P; is by construction compatible with P,
since it is generated from a master symmetry; see [3]. We note the absence of a negative recursion
operator as in [1] using this method, since the matrix representing P3 is not invertible.

A multi-Hamiltonian structure of the form X;,; = P;Vh; is provided by the higher order
Poisson tensors and Hamiltonian vector fields

Pi=R72P), i=3,4,..., (23)
Xi=R"'x, i=23,.., (24)

where X; stands for A, .
Theorem 2 requires the existence of a conformal symmetry X such that

Lx,Pr=AP,, Lx,P3 =P, Lx,(h1) =vhy. (25)

We define the conformal symmetry

2n—1
d

Xo= =
io opi

(26)
and one can check that relations (25) are satisfied with A =0, u = 1, v = 1. Therefore, in addi-
tion to the infinite family of commuting Hamiltonian flows, we have the following deformation
relations:

[(Xi,hjl= G+ Dhiyj, 27)
Lx; Pj=(j —i—=2)Piyj, (28)
(Xi, Xj1=( —DXiyj. (29)

Using the Volterra map we can project these to the u-space and provide an alternative proof of
the statements of Theorem 1.

4. Discussion

A different symplectic realization for the KM-system has been achieved recently in [1] using
the map
1) :RZn — RZW*I
uy_1=-—el, i=1,...,n,
uyy =elit174%  ji=1,....,n—1. (30)

The Hamiltonian is defined as

n n—1
H:_Zepi _|_Zeqi+1*qi 31
i=1 i=1
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and the standard symplectic bracket in (g, p)-space maps to the degenerate quadratic Poisson
tensor 77> via transformation (30). A second symplectic bracket is obtained by lifting the cubic
bracket 3.

In this paper we consider the Volterra map

Ve R2(2n71) — R2n71
up = PG on 1, (32)

in order to lift the bi-Hamiltonian structure of the KM-system to a symplectic space in R2*~1),
The big difference between the dimensions of the source and the target space in (32) impedes
the application of the methodology used in [1]. However, we are able to find a pair of Poisson
tensors that consists of the standard symplectic bracket P, and a second bracket P3 in R>2#*—D
so that its image under mapping (32) is the cubic bracket 3. Since P, is symplectic, a recursion
operator is defined as R = P3 Pz_l, and used to give rise to an infinite hierarchy of commuting
Hamiltonian flows and Poisson tensors. The conformal symmetry of the KM-system in u-space
is lifted to the symplectic (g, p)-space, and an application of Oevel’s theorem leads to an infinite
number of master symmetries, Poisson tensors and invariants. Note that P; is non-invertible, and
hence the recursion operator R = P Py 1 cannot be inverted as well, i.e., no negative recursion
operator exists in this realization.
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