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Abstract

Our aim in this article is to prove the global (in time) existence of solutions to a Caginalp phase-field system with dynamic
boundary conditions and a singular potential. The main difficulty is to prove that the solutions are strictly separated from the
singular values of the potential. This is achieved by studying an auxiliary elliptic problem.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

We consider, in a smooth and bounded domain Ω ⊂ R
3 with boundary ∂Ω = Γ , the phase-field system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η∂tw − �w = −∂tu, in Ω, t > 0,

∂tu − �u + f (u) = w, in Ω, t > 0,
∂w

∂ν

∣∣∣∣
Γ

= 0, u|Γ = ψ, t > 0,

∂tψ − �Γ ψ + λψ + g(ψ) + ∂u

∂ν
= 0, on Γ, t > 0,

u|t=0 = u0, w|t=0 = w0, in Ω,

ψ |t=0 = ψ0, on Γ,

(1.1)

where ν is the unit outer normal to the boundary, η ∈ (0,1), λ > 0 and �Γ is the Laplace–Beltrami operator. Moreover,
w represents the temperature, while u is the order parameter with trace ψ on Γ . The function g is a smooth function
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in R, while f is smooth in (−1,1), but tends to ±∞ approaching ±1 (i.e., it is a singular potential). Thus, we say
that z0 = (u0,ψ0,w0) is an admissible initial datum if ‖u0‖L∞(Ω) < 1.

This system, proposed in [6] in order to model melting–solidification phenomena in certain classes of materials,
has been extensively studied, for various types of boundary conditions and for regular potentials f , see, e.g., [3–6,
9,14,16,21,30] and the references therein. In particular, one has satisfactory results on the existence and uniqueness
of solutions, the existence of finite-dimensional attractors and the convergence of solutions to steady states. We note
however that, for regular potentials, it is not known whether the order parameter remains in the physically relevant
interval [−1,1] in general (see however [1] and [2]).

Now, singular potentials f are also important from a physical point of view; in particular, we have in mind the
following thermodynamically relevant logarithmic potential:

f (s) = −κ0s + κ1 ln
1 + s

1 − s
, s ∈ (−1,1), 0 < κ0 < κ1.

Such potentials, in the case of Dirichlet boundary conditions for both w and u, were considered in [17]; in partic-
ular, the existence and uniqueness of solutions and the existence of exponential attractors were proved in [17]. The
convergence of solutions to steady states was proved in [18] for mixed Dirichlet (for the temperature) and Neumann
(for the order parameter) boundary conditions. The case of Neumann boundary conditions, for both w and u, was
treated in [7]. We can note that, contrary to regular potentials, such singular potentials allow to prove that the order
parameter remains strictly between −1 and 1, as it is expected from the physical point of view.

In this article, we supplement the equations with the so-called dynamic boundary conditions for the order parameter
(in the sense that the kinetics, i.e., the time derivative of the order parameter, appears explicitly in the boundary
conditions). Such boundary conditions have been proposed by physicists (see [10,11] and [19]; see also [12]) in
order to account for the interactions with the walls in confined systems. In particular, the Cahn–Hilliard equation,
endowed with these boundary conditions, was studied in [9,12,15,22–25] and [28]. The Caginalp system, endowed
with dynamic boundary conditions and with regular potentials, was considered in [9,13] and [14].

Our aim in this article is to prove the global (in time) existence of solutions for general nonlinear (smooth) functions
g in the dynamic boundary conditions. The same issue, followed by an asymptotic analysis, was addressed in [8],
under the assumption that g is positive/negative close to the singularities ±1 of the potential f . In particular, we could
not consider in [8] constant functions g which naturally appear in the physical derivation of the dynamic boundary
conditions, see [10,11] and [19].

To accomplish our purpose, it is essential to prove that any solution originating from an admissible initial datum
stays away from the singularities of f . In [8], this goal was achieved by considering constant sub- and super-solutions
which, without the sign assumptions on g, are no longer adequate. We are able to overcome this difficulty by studying
a suitable elliptic problem with nonhomogeneous Dirichlet boundary conditions.

Assumptions and notation. Our key hypotheses are those on the nonlinearities f and g, namely,

f ∈ C2(−1,1), lim
s→±1

f (s) = ±∞, lim
s→±1

f ′(s) = +∞, (1.2)

g ∈ C2(R), lim inf|s|→+∞g′(s) � 0 and either g(s)s � μs2 − μ′, ∀s ∈ R,

μ > 0, μ′ � 0, or g ≡ Const., (1.3)

while η ∈ (0,1) and λ > 0. In particular, there exist K1 > 0 and c � 0 such that

f ′(s) � −K1, −c � F(s) � f (s)s + c, ∀s ∈ (−1,1), (1.4)

where F(s) = ∫ s

0 f (τ) dτ (see [17]). Moreover, it is possible to find K2 > 0 such that

g′(s) � −K2,
〈
G(v) − g(v)v,1

〉
Γ

� K2‖v‖2
Γ , ∀v ∈ L2(Γ ), (1.5)

where G(s) = ∫ s

0 g(τ) dτ (see [29]).
Before describing the phase space, we agree to denote the Lebesgue spaces of square summable functions in Ω

and Γ by (L2(Ω), 〈·,·〉,‖ · ‖) and (L2(Γ ), 〈·,·〉Γ ,‖ · ‖Γ ), respectively. Then we often use the average

〈w〉 = 1

|Ω|
∫

w dx, ∀w ∈ L1(Ω),
Ω
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to recover ‖w‖H 1(Ω), on account of the Friedrich’s inequality∥∥w − 〈w〉∥∥ � c‖∇w‖, ∀w ∈ H 1(Ω),

where c is a positive constant which only depends on the domain Ω . In general, throughout the article, c stands for a
positive constant which may also vary in the same line.

Finally, we recall that the admissible data (and solutions) stay away from the singularities of f : we thus introduce
the notation

D[u] = (
1 − ‖u‖L∞(Ω)

)−1
, ∀u ∈ L∞(Ω), ‖u‖L∞(Ω) �= 1.

Now, embodying the boundary condition for w in

H 2
N(Ω) =

{
w ∈ H 2(Ω):

∂w

∂ν

∣∣∣∣
Γ

= 0

}
,

we have at our disposal all the ingredients to define the phase space, namely,

Φ = {
(u,ψ,w) ∈ H 2(Ω) × H 2(Γ ) × H 2

N(Ω): 0 < D[u] < +∞, ψ = u|Γ
}
,

endowed with the H 2(Ω) × H 2(Γ ) × H 2
N(Ω)-norm. We denote by ‖ · ‖Φ the norm on Φ .

2. The main result

Our main result is the following.

Theorem 2.1. We assume that (1.2) and (1.3) hold. Then, for any initial datum z0 = (u0,ψ0,w0) ∈ Φ , problem (1.1)
possesses a unique solution z(t) = (u(t),ψ(t),w(t)) ∈ Φ , for every t � 0.

In order to prove this theorem, we first obtain several a priori estimates. To do so, we a priori assume that the
first component u(t) is separated from the singularities of f , i.e., that ‖u(t)‖L∞(Ω) < 1, ∀t � 0. In particular, these
estimates allow to prove that u(t) is actually strictly separated from the singularities of f , i.e., that ‖u(t)‖L∞(Ω) �
c < 1, ∀t � 0.

First, repeating word by word the proof of [8, Theorem 3.1] (in that case, the sign hypotheses on g do not play any
role), we deduce

Theorem 2.2. Given any initial datum z0 = (u0,ψ0,w0) ∈ Φ , every solution z(t) = (u(t),ψ(t),w(t)) ∈ Φ to (1.1)
satisfies∥∥u(t)

∥∥2
H 1(Ω)

+ ∥∥ψ(t)
∥∥2

H 1(Γ )
+ ∥∥w(t)

∥∥2
H 2(Ω)

+ ∥∥∂tu(t)
∥∥2 + ∥∥∂tψ(t)

∥∥2
Γ

+
t∫

0

e−k(t−s)
[∥∥∂tu(s)

∥∥2
H 1(Ω)

+ ∥∥∂tψ(s)
∥∥2

H 1(Γ )
+ η

∥∥∂tw(s)
∥∥2

H 1(Ω)

]
ds

� Qη

(
D[u0],‖z0‖Φ

)
e−kt + Cη, ∀t � 0, k > 0,

where the increasing function Qη and the positive constant Cη depend on η.

The next task consists in obtaining estimates on u and ψ in H 2(Ω) and H 2(Γ ), respectively. These cannot be
achieved directly, due to the singular values of the potential f , and we first need to derive L∞-estimates on u and ψ .

However, the lack of sign assumptions on g prevents us from arguing as in [8, Theorem 3.2] to prove that, if the
initial data are separated from ±1, then u and ψ stay away from these values.

Theorem 2.3. Given any z0 = (u0,ψ0,w0) ∈ Φ , the first two components of any solution z(t) = (u(t),ψ(t),w(t)) ∈
Φ to (1.1) are strictly separated from the singularities of f , namely, there exists γ ∈ (0,1) such that∥∥u(t)

∥∥
L∞(Ω)

� γ and
∥∥ψ(t)

∥∥
L∞(Γ )

� γ, ∀t � 0.
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Proof. Thanks to Theorem 2.2, there exists a constant β > 0 satisfying∥∥w(t)
∥∥

L∞(Ω)
� c

∥∥w(t)
∥∥

H 2(Ω)
� β, ∀t � 0.

Next, possibly enlarging β , we fix α ∈ (0,1) and δ > 0 such that [α,α + δ] ⊂ [‖u0‖L∞(Ω),1),

f (α) = β and f (α + δ) − β � 0. (2.1)

Our aim is to prove that u � α + δ. To do so, we consider the solution uε to a suitable elliptic problem in a proper
domain Ω − Ωε . Indeed, provided that Ω is smooth enough, we can consider, for any ε > 0 small (without loss of
generality, we may assume that ε ∈ (0,1]), the set Ωε = {x ∈ Ω: dist(x,Γ ) > ε} and

x ∈ Γ ⇐⇒ x − εν(x) ∈ Γε = ∂Ωε,

where ν(x) is the unit outer normal to Γ at x.
We then introduce the nonlinear elliptic problem⎧⎨

⎩
−�uε + f (uε) = β, in Ω − Ωε,

uε = α, on Γε,

uε = α + δ, on Γ.

(2.2)

Our goals are twofold. First, we prove that, for every ε, problem (2.2) admits a classical solution α � uε � α + δ in
Ω − Ωε . Then we prove that the normal derivative of uε tends to +∞ as ε → 0+, namely,

Theorem 2.4. Problem (2.2) admits a unique classical solution uε ∈ [α,α + δ]. Furthermore, the normal derivative
of uε satisfies

lim
ε→0+

∂uε

∂ν

∣∣∣∣
Γ

= +∞.

The proof of this theorem will be given in the next section. Actually, we will be able to relax (2.1), still getting the
existence of a classical solution uε ∈ [α,α + δ] to (2.2), under the assumption that ε is small enough, with the same
limit for the normal derivative (note however that (2.1) is needed in the proof of Theorem 2.3).

If uε solves problem (2.2) with the aforementioned constants, it can be extended to Ωε by taking uε = α in Ωε . It
is straightforward to check that U = u − uε satisfies

∂tU − �U + f (u) − f (uε) � 0, in Ω − Ωε and in Ωε, t > 0, (2.3)

since the right-hand side reads w − β in Ω − Ωε and w − f (α) in Ωε . On the boundary Γ , Ψ = ψ − uε|Γ satisfies
Ψ = U |Γ and solves

∂tΨ − �Γ Ψ + λΨ + g(ψ) − g(uε) + ∂U

∂ν
= G, on Γ, t > 0, (2.4)

where G = −λ(α + δ)−g(α + δ)− ∂uε

∂ν
(recall that uε|Γ = α + δ and note that �Γ uε = 0 on Γ ). Due to Theorem 2.4,

G � 0, provided that we fix ε small enough, since we can make the normal derivative of uε as large as we want
(uniformly with respect to x ∈ Γ , see Remark 3.1 below).

Multiplying then (2.3) by U+ = max{U,0} and (2.4) by Ψ+ = max{Ψ,0}, we have

1

2

d

dt

(‖U+‖2 + ‖Ψ+‖2
Γ

) + ‖∇U+‖2 + ‖∇Ψ+‖2
Γ + λ‖Ψ+‖2

Γ � K1‖U+‖2 + K2‖Ψ+‖2
Γ ,

on account of the inequality

−〈
f (u) − f (uε),U+

〉 − 〈
g(ψ) − g(uε|Γ ),Ψ+

〉
Γ

� K1‖U+‖2 + K2‖Ψ+‖2
Γ

which follows from assumptions (1.2) and (1.3). Since U+(0) = 0 in Ω and Ψ+(0) = 0 on Γ , Gronwall’s lemma
yields u � uε � α + δ in Ω × [0,+∞) and ψ � uε|Γ � α + δ on Γ × [0,+∞). The lower estimates are proved
analogously by considering the elliptic problem⎧⎨

⎩
−�vε + f (vε) = −β ′, in Ω − Ωε,

vε = −α′, on Γε,′ ′
vε = −α − δ , on Γ,
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for proper positive constants α′, β ′ and δ′. Mimicking the proof of Theorem 2.4, we show that this problem possesses
a unique solution vε such that −α′ − δ′ � vε � −α′ and

lim
ε→0+

∂vε

∂ν

∣∣∣∣
Γ

= −∞.

We omit the end of the proof of Theorem 2.3, the arguments being the same as above. �
Lemma 2.5. There exists Mγ > 0 depending on the constant γ introduced in Theorem 2.3 (and, through γ , on D[u0]
and ‖z0‖Φ ) such that the first two components of any solution z(t) = (u(t),ψ(t),w(t)) ∈ Φ to (1.1) satisfy∥∥u(t)

∥∥
H 2(Ω)

+ ∥∥ψ(t)
∥∥

H 2(Γ )
� Mγ , ∀t � 0.

To prove this lemma, it is sufficient to write the equations for u and ψ as a suitable elliptic system and then apply
[22, Lemma A.1].

As far as the uniqueness and the continuous dependence of the solutions on the initial data are concerned, we have,
arguing as in [7, Lemma 3.1] and [8, Lemma 3.3],

Theorem 2.6. Under the assumptions of Theorem 2.1, if zi(t) = (ui(t),ψi(t),wi(t)) ∈ Φ is a solution to (1.1) depart-
ing from z0i = (u0i ,ψ0i ,w0i ) ∈ Φ , i = 1,2, there holds, ∀t � 0,∥∥u1(t) − u2(t)

∥∥2 + ∥∥ψ1(t) − ψ2(t)
∥∥2

Γ
+ ∥∥w1(t) − w2(t)

∥∥2

� C1
(‖u01 − u02‖2 + ‖ψ01 − ψ02‖2

Γ + ‖w01 − w02‖2)eC2t , (2.5)

where the constants C1,C2 > 0 depend on η, but are independent of the initial data, and∥∥u1(t) − u2(t)
∥∥2

H 1(Ω)
+ ∥∥ψ1(t) − ψ2(t)

∥∥2
H 1(Γ )

+ ∥∥w1(t) − w2(t)
∥∥2

H 1(Ω)

+ 〈
η
[
w1(t) − w2(t)

] + u1(t) − u2(t)
〉2

� C1
(‖u01 − u02‖2

H 2(Ω)
+ ‖ψ01 − ψ02‖2

H 2(Γ )
+ ‖w01 − w02‖2

H 1(Ω)

)
eC2t , (2.6)

where the constants C1,C2 > 0 depend on D[u0i], ‖z0i‖Φ , i = 1,2, and on η.

Finally, the existence of a solution can be proved by arguing as in [8, Theorem 4.1]. To do so, we consider the same
problem, in which the singular potential is replaced by the continuous function

h(s) =
{

s + γ + f (−γ ), s ∈ (−∞,−γ ],
f (s), s ∈ [−γ, γ ],
s − γ + f (γ ), s ∈ [γ,+∞),

where γ is the positive constant which appears in Theorem 2.3.
This function meets all the requirements of [14] to have the existence of a regular solution zh(t) =

(uh(t),ψh(t),wh(t)), namely, zh(t) belongs to W(1,2),p(QT ) × W(1,2),p(∂QT ) × W(1,2),p(QT ), QT = (0, T ) × Ω ,
∀T � 0, p ∈ (3, 10

3 ) (here, W(1,2),p(QT ) consists of the functions belonging to Lp(QT ) whose first-order time and
first- and second-order space derivatives belong to Lp(QT )), except that h /∈ C1(R); one can however make a further
regularization. To be more precise, one can consider a regularized function hξ , ξ > 0 small, which, e.g., coincides
with h on (−∞,−γ − ξ ], [−γ + ξ, γ − ξ ] and [γ + ξ,+∞) and which satisfies (1.4) and then pass to the limit.

Noting that W(1,2),p(QT ) is continuously embedded into C(QT ) and that ‖u0‖L∞(Ω) < 1, it follows that
‖uh(t)‖L∞(Ω) < 1, ∀t ∈ [0, t�), for some t� > 0 possibly small. Then, noting that f and h satisfy (1.4), for the same
constants K1, c (see [8, Lemma 4.1]), we can derive the same estimates as above on zh(t), with the very same con-
stants, for t ∈ [0, t�). Indeed, we can note that the bound on w in the proofs of Theorems 2.2 and 2.3 (and, thus, β)
only depends on these constants. Strictly speaking, we should obtain a bound on whξ (i.e., perform estimates on the
solution to the regularized problem) and then pass to the limit ξ → 0+; this procedure actually yields the desired
bound on wh, since we can choose the constants K1,ξ and cξ for hξ in (1.4) such that they converge to K1 and c,
respectively. We thus deduce that ‖uh(t)‖L∞(Ω) < γ , ∀t ∈ [0, t�) (we also note that α + δ � γ and −γ � −α′ − δ′, so
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that (2.1) (respectively, the analogous property for the lower bound) still holds for h, for the same values of α and δ

(respectively, of α′ and δ′)).
Thus, zh(t), t ∈ [0, t�), is a local solution to (1.1). Finally, it follows from standard arguments, based on the above

a priori estimates and Gronwall’s lemma, that this solution is actually global, which finishes the proof of existence.

Remark 2.7. Note that Lemma 2.5 does not prevent Mγ from blowing up as ‖u0‖L∞(Ω) → 1. Thus, necessary condi-
tions for an asymptotic analysis are proper dissipative estimates which are independent of the L∞-norm of the initial
data. Unfortunately, without the sign assumptions on g, we can no longer argue as in [8, Section 5], where suitable
super- and sub-solutions were obtained by joining a decreasing linear function taking the value 1 at time zero (this
certainly dominates the L∞-norm of any admissible initial datum) to a proper constant; in our case, it seems much
more difficult to link a super(sub)-solution starting at 1 to some other super(sub)-solution.

Remark 2.8. Arguing as in [7,8,17,22], Theorem 2.6 ensures (by continuity) the existence, as well as the uniqueness,
of solutions with initial data belonging to the closure L of Φ in L2(Ω) × L2(Γ ) × L2(Ω), namely,

L = {
(u,ψ,w) ∈ L∞(Ω) × L2(Γ ) × L2(Ω): ‖u‖L∞(Ω) � 1

}
.

In particular, this allows to consider initial data which contain the pure states (i.e., u0 can take the values ±1). However,
we have not been able to prove that the solutions mix instantaneously (i.e., ‖u(t)‖L∞(Ω) < 1 as soon as t > 0), as it is
the case for classical boundary conditions (see [8] and [17]).

3. Proof of Theorem 2.4

We replace f by some potential φ = φδ ∈ C1(R) which coincides with f on [α,α + δ] in (2.2), that is, we consider
the problem⎧⎨

⎩
−�uε + φ(uε) = β, in Ω − Ωε,

uε = α, on Γε,

uε = α + δ, on Γ.

(3.1)

We still denote by uε the solution (belonging to [α,α + δ]) to the corresponding system, since, eventually, it will be
proved to be the solution to (2.2).

Thanks to (2.1), the functions uε = α + δ and uε = α are super- and sub-solutions to (3.1), respectively. Thus,
problem (3.1) admits a classical solution uε which takes values in [α,α + δ] (see, e.g., [26]): this amounts to saying
that uε actually solves (2.2).

Since, provided that β is large enough, we can assume that φ′ = f ′ � 0 on [α,α + δ], problem (3.1) (and, analo-
gously, problem (2.2)) has a unique solution taking values in [α,α + δ].

Actually, (2.1) can be relaxed, asking only f ′ � 0 on [α,α + δ], provided that ε is small enough. Indeed, the
regularity of the domain ensures that the distance dε(x) = dist(x,Γ ) is smooth in Ω − Ωε . Then, having set

θε(s) = δ

2ε2
s2 − 3δ

2ε
s + α + δ and θε(s) = − δ

2ε2
s2 − δ

2ε
s + α + δ,

the functions ψε(x) = θε(dε(x)) and ψε(x) = θε(dε(x)) satisfy ψε,ψε ∈ C2(Ω − Ωε). Furthermore,

ψε|Γε = ψε|Γε = α and ψε|Γ = ψε|Γ = α + δ,

with ψε,ψε ∈ [α,α + δ]. It is straightforward to check that

θ ′
ε(s) = δ

ε2
s − 3δ

2ε
and θ ′

ε(s) = − δ

ε2
s − δ

2ε

both remain in [− 3δ
2ε

,− δ
2ε

] and

θ ′′
ε (s) = δ

2
> 0 and θ ′′

ε (s) = − δ

2
< 0.
ε ε



L. Cherfils et al. / J. Math. Anal. Appl. 343 (2008) 557–566 563
Moreover, extending an argument from [20] (see also [27]) to the 3D case, we can see that

|∇dε| = 1, ∇dε|Γ = −ν, |�dε| � c, (3.2)

where c is some constant which is independent of ε (for the reader’s convenience, the detailed proof is written in
Appendix A). Collecting the previous computations, we end up with

�ψε(x) = θ ′
ε

(
dε(x)

)
�dε(x) + δ

ε2
and �ψε(x) = θ ′

ε

(
dε(x)

)
�dε(x) − δ

ε2
,

where, thanks to (3.2),∣∣θ ′
ε

(
dε(x)

)
�dε(x)

∣∣ + ∣∣θ ′
ε

(
dε(x)

)
�dε(x)

∣∣ � c

ε
,

for some constant c which is independent of ε. Thus, if ε is small enough, we obtain

�ψε(x) � δ

2ε2
and �ψε(x) � − δ

2ε2
, (3.3)

and, since both φ(ψε)−β and φ(ψε)−β are bounded independently of ε, (3.3) then yields that, if ε is small enough,

ψε and ψε are super- and sub-solutions to (3.1), respectively. Thus, for ε small, there exists uε ∈ [α,α + δ] classical

solution to (3.1) (note that ψε − ψε � 0 in Ω − Ωε), which actually also solves (2.2). Furthermore, if we assume that
f ′ � 0 in [α,α + δ], this solution is unique.

To accomplish our second purpose, note that, for x0 ∈ Γ and x ∈ Ω − Ωε , the inequalities

ψε(x0) − ψε(x) � uε(x0) − uε(x) � ψε(x0) − ψε(x)

imply

∂ψε

∂ν

∣∣∣∣
Γ

� ∂uε

∂ν

∣∣∣∣
Γ

�
∂ψε

∂ν

∣∣∣∣
Γ

.

Then, by definition of ψε,ψε and (3.2), we obtain

δ

2ε
� −θ ′

ε(dε)

∣∣∣∣
Γ

� ∂uε

∂ν

∣∣∣∣
Γ

� −θ ′
ε(dε)

∣∣∣∣
Γ

� 3δ

2ε

and, passing to the limit ε → 0+, we can conclude.

Remark 3.1. Note that the growth of the normal derivative ∂uε

∂ν
|Γ is uniform, in the sense that it only depends on δ.
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Appendix A. Proof of property (3.2)

Arguing exactly as in [20], it suffices, by localization and rotation, to consider the case where

Γ = {
(x, y, z) ∈ R

3: (x, y) ∈ I, z = ϕ(x, y)
}
,

for some I = (a, b) × (c, d) and ϕ ∈ C2(I ) bounded in I , together with its first and second derivatives (for sim-
plicity, we write, e.g., ϕx instead of ∂ϕ

∂x
). Then, given P = (x, y, z) ∈ Ω with (x, y) ∈ I , there exists a unique P̄ =

(x̄, ȳ, z̄) ∈ Γ such that dε(x, y, z) = dist(P,Γ ) = dist(P, P̄ ), hence

dε(x, y, z) =
√

(x − x̄)2 + (y − ȳ)2 + [
z − ϕ(x̄, ȳ)

]2
.

Since the vector (x − x̄, y − ȳ, z − ϕ(x̄, ȳ)) lies on the normal line to Gr(ϕ) at (x̄, ȳ, ϕ(x̄, ȳ)), we obtain

x − x̄ + ϕx(x̄, ȳ)
[
z − ϕ(x̄, ȳ)

] = 0, (A.1)

y − ȳ + ϕy(x̄, ȳ)
[
z − ϕ(x̄, ȳ)

] = 0. (A.2)
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Computing the partial derivatives of dε from (A.1) and (A.2), it is straightforward to check that

∇dε|Γ = −ν,

since ∇dε = 1√
1+|∇ϕ(x̄,ȳ)|2 (ϕx(x̄, ȳ), ϕy(x̄, ȳ),−1).

Henceforth, abusing the notation, we neglect the argument (x̄, ȳ). Then, in order to determine the Laplacian of dε ,
we perform further differentiations, which leads us to

∂2dε

∂x2
= ∂

∂x̄

(
ϕx√

1 + |∇ϕ|2
)

∂x̄

∂x
+ ∂

∂ȳ

(
ϕx√

1 + |∇ϕ|2
)

∂ȳ

∂x

= ϕxx(1 + ϕy
2) − ϕxϕyϕxy

(1 + |∇ϕ|2)3/2

∂x̄

∂x
+ ϕxy(1 + ϕy

2) − ϕxϕyϕyy

(1 + |∇ϕ|2)3/2

∂ȳ

∂x
,

∂2dε

∂y2
= ∂

∂x̄

(
ϕy√

1 + |∇ϕ|2
)

∂x̄

∂y
+ ∂

∂ȳ

(
ϕy√

1 + |∇ϕ|2
)

∂ȳ

∂y

= ϕxy(1 + ϕx
2) − ϕxϕyϕxx

(1 + |∇ϕ|2)3/2

∂x̄

∂y
+ ϕyy(1 + ϕx

2) − ϕxϕyϕxy

(1 + |∇ϕ|2)3/2

∂ȳ

∂y
,

∂2dε

∂z2
= ∂

∂x̄

( −1√
1 + |∇ϕ|2

)
∂x̄

∂z
+ ∂

∂ȳ

( −1√
1 + |∇ϕ|2

)
∂ȳ

∂z

= ϕxϕxx + ϕyϕxy

(1 + |∇ϕ|2)3/2

∂x̄

∂z
+ ϕxϕxy + ϕyϕyy

(1 + |∇ϕ|2)3/2

∂ȳ

∂z
.

Thanks to these formulae, we only need to compute ∇x̄ and ∇ȳ, which can be obtained from (A.1) and (A.2). Indeed,
we deduce the following systems:⎧⎪⎨

⎪⎩
∂x̄

∂x

[
1 + ϕx

2 − (z − ϕ)ϕxx

] + ∂ȳ

∂x

[
ϕxϕy − (z − ϕ)ϕxy

] = 1,

∂x̄

∂x

[
ϕxϕy − (z − ϕ)ϕxy

] + ∂ȳ

∂x

[
1 + ϕy

2 − (z − ϕ)ϕyy

] = 0,

(A.3)

⎧⎪⎪⎨
⎪⎪⎩

∂x̄

∂y

[
1 + ϕx

2 − (z − ϕ)ϕxx

] + ∂ȳ

∂y

[
ϕxϕy − (z − ϕ)ϕxy

] = 0,

∂x̄

∂y

[
ϕxϕy − (z − ϕ)ϕxy

] + ∂ȳ

∂y

[
1 + ϕy

2 − (z − ϕ)ϕyy

] = 1,

(A.4)

⎧⎪⎪⎨
⎪⎪⎩

∂x̄

∂z

[
1 + ϕx

2 − (z − ϕ)ϕxx

] + ∂ȳ

∂z

[
ϕxϕy − (z − ϕ)ϕxy

] = ϕx,

∂x̄

∂z

[
ϕxϕy − (z − ϕ)ϕxy

] + ∂ȳ

∂z

[
1 + ϕy

2 − (z − ϕ)ϕyy

] = ϕy.

(A.5)

All systems of equations (A.3)–(A.5) share the same determinant

D = [
1 + ϕx

2 − (z − ϕ)ϕxx

][
1 + ϕy

2 − (z − ϕ)ϕyy

] − [
(z − ϕ)ϕxy − ϕxϕy

]2

= 1 + ϕx
2 + ϕy

2 + ϕx
2ϕy

2 − (z − ϕ)
[(

1 + ϕx
2)ϕyy + (

1 + ϕy
2)ϕxx

] + (z − ϕ)2ϕxxϕyy

− (z − ϕ)2ϕxy
2 − ϕx

2ϕy
2 + 2(z − ϕ)ϕxϕyϕxy

= 1 + |∇ϕ|2 − (z − ϕ)
[(

1 + ϕx
2)ϕyy + (

1 + ϕy
2)ϕxx − 2ϕxϕyϕxy

] + (z − ϕ)2(ϕxxϕyy − ϕxy
2)

which, provided that |z − ϕ| is small enough (with |z − ϕ| < ε), does not vanish. Besides, recalling that the Gaussian
and the mean curvatures read

K = ϕxxϕyy − ϕxy
2

[1 + |∇ϕ|2]2
,

H = 1 [(1 + ϕx
2)ϕyy + (1 + ϕy

2)ϕxx − 2ϕxϕyϕxy]
2 3/2

,

2 [1 + |∇ϕ| ]
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we can express D in terms of H and K , namely,

D = (
1 + |∇ϕ|2)[1 − 2(z − ϕ)

√
1 + |∇ϕ|2H + (z − ϕ)2(1 + |∇ϕ|2)K]

.

Then, solving the Cramer systems (A.3)–(A.5), we obtain

∂x̄

∂x
= 1 + ϕy

2 − (z − ϕ)ϕyy

D ,

∂ȳ

∂x
= ∂x̄

∂y
= (z − ϕ)ϕxy − ϕxϕy

D ,

∂ȳ

∂y
= 1 + ϕx

2 − (z − ϕ)ϕxx

D ,

∂x̄

∂z
= ϕx[1 + ϕy

2 − (z − ϕ)ϕyy] + ϕy[(z − ϕ)ϕxy − ϕxϕy]
D ,

∂ȳ

∂z
= ϕx[(z − ϕ)ϕxy − ϕxϕy] + ϕy[1 + ϕx

2 − (z − ϕ)ϕxx]
D .

We now have at our disposal all the ingredients to compute

�dε = [(1 + ϕx
2)ϕyy + (1 + ϕy

2)ϕxx − 2ϕxϕyϕxy] − 2(z − ϕ)[ϕxxϕyy − ϕxy
2]

D
√

1 + |∇ϕ|2

= [(1 + ϕx
2)ϕyy + (1 + ϕy

2)ϕxx − 2ϕxϕyϕxy] − 2(z − ϕ)[ϕxxϕyy − ϕxy
2]

(1 + |∇ϕ|2)3/2{1 − 2(z − ϕ)
√

1 + |∇ϕ|2H + (z − ϕ)2(1 + |∇ϕ|2)K}

= 2
H − (z − ϕ)

√
1 + |∇ϕ|2K

1 − 2(z − ϕ)
√

1 + |∇ϕ|2H + (z − ϕ)2(1 + |∇ϕ|2)K
and the desired bound easily follows.
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