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Abstract

By employing the univariate series expansion of classical hypergeometric series formulae, Shen
[L.-C. Shen, Remarks on some integrals and series involving the Stirling numbers and ¢ (n), Trans. Amer.
Math. Soc. 347 (1995) 1391-1399] and Choi and Srivastava [J. Choi, H.M. Srivastava, Certain classes of
infinite series, Monatsh. Math. 127 (1999) 15-25; J. Choi, H.M. Srivastava, Explicit evaluation of Euler and
related sums, Ramanujan J. 10 (2005) 51-70] investigated the evaluation of infinite series related to gen-
eralized harmonic numbers. More summation formulae have systematically been derived by Chu [W. Chu,
Hypergeometric series and the Riemann Zeta function, Acta Arith. 82 (1997) 103-118], who developed
fully this approach to the multivariate case. The present paper will explore the hypergeometric series
method further and establish numerous summation formulae expressing infinite series related to gener-
alized harmonic numbers in terms of the Riemann Zeta function ¢ (m) with m =5, 6, 7, including several
known ones as examples.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Following Bailey [2] and Slater [13], the generalized hypergeometric series reads as

o0
ap, ai, ..., ap’ (@o)n(@n -+ (ap)n 2"
F, = —
I+ ‘1[ bi, ..., by Z} nzzo GDn (b 1!
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where the shifted factorial is defined, for a complex number w, by (w)g := 1 and (w), =
ww+ D(w+2)---(w+n—1) withn =1, 2,.... Most of the nonterminating hypergeomet-
ric summation theorems (cf. [2,13]) evaluate nonterminating series as I"-function-fraction in the
following form:

F|:a, b, ..., c:|._ I'(@I(®b)--T(c)

A, B,...,C| T@ArMB---TC)’

For the I"-function, there hold the Weierstrass product expression (cf. [1])

r@=z"[[{a+1/m*/1+z/m)}

n=1
and the logarithmic differentiation

o0

I'(z) z—1
Y T
I'(z) i+ Dn+2)
with the Euler constant being given by
"1

We can further derive the following expansions:

F(l—z):exp{z%zk}, (1.1a)
k=1

1 _ > Tk i
F(E—z)—ﬁexp{; s } (1.1b)

where the Riemann Zeta sequences {oy, 7%} are defined by

O—]Z)/, Um:é‘(m)’ m=2537"-;
11=y +2In2, T =0Q2" —1tm), m=2,3,....

For infinite series related to the Riemann Zeta function, De Doelder [8] established numerous
interesting identities through evaluating improper integrals. Some of them are rederived in [3] by
means of the Parseval identity on Fourier series. Based on hypergeometric summation formulae,
Shen [12] and Choi and Srivastava [4,5] established several interesting infinite series identities.

The hypergeometric method has further been developed by Chu [6] systematically, who
discovered numerous infinite series identities involving generalized harmonic numbers. For ex-
ample, Chu [6] examined hypergeometric summation theorem due to Gauss

X, y l—z, 1l—x—-y—z
S Fy ) 1|=r (12)
1—z l—x—z,1—-y—z
as well as Kummer and Dixon. The hypergeometric series on the left side just displayed may

be expressed in terms of the partial sums of the Riemann Zeta function through the symmetric
functions generated by the following finite products (cf. [10]):
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n 2 3
X X X
(1 + E) =1+xH,+ 7(H3 - H?)+ g(Hn3 -3H,H® +2H3) + .-,
k=1
(1.3a)
n X -1 x2 x3
(1 B E) =1 xHy o+ = (Hy + Hy) + = () + 3H H? 4 2H, ) + -
k=1
(1.3b)
. y y? y?
(1 + —) =1+4+y0,+=(0} - 0?) +=—(0; -30,0¥ +20) +---,
i 2k —1 2 6
(1.3¢)
. y \7! y? y?
(1 ST 1) =1+y0,+ 7(03+ 0 + 3(03 +30,0% +20) + -,

(1.3d)

Hy=) =) =23

k=1 k=1

n l n 1
On=) —, o=y —— r=2.3,....
"k n ];(Zk—l)’ "

Instead, the I"-function-fraction on the right side may be expanded as multivariate formal power
series by (1.1). Then term-by-term comparison of the coefficients from two power series may
result in an infinite number of summation formulae.

It should be pointed out that the univariate case was extensively investigated in [4,5,12], while
the multivariate approach has been shown more efficient in dealing with infinite sums concerning
generalized harmonic numbers. By examining four typical hypergeometric summation formulae
due to Gauss, Kummer, Dixon and Dougall, Chu [6] has derived several identities related to
the first three values ¢(2), ¢(3) and ¢(4) of Riemann Zeta function. In this paper, we explore
this approach further and establish several infinite series identities for ¢ (5), £(6) and ¢ (7). Two
typical examples may be displayed as follows:

oo

I+3+-+1 72
Y = L) 30,
n=1 n

yo U ) =03+ 3806,

n=1 n?
Because the hypergeometric method is quite mechanical and systematic, the tedious demon-
stration for summation formulae will not be presented in detail except for necessity. Instead, we
will use a self-explained notation [x?y/z¥] to identify the process of extracting the coefficients
of monomial x? y/zX from multivariate power series expansions. Throughout the paper, the Euler
summation formulae
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577

i . i (-t
né 945’ n—1)3 " 1536

n=1 n=1

will be applied frequently without explanation.

2. The Gauss summation theorem

Recall the Gauss summation formula (1.2). We may reformulate it, by means of (1.1a),
as a functional equation between two multivariate infinite series

11—z, l—=x—y—z
r
l—x—z,1—y—z

X [ A+ 514 %)

=14+xy
L)

k=1 k

o0
=exp{2%[zk+(x+y+z)k—

(2.1a)

x+2)F—(y +z)k]}

3
= exp{azxy +o3xy(x +y+22) + osxy (x2 + y2 + Exy +3xz+3yz+ 322>

+osxy(x® +2x%y +2xy? +y? +4x%z + 6xyz + 4y z + 6x2% + 6yz% +42°)

-

(2.1b)

where the right-hand side of the first equality may be expanded, via (1.3a)—(1.3b), as a power
series. Then term-by-term comparison of the coefficients from two power series result in an infi-

nite number of summation formulae. If we identify by [xy/z

k] the extraction of the coefficients

of monomial x’y/z¥ from both series, the first few terms may be displayed as infinite series

identities.

Example 2.1 (Summation formulae related to ¢ (3) and ¢ (4)).

00 Hn
[xyzl ) —5 =203=2¢(3)

n=1 n
00 4
2 H,_1H, _ _ 7T_
[x*yz] nEZI — 5= 304 = 30

oo
[x2)?] Z nZ—IZE 2 o=t

[6, (1.1b)], (2.2a)
[6, (1.2a)], (2.2b)
1174
360 [6, (1.2b)]. (2.2¢)
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In order to exemplify the method, we show only the first formula. It is trivial to see that the
coefficient of xyz from the right member of (2.1a) results in Zn>1 H, /n?, thanks to (1.3b).
Instead, the coefficient of xyz from the Maclaurin series of (2.1b) is contributed only by
[xyz]exp{osxy(x + 3y 4+ 22)} = 203. Equating both coefficients leads us immediately to (2.2a).

Chu [6] has exhausted the formulae which can be derived from the coefficients of monomials
with degree < 4. We shall emphasize on the formulae by examining the coefficients of monomials
whose degrees range from 5 to 7.

Example 2.2 (Summation formulae related to ¢ (3) and ¢ (5)).

o] H,? _ 3Hn 11_1(2)1 + 2H<3)

] Y 5 =1 — 605 = 6¢(5), (2.3a)
n=1
%) 2 2
3 2 n— 1( n— 1_H 1) T
=2 dos = —(3) +4(5), 2.3b
[x*y?] ; o 0203 + 405 = £ (3) +4£(5) (2.3b)
> Hy(H2 , —H®)
[y] Y =805 =8005), (2.30)
n=1
X H? H, 2
[x2y%] 2} ”;; " 2050 +6a5=%§(3)+6§(5), (2.3d)
n=
o0 AT
H,_(H?+ H,
[y2?] Y = 1 ’;’;L L )=1205=12§(5), (2.3¢)
n=1
% 113 @ 3)
H? +3H,H” +2H,
I nF ”ng I 45— 241(5). (2.3f)
n=1

1 1 1
H, | =H, —— H® =H? = HY =HP - =, (2.4)
and then combining them properly, we can derive the following identities.
Example 2.3 (More summation formulae related to ¢ (3) and ¢ (5)).
> H, 72
Z e —?§(3) +3¢(5) [9, p. 16] and [11, (4b)], (2.5a)
n=1
0 3 2 2
H 2H b4
YA - =5+ 30, (2.5b)
oln n 2
< HY —HY  2n?
YT =B - 80), (2.5¢)

o0 (2) 2
) H":I —= %4(3) +¢(5) [5, (4.4)] and [11, (3a)], (2.5d)
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S VHY+2HY  x?
Yo = (3) +212(5). (2.5¢)
n 2

n=1

3. The Dougall-Dixon summation theorem

3.1. The Dougall-Dixon theorem [13, p. 56]

w, 1+w/2, X, Vs 4
sFy ‘1
w/2, 1l4+w—x,14+w—-y, 1+w—z

I4w—x, 1+w—-y, I+w—z, 1+w—x—-—y—2
4w, 1 +w—x—-y, 1+w—x—z, 1+w—-y—z

may be expressed, by means of (1.1a), as

l4w—x, l+w—y, l+w—2z, l+w—x—-y—2
4w, l4w—x—y, l+w—x—-2z, l+w—y—2

—1 —i—xyzi wtan U}_f(l +H0+HU+DALD
=t [T+ 550+ 555 A+ 559
k=1 k| —wk—(w—x—yf—w—-x—2=(w—y—2)F
= exp{203xy7 + 304xyz(x +y + 2 — 2w) + 205xyz(2x% + 2y + 22 + 6
+3xy +3xz +3yz — 6wx — 6wy — 6wz) + ---}.
Similar to the process illustrated in the last section, this equation leads us to the following iden-

tities.

Example 3.1 (Summation formulae related to ¢ (5)).

o 2
H, | +H,
[x?y%z] Z(“%:305=3;(5), (3.1a)
n=1 n
> (8H2+2H®  H, | +H
[x*yzw] Z{ e ;j ”}:1205=12;(5). (3.1b)
n=1

In view of (2.4), their combinations give other two identities.

Example 3.2 (More summation formulae related to £ (5)).

[H> H,) 1
Z{n—3 _ 74} = 346), (3.22)

n=1
00

H? 3H,) 9
)2

n=1
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Combining Example 2.3 with Example 3.2, we obtain further the following results.

Example 3.3 (More summation formulae related to ¢ (3) and ¢ (5)).

N\ H? 72 7
;,7:_?“3”5“5) (11, Bo)l,
o0 HrEZ) 7t2 9

; 3 =7§(3)—§§(5),

N

Z_z ==—¢(3)+10¢(5) [11, 3b)],
n=1 n 6

i i = —n—2§(3) + E4(5)

n=1 n2 - 3 2 .

(3.3a)

(3.3b)

(3.3¢)

(3.3d)

If we consider the coefficients of monomials x? y/z€ of degrees 6 and 7, then we shall obtain
further summation formulae related to ¢(6) and ¢ (7), whose proper combinations result in more

compact formulae. Some of them are displayed in the following two examples.

Example 3.4 (Summation formulae related to ¢ (6)).

iﬂ_”_ﬁ_l 2(3) [7, (B.7b)]
2540 2° I

n=1

o0 2 6
H? 977 5
Hn _ —2¢23 7, (B.8 d[9, p. 241,
E & = 22680 7 (3) [7, (B.8a)] and [9, p. 24]

=" 723 [7, (B.8b)],

= +3¢°(3) [5, (4.48)],

n? 22680
n=1
ST o) (s s ad 7, Bow)
=t 2835 T T

[7, (B.9a)] and [9, p. 23],

Example 3.5 (Summation formulae related to ¢ (7)).

iﬂ——ﬁ (3)—”—2 (5) +4¢(7)
25 = 90° et £(7),

(3.4a)

(3.4b)

(3.4¢)

(3.4d)

(3.4e)

(3.4f)

(3.4g)

(3.52)
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STy - T ) 19, p. 16] (3.5b)
= n’ 36 6 o '
=g ot e

Z 3 —{(3)+ —{(5) 10¢(7) [5, (1.16)], (3.5¢)
n=1

x H,§4) T4 52

Yoo = TEB) + 58) — 176 (), (3.50)
n=1

> B -+ ) (3.5¢)
= n? 45 3 ' '

3.2.  With replacement of z by z 4+ 1/2 in the Dougall-Dixon theorem, the resulting identity
reads as

w, 1+ 3, x, ¥y, %+Z
5F4 w 1 ‘l
5, ltw—x, 1+w—y, 5+w—z

_r l+w—x, I+w—y s+w—z, s+w—x—y—z
l+w, I+w—x—y, t+w—x—z, 1 +w—y—z

which may be restated as
r l+w—x, 1+w—y S+w—z s+w—-x—y—z
1+w, 1+w—x-—y, %+w—x—z, %+w—y—z

w+2n Mol A+2A+5HA+H D 1+2/Qk—1)
_]+ f
Z ijl L4+ %)(1_}_%) g1+2(w—z)/(2k—1)

=exp{ YD @ =0 @ =) - b w - = )]
k=1

+(—1)k%[(w—z>k+<w—x—y—z)k—<w—x—z)’<—(w—y—z>k]}

= exp{Zszy —203xy(6w —3x — 3y — 7z) 4+ ouxy (42w2 — A2wx + 14x?
— 42wy + 21xy + 14y* — 90wz + 45xz + 45yz + 457%) — 205xy (60w?
—90w’x + 60wx? — 15x3 — 9Ow2y 4+ 90wxy — 30x2y + 6Ou)y2 - ?)O)cy2
— 15y — 186w’z + 186wxz — 62x°z + 186wyz — 93xyz — 62y°2
+ 186wz? — 93xz2 — 93yz* — 622%) + -}

The summation formulae derived from the coefficients of monomials with degree 5 are as fol-
lows.
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Example 3.6 (Summation formulae related to ¢ (3) and £(5)).

X ((Hy—1 + Hy)? — H®, + HP}0,

3
=3los =31¢(5), 3.6
[¥*y] ; = o5 =31¢(5) (3.6)
[ 2 5
2.2 (Hp—1 4+ Hy)" 0y 7 93 T 93
=5 —os5=—-((3 —(5), 3.6b
[x*y*z] ; p 50203+ 05 = —5-0(3) + ~L(5) (3.6b)
00 2
2.2 (Hy—1 + H,)O; 93 93
[x“yz] nz_; — 7 L= rich §§(5), (3.6¢)
3 X 203+0 93 93

n=1

Example 3.7 (More summation formulae related to ¢ (3) and ¢ (5)).

0, 772 31
;F——WCGHZ{(S), (3.7a)
X (H?> |+ H»O, 31
ool —~ =540, (3.7b)
n=1

PEREE VI g ¢t e

n=1

Remark. According to (2.4), we observe that (3.7a) can be derived from the difference between
(3.6a) and (3.6b), the identity (3.7b) from (3.6a) and (3.7¢c) from the difference between (3.6b)
and (3.7b).

3.3. Replacing w, x, y, z respectively by 1 +w, x +1/2,y + 1/2,z + 1/2 in the Dougall—
Dixon theorem, we can express the resulting equation as

" I+w, 32, x+3, y+3  z2+3 )1
Hw diw—x, 34+w—y, 3+w—z

T %er—x, %er—y, %er—z, stw—x—y—z .
24w, l+w—x—y, l+w—x—2z, 1+w—y—z

The last relation may in turn be reformulated as

r IT+w—x, J+w—y, s+w—z, 3+w—x—y—z
4w, l4+w—x—y, l4+w—x—2z, l+w—y—2

:nzexp{ Z(—l)k%[(w—x)k +w— )+ w—2)f+w—x —y—Z)k]}
k=1

><exp{—;(—l)k%[wkv%w—x—y)k+(w—x—z)k+(w—y—z)k]}
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whose expansion yields the following equality:

Zw+2n—1n7 L+ )+ 2D+ 2D+ 52
= -3 Hj:1(1+2;_%X)(1+2;"j_21y)(1+2] 2)

:exp{4(x +y+z-— 2w)ln2+202(2w2 —2wx +x%— 2wy + xy +y2

—2wz+xz4+yz+ zz) — 203 (4w3 — 6w?x + 6wx? —2x° — 6w2y

+ 6wxy — 3x2y + 6wy2 - 3xy2 - Zy3 — 6w’z + 6wxz —3x%z + 6wyz
— Txyz — 3y*z + 6wz? — 3xz% — 3yz* — 22°) + oy (14w? — 28wx
+42wx? — 28wx® + 7t — 28w3y + 42u)2xy — 42wx2y + 14x3y

+ 42w y? — 42wxy? + 21x2y% — 28wy + 14xy> + 7y* — 28w’
+42w’xz — 2wx’z + 14x37 + 42w2yz — 0wxyz + 45x2yz - 42wyzz
+ 45xy2Z + 14y3z +42w?7? — 2wxz? +21x%% — 42wyz2 + 45xyz2
+21y%7% — 28wz’ + 14x2® + 14y2® +7z%) + -}

The first few terms of its power series expansion yield the following summation formulae.

Example 3.8 (Summation formulae related to ¢ (3) and ¢ (4)).

2 (Op_1 + 0,)3 T2

Zﬁ 71T—61n2+n In3 2+ 5520), (3.82)
n=1

> Op_1+0, =* n?

Zm El n2— —24“(3), (3.8b)
* 09 10 22 ; -
;W ?C( ). (3.8¢)

Sketch of proof. The coefficients of xyz from both formal power series expansions lead us
directly to the first formula in Example 3.8. By combining (3.8a) with the following two identi-
ties:

(2] i (On_1 + O){(0,_ +0n§2— 0 +0?)
o 2n—1)
4 372
=%1n2+n21n32+i;(3), (3.9a)

On—14 O){(On—1 + 0,)* =302, — 0P} +2(0, + 0)

> (
3
<] nz::l 2n — 1)

4 3 2
=%ln2+nzln32+%§(3), (3.9b)

we can easily derive (3.8b) and (3.8c). O
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Example 3.9 (Summation formulae related to ¢ (3) and ¢ (4)).

o0 2 6

(Onfl‘f'on) v

_ T2 - T 23

’; 2n = 1)° 760 T 231" 2~ 5 L8O,
00 4 6 b

(Onfl"‘on) v I

1 T Cn) 1222 4272100 2 4+ T 102 3
’; n—12 o a" +2m0 24+ —-In 2 (3),
00 2 252

(02, + 02 6 . 3n

Oua $ 00" _7° 7)oy Ty 3
,; -1 a0 12" +2 n2+ g 2.

Sketch of proof. The comparison of the coefficients gives the following:

X (On1+ O)H(Ono1 + 0n)2 = 0 + 0,7}

[xzyz] Z 1)

n=1
137% 774
L N S
52 T o W2+
_— Z {(On_1 + 02— 02 + 0P
z v 2n—1)?
7T

+z f 2 24272 In 2+3”21n2 3)
—_— —_— JT .
T80 3 ;e

(3.10a)

(3.10b)

(3.10c)

(3.11a)

(3.11b)

The linear combinations of the above two equations result in the formulae (3.10a) and (3.10b) on

account of two relations:

6
0P -0® = and Y — ="
n 1T an—12 M ;(271—1)6 960

The identity (3.10c) is derived by reformulating the formula (3.11b). O

4. The Dixon—-Kummer summation theorem

4.1. When z — oo, the Dougall-Dixon theorem in last section reduces to the Dixon—

Kummer theorem [13]

w, 1+w/2, X, 14+w—x, 1+w-—
Fs / y ‘_1 _r y
14w, I+w—x—y

which may be expressed, through (1.1a), as
w+2n [[Z A+ )0+ D1+
T (0 55+ 252

=1+xy) (1)

n=1

=expl YD =0 =) —wh - w—x = )]

k=1

|
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3
= exp{—azxy 4+ o3 xyQw — x — y) — ouxy <3w2 +x2+ y2 —3wx — 3wy + Exy)

+osxyQw —x — y)(2w2 + x? +y2 —2wx — 2wy +xy) + .. }
Its power series expansion via (1.3a)—(1.3b) leads us to infinite series identities.

Example 4.1 (Alternating series related to the generalized harmonic numbers).

o0

1 HD +H}+HD) 33
4 n—1 n—1 n n
-1 - =-05=-C(5 4.1
[x*y] n§:1( ) 55+ i } 205 =750, (4.1a)
[e'e) 3 3
H, +H, 2H’ , +2H 72
3.2 -1 n—1 n n—1 n| _
[x*y?] n}_l(—n" R }——E:<3>+;(5>, (4.1b)
00 2 2 (3)
| 1 2(Hp—1 +Hy)(H; + Hy”)  2H,
3 1 n n _
[wx y] El(—l)n n_5+ 2 1 + 2 }—44(5): (4.1¢)
n=
00 2 2
_ H, 1+ H, 4(Hy,—1 + H))(H- + H,”)
[we?y?] YD = S }
n=1
7.[2
:—?§(3)+6§(5), (4.1d)

00 2 2 (2)

(H,_i  (Hp_y+H)H?> 4H,(H>+ H?)

2.2 1 n—1 n—1 n n n

I N O e
n=1

n n

=062(5),

!

A.1e)

[w3xy] ns + n4 n3 n?

n=1

—=24¢(5).

i(—l)"_l{ 6 6H, 3(H2+H?) N 2(H,$+3HnH,§2)+2H,§3>)}

4.19)

Simplifying these identities by means of (2.4), we further obtain the following summation

formulae.

Example 4.2 (Alternating series related to the generalized harmonic numbers).
(.¢]

-1 15
Z( n)s = 1656

n=1

’;< D' = =580+ 35¢0),

i H? 572 11
_qy—12Zn T _
n§_1j< D' = T (3) — 5 8),

St BT 2
= n? 8 32 ’

(4.22)

(4.2b)

(4.2¢)

(4.2d)
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i [2H) 3HX) A 87

> (=1 { R }=?§(3)—3—2§(5), (4.2¢)

n=1

Z 1n]{HH<2> an}__ﬁ 3+E(5 426
(=D 3 (= g $O + 3¢ (4.

4.2.  With replacement y by y 4+ 1/2 in the Dixon—Kummer theorem, the resulting equation
reads as

w, 1+ 7, X, y+% 1+w—x,%+w—y
ak3 w 1 ‘_1 =r 1
5, l+tw—x, 5+w—y 4w, 5+w—x—y

which may be restated as follows:
r 1+w—x,%+w—y
14+ w, %—}—w—x—y
0 n—1 n .
w+2n w X 14+2y/2j -1
I ) e n(uf)(wf)n VAR
n=1 R ! (1+ %5 £)(1 4 22 1)

—exp{Z( 1)k[ <w—x>’<—w"}+2—"{(w—y>" —(w—x—y)"}]}

= exp{ —2xIn2 4+ opxRw —x — 3y) — a3x(6w2 — 6wx +2x% — 14wy +7xy + 7y2)
1
+ 50'4)6 (28w3 — 82w?x 4+ 28wx? —7x3 — 9Ow2y + 90wxy
—30x%y 4+ 90wy? — 45xy% — 3Oy3) + .- }

Example 4.3 (Alternating series related to the generalized harmonic numbers).

2H  +H)+HY, + 1Y

n

[x4] Z(_])n 1
n=1

3 21
= —1In*2 + 30, In? 2—102 603In2 + 104

3t +n21 22 _n*2-6In2¢(3) (4.32)
=—+—1In n*2—6In : 3a
80 2 ¢
(H* |+ H»O, 3 3 7 15
[xSy] Z( n"- 11——2 21n22—§022—1031n2+§04
4
T 7
— —l 22— ~1n2¢(3 4.3b
5T g™ 1 1n2¢Q). (4.3b)
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o0 2
H,_1+ H,)0 9 7 45
[ 2 2] 2 (_1)"—1%2_ 2_ o324+ —oy

L 3272738 32
a4 7
:@——ng(s)
0 3 (3) 4
203+ 0 45 T
3 n—1 n n
—pytz=n L =
[+ ,,2_;( ) n 3277 64
o 2 3 2) 3) 4
_[0? 40} +40,0,” +20, 45 T
—1" 1) Zn n - _
sy 32D {2+ - |- fou=Te.
o0 2 ©) 3 ) 3)
[0, 20%+0 403 +80,0,°" +40
[wixy] D (=1 ‘{—n§+ o § }
45 7t
= — 04 = —.
47478

Example 4.4 (Alternating series related to the generalized harmonic numbers).

- 02 40n0,§2) 45 At
Z( 1 — = oy = oo
n 16 32

Z(—l)”‘1 &+—0’52)+—20’§3) B
PRI n 16+~ 32

n=1
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(4.3¢)

(4.3d)

(4.3¢)

(4.3f)

(4.42)

(4.4b)

Remark. By means of linear combination (4.3e) — (4.3d) x 2, we find (4.4a). Similarly, we get

(4.4b) from (4.3f) — (4.42) x 2 — (4.3d) x 2.

4.3. Replacing w, x, y respectively by 1 +w, x + 1/2, y 4+ 1/2 in the Dixon—Kummer theo-

rem, we can state the result as

F 1+ w, 3+—w x—i—%, y+% ’ 1l=r %+w—x,%+w—y
4F3 —-1|=
1'5"’,2+w—x,2+w y 24w, l+w—x—y

which may be reformulated, through (1.1a) and (1.1b), as

r,|:%—|—w—x, %—}—w—y]

4w, I+w—x—y
Zi(_l)n_lw+2n TS A+ 20+ 525
= (n=5% [T+ 3= 2X><1+2w 2Y>

=nexp{2( 1)"[ {w- x)k+(w—y)k}—%{w"+<w—x—y>k}]}

k=1
=7'rexp{2(x +y— 2w)1n2+c72(2w2 +x2 4y —xy —2wx — 2wy)
+o3(x+y— 2w)(2x2 —i—2y2 +2w? — 3xy —2wx — 2wy) + }
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Its power series expansion via (1.3a)—(1.3d) gives rise to the following two infinite series
identities.

Example 4.5 (Alternating series related to the generalized harmonic numbers).

x 203 4203+ 0 + 0
3 n—1 n—1 n n—1 n
-1
] ;( ) m—1
Tt T ot s —”—31n2+z1n32+3—”;(3) (4.52)
-3 16 ° 16 °" 32 8 16°" '
e’} 2 2
(On—1+ 0)(0;;_; + Oy)
2 n—1 n—1 n
Y (-1
[+ n:l( ) m—1
T 3 T T 3 T
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