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We study bifurcation diagrams of positive solutions of the p-Laplacian Dirichlet problem{(
ϕp

(
u′(x)

))′ + fλ
(
u(x)

) = 0, −1 < x < 1,

u(−1) = u(1) = 0,

where ϕp(y) = |y|p−2 y, (ϕp(u′))′ is the one-dimensional p-Laplacian, and p > 1 and λ > 0
are two bifurcation parameters. Assume that fλ(u) = λg(u) − h(u) where g,h ∈ C[0,∞) ∩
C2(0,∞) satisfy hypotheses (H1)–(H5) presented herein. For different values p with 1 <

p � 2 and with p > 2, we give a classification of totally six different bifurcation diagrams.
We prove that, on the (λ,‖u‖∞)-plane, each possible bifurcation diagram consists of
exactly one curve with exactly one turning point where the curve turns to the right.
Hence we are able to determine the exact multiplicity of positive solutions. In addition,
for 1 < p � 2 and for p > 2, we give interesting examples fλ(u) = λ(kup−1 + uq) − ur

satisfying r > q > p − 1 and k � 0, and show complete evolution of bifurcation diagrams as
evolution parameter k varies from 0 to ∞.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we study bifurcation diagrams of positive solutions of the p-Laplacian Dirichlet problem{(
ϕp

(
u′(x)

))′ + fλ
(
u(x)

) = 0, −1 < x < 1,

u(−1) = u(1) = 0,
(1.1)

where ϕp(y) = |y|p−2 y, (ϕp(u′))′ is the one-dimensional p-Laplacian, and p > 1 and λ > 0 are two bifurcation parameters.
We assume that the nonlinearity

fλ(u) = λg(u) − h(u)

where functions g,h ∈ C[0,∞) ∩ C2(0,∞) satisfy hypotheses (H1)–(H5):
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(H1) g(0) = h(0) = 0, g(u), h(u) > 0 on (0,∞), and

0 = lim
u→0+

h(u)

up−1
� mg

0 ≡ lim
u→0+

g(u)

up−1
< ∞. (1.2)

(H2) The positive function h(u)/g(u) is strictly increasing on (0,∞), and

lim
u→0+

h(u)

g(u)
= 0, lim

u→∞
h(u)

g(u)
= ∞.

(H3) (p − 2)g′(u) − ug′′(u) < 0 on (0,∞) and (p − 2)h′(u) − uh′′(u) < 0 on (0,∞).

(H4) The positive function [(p − 2)h′(u) − uh′′(u)]/[(p − 2)g′(u) − ug′′(u)] is strictly increasing on (0,∞), and

lim
u→0+

(p − 2)h′(u) − uh′′(u)

(p − 2)g′(u) − ug′′(u)
= 0, lim

u→∞
(p − 2)h′(u) − uh′′(u)

(p − 2)g′(u) − ug′′(u)
= ∞.

(H5) If p > 2, there exists a positive number p∗ > p − 1 such that g(u)/up∗
is strictly decreasing on (0,∞) and h(u)/up∗

is strictly increasing on (0,∞). In addition, for each fixed s ∈ (0,1),

h(su)

up−1

[
h(u)g(su)

g(u)h(su)
− 1

]

is a strictly increasing function of u on (0,∞), and

lim
u→∞

h(u)g(su)

g(u)h(su)
∈ (1,∞]. (1.3)

(Note that (H5) is a technical hypothesis for the case p > 2.)

It is easy to see that, hypotheses (H1) and (H2) imply that, for each fixed λ > 0, fλ(0) = λg(0) − h(0) = 0 and there
exists a unique positive number βλ such that⎧⎨

⎩
fλ(u) = λg(u) − h(u) > 0 on (0, βλ),

fλ(βλ) = λg(βλ) − h(βλ) = 0,

fλ(u) = λg(u) − h(u) < 0 on (βλ,∞).

(1.4)

Moreover, the number βλ is a strictly increasing and continuous function of λ on (0,∞), and

lim
λ→0+ βλ = 0 and lim

λ→∞βλ = ∞. (1.5)

Also, hypotheses (H1)–(H4) imply that, for each fixed λ > 0, the function (p − 2) f ′
λ(u) − u f ′′

λ (u) changes sign exactly once
on (0, βλ). More precisely, there exists a unique positive number γλ < βλ such that⎧⎪⎨

⎪⎩
(p − 2) f ′

λ(u) − u f ′′
λ (u) < 0 on (0, γλ),

(p − 2) f ′
λ(γλ) − γλ f ′′

λ (γλ) = 0,

(p − 2) f ′
λ(u) − u f ′′

λ (u) > 0 on (γλ,βλ).

(1.6)

(We omit the proofs of (1.4) and (1.6).) So, in particular when p = 2, fλ(u) = λg(u) − h(u) is convex-concave on (0, βλ).

Note that, by a positive solution to p-Laplacian problem (1.1), we mean a positive function u ∈ C1[−1,1] with ϕp(u′) ∈
C1[−1,1] satisfying (1.1). Let Z = {x ∈ [−1,1]: u′(x) = 0}. We note that it is easy to show that, if f ∈ C[0,∞) and u is
a positive solution of (1.1), then u ∈ C2[−1,1] if 1 < p � 2 and u ∈ C2([−1,1] − Z) if p > 2. For the proof we refer to
Addou [1, Lemma 6].

In this paper we are concerned only with positive solutions uλ of (1.1) satisfying ‖uλ‖∞ < βλ .
The p-Laplacian problem (1.1) arises in the study of non-Newtonian fluids and nonlinear diffusion problems. The quantity

p is a characteristic of the medium. Media with p > 2 are called dilatant fluids and those with p < 2 are called pseudoplas-
tics. If p = 2, they are Newtonian fluids (see, e.g., Díaz [3,4] and their bibliographies). The p-Laplacian also appears in the
study of torsional creep (elastic for p = 2, plastic as p → ∞, see [8]), glacial sliding (p ∈ (1,4/3], see [12]) or flow through
porous media (p = 3/2, see [18]). The reaction term of (1.1) fλ(u) = λg(u) − h(u), for fixed λ > 0, consists of a source term
λg(u) and an absorption term h(u) which is dominated by the source term when u near 0+ and dominates the source term
when u near ∞. The model nonlinearity for p-Laplacian problem (1.1) is

fλ(u) = λg(u) − h(u) = λ
(
kup−1 + uq) − ur with r > q > p − 1 and k � 0.
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Fig. 1. Classified two bifurcation diagrams of (1.1) with 1 < p � 2, fλ(u) = λg(u) − h(u) and g,h satisfying (H1)–(H4); (a) λ̂ = ∞. (b) 0 < λ̂ < ∞.

It is easy to check that functions g(u) = kup−1 +uq and h(u) = ur with r > q > p −1 and k � 0 satisfy hypotheses (H1)–(H5)
with p∗ = (r + q)/2 > p − 1. In particular, when k = 0, g(u) = uq and h(u) = ur, we obtain that

0 < γλ =
[

q(q − p + 1)

r(r − p + 1)
λ

]1/(r−q)

< βλ = λ1/(r−q).

See Corollary 2.2 for 1 < p � 2 and Corollary 2.4 for p > 2 and their proofs given below.
Takeuchi [15,16] and Takeuchi and Yamada [17] studied existence and multiplicity of positive solutions of a degenerate

p-Laplacian elliptic problem with logistic reaction{
�pu + λ

(
uq − ur) = 0 in Ω

(
Ω ⊂ R

N , N � 1
)
,

u = 0 on ∂Ω,
(1.7)

where p > 2 and r > q > p − 1. When N � 2 and Ω is a connected, bounded open subset of R
N with C2,α boundary ∂Ω

and α ∈ (0,1), under the restriction p > 2, Takeuchi [15,16] proved that there exists a number λ∗ > 0 such that (1.7) has at
least two positive weak solutions for λ > λ∗ , at least one positive weak solution for λ = λ∗, and no positive weak solution
for 0 < λ < λ∗ . (Note that the existence of solutions uλ of (1.7) with flat core Oλ = Oλ(uλ) ≡ {x ∈ Ω | uλ(x) = 1} �= ∅ was
also considered in [15,16]. Also note that the case p = 2, r = 3 > 2 = q has been previously studied in Rabinowitz [13].)
Later Dong and Chen [7] proved the same multiplicity result for general p > 1 and more general nonlinearity. In particular,
in the next theorem, when N = 1 and Ω = (−1,1), Takeuchi and Yamada [17, Lemma 3.1 and Fig. 2(iii)] obtained exact
multiplicity of positive solutions u of (1.7) satisfying ‖u‖∞ < 1.

Theorem 1.1. Consider (1.7) where p > 2 and r > q > p − 1. When N = 1 and Ω = (−1,1), there exist two positive numbers λ∗ < λ̃

such that (1.7) has exactly two positive solutions u satisfying ‖u‖∞ < 1 for λ∗ < λ < λ̃, exactly one positive solution u satisfying
‖u‖∞ < 1 for λ = λ∗ and λ � λ̃, and no positive solution u satisfying ‖u‖∞ < 1 for 0 < λ < λ∗ .

It is interesting to note that Díaz and Hernández [5] studied the exact multiplicity of positive solutions of the p-Laplacian
Dirichlet problem{(

ϕp
(
u′(x)

))′ + λuq(x) − σur(x) = 0, −1 < x < 1,

u(−1) = u(1) = 0,
(1.8)

where p > 1, 0 < r < q < p − 1, σ is a positive constant, and λ > 0 is a bifurcation parameter. Define

λ̄ = σ (p−1−q)/(p−1−r)

{(
p − 1

p

)1/p
(q/r)1/(q−r)∫

0

du

[−F (u)]1/p

}(p−1)(q−r)/(p−1−r)

,

where F (u) = ∫ u
0 f (t)dt and f (u) = uq − ur . They [5, Theorem 1] proved that there exists a positive number λ∗ < λ̄ such

that (1.8) has exactly two positive solutions for λ∗ < λ � λ̄, exactly one positive solution for λ = λ∗ and λ > λ̄, and no
positive solution for 0 < λ < λ∗ . The results were extended very recently by Díaz, Hernández and Mancebo [6] from p − 1 >

q > r > 0 to p − 1 > q > r > −1; see [6, Theorems 2–4] for details.

2. Main results

The main results in this paper are Theorem 2.1 and Corollary 2.2 for 1 < p � 2 and Theorem 2.3 and Corollary 2.4 for
p > 2. In Theorems 2.1 and 2.3, we give a classification of totally six different bifurcation diagrams of positive solutions uλ

for p-Laplacian problem (1.1) satisfying ‖uλ‖∞ < βλ under hypotheses (H1)–(H5). Figs. 1(a)–(b) represent two different
bifurcation diagrams for 1 < p � 2 and Figs. 3(a)–(d) (drawn below) represent another four different bifurcation diagrams
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Fig. 2. Numerical simulations of Tλ(α) for α ∈ (0, βλ): p = 2, fλ(u) = λu3 − u4, λ = 2,2.3,2.636,3,3.5,4. Note that λ∗ ≈ 2.636, ‖uλ∗ ‖ ≈ 1.957, and
limα→0+ Tλ(α) = ∞ = limα→β−

λ
Tλ(α).

for p > 2. We prove that, on the (λ,‖u‖∞)-plane, each bifurcation diagram consists of exactly one curve with exactly one
turning point where the curve turns to the right. Hence we are able to determine the exact multiplicity of positive solutions
by the values of λ∗, λ̂, and λ̃, see Theorems 2.1 and 2.3 and Figs. 1 and 3.

We first define

λ̂ =
(

p − 1

mg
0

)(
π

p
csc

π

p

)p

∈ (0,∞] for 0 � mg
0 < ∞. (2.1)

Theorem 2.1. (See Fig. 1.) Let 1 < p � 2. Consider (1.1) where fλ(u) = λg(u) − h(u), g,h ∈ C[0,∞) ∩ C2(0,∞) satisfy (H1)–(H4).
Consider positive solutions uλ for (1.1) satisfying ‖uλ‖∞ < βλ . Then there exists a positive number λ∗ < λ̂ (� ∞) such that (1.1) has
exactly two positive solutions uλ , vλ with uλ < vλ for λ∗ < λ < λ̂, exactly one positive solution vλ for λ = λ∗ and λ � λ̂, and no
positive solution for 0 < λ < λ∗. Moreover, if we denote uλ∗ = vλ∗ when λ = λ∗, then:

(i) For λ∗ � λ1 < λ2 < λ̂, ‖uλ2‖∞ < ‖uλ1‖∞.

(ii) For λ∗ � λ1 < λ2 < ∞, ‖vλ1‖∞ < ‖vλ2‖∞.

(iii) lim
λ→λ̂− ‖uλ‖∞ = 0 and limλ→∞ ‖vλ‖∞ = ∞.

In the next Corollary 2.2 to Theorem 2.1, we give examples of polynomial nonlinearities for fλ(u) = λg(u) − h(u) =
λ(kup−1 + uq) − ur satisfying r > q > p − 1 and k � 0. We give a classification of totally two bifurcation diagrams. We also
show evolution phenomena of two different bifurcation diagrams as evolution parameter k varies from 0 to ∞.

Corollary 2.2. Let 1 < p � 2.

(i) (See Fig. 1(a) with λ̂ = ∞.) Let g(u) = uq and h(u) = ur with r > q > p − 1. Then g,h ∈ C[0,∞) ∩ C2(0,∞) satisfy (H1)–(H4)
with λ̂ = ∞.

(ii) (See Fig. 1(b) with 0 < λ̂ < ∞.) Let g(u) = kup−1 + uq and h(u) = ur with r > q > p − 1 and k > 0. Then g,h ∈ C[0,∞) ∩
C2(0,∞) satisfy (H1)–(H4) with λ̂ = ((p − 1)/k)((π/p) csc(π/p))p ∈ (0,∞).

Remark 1. For Corollary 2.2(i), in particular, let g(u) = uq and h(u) = ur with r = 4 > 3 = q > p = 2, then numerical
simulations as given in Fig. 2 show that λ∗ ≈ 2.636 and ‖uλ∗‖ ≈ 1.957.

Theorem 2.3. Let p > 2. Consider (1.1) where fλ(u) = λg(u)−h(u), g,h ∈ C[0,∞)∩ C2(0,∞) satisfy (H1)–(H5). Consider positive
solutions uλ for (1.1) satisfying ‖uλ‖∞ < βλ . Then there exist three positive numbers λ∗ < λ̃ and βλ̃ satisfying λ∗ < λ̂ (� ∞) and

f λ̃(βλ̃) = 0 and lim
α→β−

λ̃

T λ̃(α) = 1

(where Tλ(α) is defined in (3.14) below), such that:
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Fig. 3. Classified four bifurcation diagrams of (1.1) with p > 2, fλ(u) = λg(u) − h(u) and g,h satisfying (H1)–(H5); (a) 0 < λ̃ < λ̂ = ∞. (b) 0 < λ̃ < λ̂ < ∞.
(c) 0 < λ̂ = λ̃ < ∞. (d) 0 < λ̂ < λ̃ < ∞. The point (λ̃, βλ̃) is defined by f λ̃(βλ̃) = 0 and it satisfies limα→β−

λ̃

T λ̃(α) = 1.

(i) (See Figs. 3(a)–(b).) If λ̃ < λ̂ (� ∞), then (1.1) has exactly two positive solutions uλ , vλ with uλ < vλ for λ∗ < λ < λ̃, exactly one
positive solution uλ for λ = λ∗ and λ̃ � λ < λ̂, and no positive solution for 0 < λ < λ∗ and for λ � λ̂ (if λ̂ < ∞).

(ii) (See Figs. 3(c)–(d).) If λ̂ � λ̃, then (1.1) has exactly two positive solutions uλ , vλ with uλ < vλ for λ∗ < λ < λ̂, exactly one positive
solution vλ for λ = λ∗ and for λ̂ � λ < λ̃ (if λ̃ > λ̂), and no positive solution for 0 < λ < λ∗ and λ � λ̃.

Moreover, if we denote uλ∗ = vλ∗ when λ = λ∗, then:

(iii) For λ∗ � λ1 < λ2 < λ̂, ‖uλ2‖∞ < ‖uλ1‖∞ < βλ̃.

(iv) For λ∗ � λ1 < λ2 < λ̃, ‖vλ1‖∞ < ‖vλ2‖∞ < βλ̃.

(v) lim
λ→λ̂− ‖uλ‖∞ = 0 and limλ→λ̃− ‖vλ‖∞ = βλ̃.

We give next remark to Theorem 2.3.

Remark 2. (See Fig. 3 and cf. Fig. 1.) Let p > 2. Consider (1.1) where fλ(u) = λg(u) − h(u), g,h ∈ C[0,∞) ∩ C2(0,∞) satisfy
(H1)–(H5). Then it can be proved that:

(i) for each λ � λ̃, there exists a positive solution vλ of (1.1) with flat core Oλ = Oλ(vλ) ≡ {x ∈ (−1,1) | vλ(x) = βλ} �= ∅,
(ii) on the (λ,‖u‖∞)-plane, for λ � λ̃, the solution branch of positive solutions vλ with flat core Oλ �= ∅ starts at (λ̃, βλ̃), it

is a monotone curve for λ � λ̃, and ‖vλ‖∞ → ∞ as λ → ∞.

The above parts (i) and (ii) can be proved since βλ is a strictly increasing and continuous function of λ on (0,∞), and
by applying (1.5) and Lemma 3.4 stated below; we omit the details of the proofs due to space limitations.

In the next Corollary 2.4 to Theorem 2.3, we give examples of polynomial nonlinearities for fλ(u) = λg(u) − h(u) =
λ(kup−1 + uq) − ur satisfying r > q > p − 1 and k � 0. We give a classification of totally four bifurcation diagrams. We also
show complete evolution phenomena of four different bifurcation diagrams as evolution parameter k varies from 0 to ∞.

Corollary 2.4. Let p > 2.

(i) (See Fig. 3(a) with 0 < λ̃ < λ̂ = ∞.) Let g(u) = uq and h(u) = ur with r > q > p − 1. Then g,h ∈ C[0,∞) ∩ C2(0,∞) satisfy
(H1)–(H5) with λ̂ = ∞.

(ii) Let g(u) = kup−1 + uq and h(u) = ur with r > q > p − 1 and k > 0. Then g,h ∈ C[0,∞) ∩ C2(0,∞) satisfy (H1)–(H5) with
λ̂ = ((p − 1)/k)((π/p) csc(π/p))p ∈ (0,∞). More precisely, there exists a unique positive number k∗ = k∗(p,q, r) such that:
(a) (See Fig. 3(b) with 0 < λ̃ < λ̂ < ∞.) If 0 < k < k∗ , then 0 < λ̃(k) < λ̂(k) < ∞.
(b) (See Fig. 3(c) with 0 < λ̂ = λ̃ < ∞.) If k = k∗ , then 0 < λ̂(k) = λ̃(k) < ∞.
(c) (See Fig. 3(d) with 0 < λ̂ < λ̃ < ∞.) If k > k∗ , then 0 < λ̂(k) < λ̃(k) < ∞.
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Fig. 4. (a) Numerical simulations of Tλ(α) for α ∈ (0, βλ): p = 3, fλ(u) = λu3 − u4, λ = 7.7,7.8,7.9,8.0,8.1,8.2,8.3,8.4,8.5,8.6,8.7. λ̃ ≈ 8.2, βλ̃ ≈ 8.2.

Note that, for 0 < λ1 < λ2, Tλ1 (α) > Tλ2 (α) for α ∈ (0, βλ1 ), and limα→0+ Tλ(α) = ∞ and limα→β−
λ

Tλ(α) ∈ (0,∞). (b) A magnified strip region of numer-

ical simulations of Tλ(α) for α ∈ (0, βλ) with the range in [0.95,1.05].

Remark 3. For Corollary 2.4(i), in particular, let g(u) = uq and h(u) = ur with r = 4 > 3 = q = p, then numerical sim-
ulations as given in Fig. 4 show that λ̃ ≈ 8.2, βλ̃ ≈ 8.2 and the value limα→β−

λ
Tλ(α) is strictly decreasing in λ =

7.7,7.8,7.9,8.0,8.1,8.2,8.3,8.4,8.5,8.6,8.7; cf. Fig. 2 and Lemma 3.4 stated below.

Remark 4. In Corollary 2.2(ii) and Corollary 2.4(ii), by (2.1), it is easy to see that λ̂ = λ̂(k) = ((p − 1)/k)((π/p) csc(π/p))p is
a strictly decreasing and continuous function of k on (0,∞) and it satisfies limk→0+ λ̂(k) = ∞ and limk→∞ λ̂(k) = 0.

Remark 5. For Corollary 2.4(ii), in particular, let g(u) = kup−1 + uq and h(u) = ur with r = 4 > 3 = q = p, then numerical
simulations show that k∗ ≈ 0.47. In addition, numerical simulations suggest that λ̃(k) is a strictly decreasing function of k
on (0,∞) and it satisfies limk→0+ λ̃(k) = λ̃(k = 0) ≈ 8.2 and limk→∞ λ̃(k) = 0. Further investigations are needed.

3. Lemmas

To prove Theorems 2.1 and 2.3, we need the following four lemmas. First, we consider the p-Laplacian Dirichlet problem{(
ϕp

(
u′(x)

))′ + μ f (u) = 0, −1 < x < 1,

u(−1) = u(1) = 0,
(3.1)

where p > 1. We assume that f ∈ C[0,∞) ∩ C2(0,∞) and there exists a positive number β̃ such that f satisfies
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f (0) = 0,

f (u) > 0 on (0, β̃),

f (β̃) = 0,

f (u) < 0 on (β̃,∞).

(3.2)

Let F (u) ≡ ∫ u
0 f (t)dt . The time map formula which we apply to study the p-Laplacian problem (3.1) takes the form as

follows:

μ1/p =
(

p − 1

p

)1/p α∫
0

[
F (α) − F (u)

]−1/p
du ≡ T (α) for 0 < α < β̃, (3.3)

see, e.g., [2, Lemmas 2.1 and 2.2] and [10, Lemma 2.4] for the derivation of the time map formula T (α) for (3.1). So positive
solutions u of (3.1) satisfying ‖u‖∞ < β̃ correspond to ‖u‖∞ = α and T (α) = μ1/p . Thus to study the number of positive
solutions of (3.1) is equivalent to study the shape of the time map T (α) on (0, β̃).

The next Lemma 3.1 for 1 < p � 2 and Lemma 3.2 for p > 2 are of independent interest. In particular, Lemma 3.1
extends [19, Theorem] for (3.1) from p = 2 to 1 < p � 2.

Lemma 3.1. Consider (3.1) with 1 < p � 2. Suppose that f ∈ C[0,∞) ∩ C2(0,∞) and there exists a positive number β̃ such that
f satisfies (3.2). Assume that

m̃0 ≡ lim
u→0+

f (u)

up−1
∈ [0,∞) and lim

u→β̃−
f (u)

(β̃ − u)p−1
∈ [0,∞), (3.4)

and there exists a positive number γ̃ < β̃ such that⎧⎪⎨
⎪⎩

(p − 2) f ′(u) − u f ′′(u) < 0 on (0, γ̃ ),

(p − 2) f ′(γ̃ ) − γ̃ f ′′(γ̃ ) = 0,

(p − 2) f ′(u) − u f ′′(u) > 0 on (γ̃ , β̃).

(3.5)

Then

lim
α→0+ T (α) =

(
p − 1

m̃0

)1/p
π

p
csc

π

p
∈ (0,∞], lim

α→β̃−
T (α) = ∞, (3.6)

and T (α) has exactly one critical point, a minimum, on (0, β̃).

Proof. First, we obtain

lim
α→0+ T (α) =

(
p − 1

m̃0

)1/p
π

p
csc

π

p
∈ (0,∞]

by (3.4) and a slight generalization of [9, Theorems 2.9 and 2.10]. In addition, by (3.4), we obtain

lim
u→β̃−

f (u)

(β̃ − u)p−1(ln 1
β̃−u

)p
= 0.

So limα→β̃− T (α) = ∞ by applying [11, Theorem 2.1] and hence (3.6) holds.

Secondly, by (3.3), for α ∈ (0, β̃), we compute that

T ′(α) =
(

p − 1

pp+1

)1/p 1

α

α∫
0

�θ

(�F )(p+1)/p
du (3.7)

and

T ′′(α) =
(

p − 1

pp+1

)1/p 1

α2

α∫
0

− p+1
p (�θ)(� f̃ ) + �F (�θ̃ ′)

(�F )(2p+1)/p
du, (3.8)

where θ(u) = pF (u) − u f (u), �F = F (α) − F (u), �θ = θ(α) − θ(u), � f̃ = α f (α) − u f (u), and �θ̃ ′ = αθ ′(α) − uθ ′(u).
By (3.7) and (3.8), for α ∈ (0, β̃), we obtain that
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T ′′(α) + p

α
T ′(α) =

(
p − 1

pp+1

)1/p 1

α2

α∫
0

�F (φ(α) − φ(u)) + p+1
p (�θ)2

(�F )(2p+1)/p
du

�
(

p − 1

pp+1

)1/p 1

α2

α∫
0

φ(α) − φ(u)

(�F )(p+1)/p
du, (3.9)

where φ(u) = uθ ′(u) − θ(u). Since θ ′′(u) = (p − 2) f ′(u) − u f ′′(u), θ(0) = θ ′(0) = 0, θ(β̃) = pF (β̃) > 0 and by (3.5), there
exist two positive numbers C and D with γ̃ < C < D < β̃ such that⎧⎪⎨

⎪⎩
θ ′(u) = (p − 1) f (u) − u f ′(u) < 0 on (0, C),

θ ′(C) = (p − 1) f (C) − C f ′(C) = 0,

θ ′(u) = (p − 1) f (u) − u f ′(u) > 0 on (C, β̃),

(3.10)

and ⎧⎨
⎩

θ(u) = pF (u) − u f (u) < 0 on (0, D),

θ(D) = pF (D) − D f (D) = 0,

θ(u) = pF (u) − u f (u) > 0 on (D, β̃).

(3.11)

By (3.7), (3.10) and (3.11), we obtain that

T ′(α) < 0 for α ∈ (0, C] and T ′(α) > 0 for α ∈ [D, β̃). (3.12)

Hence T (α) has at least one critical point, a local minimum, on (C, D). We then prove that T (α) has exactly one critical
point, a minimum, on (C, D).

It is easy to compute that φ(C) = −θ(C) > 0 and φ(D) = Dθ ′(D) > 0. In addition, since φ′(u) = uθ ′′(u) = u[(p−2) f ′(u)−
u f ′′(u)], φ(0) = 0 and by (3.5), then φ(C) > φ(u) for u ∈ [0, C) and φ(u) is strictly increasing on [C, D]. So φ(α) > φ(u) for
α ∈ (C, D), u ∈ (0,α). Hence by (3.9),

T ′′(α) + p

α
T ′(α) > 0 for α ∈ (C, D).

Therefore, if α∗ is a critical point of T (α) on (C, D), then T (α∗) must be a minimum. Thus T (α) has exactly one critical
point, a minimum, on (C, D). By above analysis, T (α) has exactly one critical point, a minimum, on (0, β̃).

The proof of Lemma 3.1 is complete. �
Lemma 3.2. Consider (3.1) with p > 2. Suppose that f ∈ C[0,∞) ∩ C2(0,∞) and there exists a positive number β̃ such that f satis-
fies (3.2). Assume that m̃0 = limu→0+ f (u)/up−1 ∈ [0,∞) and

lim
u→β̃−

f (u)

(β̃ − u)p−1(ln 1
β̃−u

)a
∈ (0,∞] (3.13)

for some positive number a > p, and there exists a positive number γ̃ < β̃ such that (3.5) holds. Then

lim
α→0+ T (α) =

(
p − 1

m̃0

)1/p
π

p
csc

π

p
∈ (0,∞], lim

α→β̃−
T (α) ∈ (0,∞),

and T (α) has exactly one critical point, a minimum, on (0, β̃).

Proof. The result that limα→β̃− T (α) ∈ (0,∞) follows by (3.13) and by applying [11, Theorem 2.2]. The rest results of
Lemma 3.2 follow by the same arguments as those in the proof of Lemma 3.1. �
Remark 6. If p > 2, then it is easy to check that the condition −∞ < f ′(β̃) < 0 implies (3.13) by applying L’Hopital’s rule.

Define

Fλ(u) =
u∫

fλ(t)dt,
0
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and

θ fλ (u) = pFλ(u) − u fλ(u), θg(u) = p

u∫
0

g(t)dt − ug(u), θh(u) = p

u∫
0

h(t)dt − uh(u).

Then

θ ′
fλ

(u) = (p − 1) fλ(u) − u f ′
λ(u), θ ′

g(u) = (p − 1)g(u) − ug′(u), θ ′
h(u) = (p − 1)h(u) − uh′(u)

and

θ ′′
fλ

(u) = (p − 2) f ′
λ(u) − u f ′′

λ (u), θ ′′
g (u) = (p − 2)g′(u) − ug′′(u), θ ′′

h (u) = (p − 2)h′(u) − uh′′(u).

Next, we consider (1.1) where fλ(u) = λg(u) − h(u), g,h ∈ C[0,∞) ∩ C2(0,∞) satisfy (H1) and (H2). We define

Tλ(α) =
(

p − 1

p

)1/p α∫
0

[
Fλ(α) − Fλ(u)

]−1/p
du for 0 < α < βλ. (3.14)

In the next lemma we study some properties of the time map Tλ(α).

Lemma 3.3. Let p > 1. Consider (1.1) where fλ(u) = λg(u) − h(u), g,h ∈ C[0,∞) ∩ C2(0,∞) satisfy (H1) and (H2). Then, for each
positive number λ0 and fixed α ∈ (0, βλ0 ), Tλ(α) is a continuous function of λ � λ0 and limλ→∞ Tλ(α) = 0.

The proof of Lemma 3.3 is easy but tedious; we omit it. Cf. [20, Lemma 3.2].
The main difference between the bifurcation diagrams in Theorem 2.1 (1 < p � 2) and Theorem 2.3 (p > 2) is due to the

next key lemma by applying hypothesis (H5). If 1 < p � 2, then limα→β−
λ

Tλ(α) = ∞ for any λ ∈ (0,∞); see (4.2) stated
below. But if p > 2, then limα→β−

λ
Tλ(α) exists and is positive for any λ ∈ (0,∞); see (4.5) stated below. In the next lemma

we study some properties of limα→β−
λ

Tλ(α) for (1.1) and p > 2.

Lemma 3.4. Let p > 2. Consider (1.1) where fλ(u) = λg(u) − h(u), g,h ∈ C[0,∞) ∩ C2(0,∞) satisfy (H1)–(H5). Then
limα→β−

λ
Tλ(α) is a strictly decreasing and continuous function of λ on (0,∞) and limλ→∞ limα→β−

λ
Tλ(α) = 0.

Proof. First, we prove that limα→β−
λ

Tλ(α) is a strictly decreasing function of λ on (0,∞). For λ ∈ (0,∞), by (3.14), we
obtain that

lim
α→β−

λ

Tλ(α) = lim
α→β−

λ

(
p − 1

p

)1/p α∫
0

[ α∫
u

fλ(t)dt

]−1/p

du

= lim
α→β−

λ

(
p − 1

p

)1/p α∫
0

[ α∫
u

h(βλ)

g(βλ)
g(t) − h(t)dt

]−1/p

du

(
since fλ(u) = λg(u) − h(u) and by (1.4)

)

= lim
α→β−

λ

(
p − 1

p

)1/p

α(p−1)/p

1∫
0

[ 1∫
v

h(βλ)

g(βλ)
g(sα) − h(sα)ds

]−1/p

dv

(let u = αv and t = αs)

=
(

p − 1

p

)1/p

β
(p−1−p∗)/p
λ lim

α→β−
λ

1∫
0

[ 1∫
v

sp∗
(

h(βλ)g(sα)

g(βλ)(sα)p∗ − h(sα)

(sα)p∗

)
ds

]−1/p

dv

=
(

p − 1

p

)1/p

β
(p−1−p∗)/p
λ

1∫
0

[ 1∫
v

lim
α→β−

λ

sp∗
(

h(βλ)g(sα)

g(βλ)(sα)p∗ − h(sα)

(sα)p∗

)
ds

]−1/p

dv

(
by (H5) and the Monotone Convergence Theorem [21, p. 75]

)

=
(

p − 1

p

)1/p 1∫ [ 1∫
h(sβλ)

β
p−1
λ

(
h(βλ)g(sβλ)

g(βλ)h(sβλ)
− 1

)
ds

]−1/p

dv. (3.15)
0 v
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By (H5) and since βλ is strictly increasing in λ ∈ (0,∞), we obtain that limα→β−
λ

Tλ(α) is a strictly decreasing function of λ

on (0,∞).

Secondly, we prove that limα→β−
λ

Tλ(α) is a continuous function of λ on (0,∞). For any number λ0 ∈ (0,∞), by (3.15),
we obtain that

lim
λ→λ0

lim
α→β−

λ

Tλ(α) = lim
λ→λ0

(
p − 1

p

)1/p 1∫
0

[ 1∫
v

h(sβλ)

β
p−1
λ

(
h(βλ)g(sβλ)

g(βλ)h(sβλ)
− 1

)
ds

]−1/p

dv

=
(

p − 1

p

)1/p 1∫
0

[ 1∫
v

lim
λ→λ0

h(sβλ)

β
p−1
λ

(
h(βλ)g(sβλ)

g(βλ)h(sβλ)
− 1

)
ds

]−1/p

dv

(
by (H5) and the Monotone Convergence Theorem [21, p. 75]

)

=
(

p − 1

p

)1/p 1∫
0

[ 1∫
v

h(sβλ0)

β
p−1
λ0

(
h(βλ0)g(sβλ0)

g(βλ0)h(sβλ0)
− 1

)
ds

]−1/p

dv

= lim
α→β−

λ0

Tλ0(α).

So we obtain that limα→β−
λ

Tλ(α) is a continuous function of λ on (0,∞).

Finally, we prove limλ→∞ limα→β−
λ

Tλ(α) = 0. By (3.15), we obtain that

lim
λ→∞ lim

α→β−
λ

Tλ(α) = lim
λ→∞

(
p − 1

p

)1/p 1∫
0

[ 1∫
v

h(sβλ)

β
p−1
λ

(
h(βλ)g(sβλ)

g(βλ)h(sβλ)
− 1

)
ds

]−1/p

dv

=
(

p − 1

p

)1/p 1∫
0

[ 1∫
v

lim
λ→∞

h(sβλ)

β
p−1
λ

(
h(βλ)g(sβλ)

g(βλ)h(sβλ)
− 1

)
ds

]−1/p

dv

by (H5) and the Monotone Convergence Theorem [21, p. 75].
By (H5), we obtain limu→∞ h(u)/up∗ ∈ (0,∞] and hence

lim
u→∞

h(u)

up−1
= lim

u→∞
h(u)

up∗ up∗−p+1 = ∞.

Thus, for each fixed s ∈ (0,1),

lim
λ→∞

h(sβλ)

β
p−1
λ

(
h(βλ)g(sβλ)

g(βλ)h(sβλ)
− 1

)
= sp−1 lim

u→∞
h(su)

(su)p−1

(
h(u)g(su)

g(u)h(su)
− 1

)
= ∞

by (1.5) and (H5). So limλ→∞ limα→β−
λ

Tλ(α) = 0.

The proof of Lemma 3.4 is complete. �
4. Proofs of main results

For each fixed λ > 0, let uλ(x) be a positive solution of (1.1) with ‖uλ‖∞ = α < βλ. We write

fλ(u) = λg(u) − h(u) = λ

[
g(u) − 1

λ
h(u)

]
,

and recall Fλ(u) = ∫ u
0 fλ(t)dt. Then, by (3.3), it is easy to see that

λ1/p =
(

p − 1

p

)1/p α∫
0

[ α∫
u

g(s) − 1

λ
h(s)ds

]−1/p

du

= λ1/p
(

p − 1

p

)1/p α∫
0

[ α∫
u

λg(s) − h(s)ds

]−1/p

du

= λ1/p
(

p − 1

p

)1/p α∫ [
Fλ(α) − Fλ(u)

]−1/p
du.
0
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This and (3.14) imply that positive solution uλ(x) of (1.1) satisfying ‖uλ‖∞ < βλ corresponds to ‖uλ‖∞ = α and

Tλ(α) =
(

p − 1

p

)1/p α∫
0

[
Fλ(α) − Fλ(u)

]−1/p
du = 1.

We first prove Theorems 2.1 and 2.3, then prove Corollaries 2.2 and 2.4.

Proof of Theorem 2.1. Consider (1.1) with 1 < p � 2. Suppose that fλ(u) = λg(u)− h(u) and g,h satisfy (H1)–(H4). For each
fixed λ > 0, fλ(0) = λg(0) − h(0) = 0. In addition, there exist two positive numbers γλ < βλ such that (1.4) and (1.6) hold.
First, we study the shape and asymptotic behaviors of the time map Tλ(α) on (0, βλ).

For each fixed λ > 0, we obtain that

lim
u→0+

fλ(u)

up−1
= λ lim

u→0+
g(u)

up−1
= λmg

0 ∈ [0,∞)

by (1.2), and

lim
u→β−

λ

fλ(u)

(βλ − u)p−1
= lim

u→β−
λ

fλ(u)

βλ − u
(βλ − u)2−p

= − f ′
λ(βλ) lim

u→β−
λ

(βλ − u)2−p

=
{

0 if 1 < p < 2,

− f ′
λ(βλ) ∈ (0,∞) if p = 2,

since

f ′
λ(βλ) = λg′(βλ) − h′(βλ)

= h(βλ)

g(βλ)
g′(βλ) − h′(βλ)

(
since λg(βλ) − h(βλ) = 0 by (1.4)

)
= −1

g(βλ)

[
g(βλ)h

′(βλ) − g′(βλ)h(βλ)
]
< 0 (4.1)

by (H1) and (H2). Thus for each fixed λ > 0, taking f = fλ, β̃ = βλ , γ̃ = γλ , we obtain that f = fλ(u) satisfies all assump-
tions of Lemma 3.1. So by Lemma 3.1, we obtain that:

(1) For each fixed λ > 0, Tλ(α) has exactly one critical point, a minimum, on (0, βλ). In addition, the number

lim
α→0+ Tλ(α) =

(
p − 1

λmg
0

)1/p
π

p
csc

π

p

{= ∞ if mg
0 = 0,

< ∞ if 0 < mg
0 < ∞

(note that limα→0+ T
λ̂
(α) = 1 by (2.1)) and it is strictly decreasing in λ > 0 if 0 < mg

0 < ∞. Also

lim
α→β−

λ

Tλ(α) = ∞ (4.2)

for 1 < p � 2.

Secondly, for Tλ(α) with λ > 0, we have the following properties:
(2) For 0 < λ1 < λ2, we obtain (0 <) βλ1 < βλ2 . (Note that limλ→0+ βλ = 0 and limλ→∞ βλ = ∞.) In addition, Tλ1 (α) >

Tλ2 (α) for α ∈ (0, βλ1 ) by (3.14) and modifying a comparison theorem of [9, Theorem 2.3] since fλ1 (u) = λ1 g(u) − h(u) <

λ2 g(u) − h(u) = fλ2 (u) for u ∈ (0, βλ1 ).

(3) For each positive number λ0 and fixed α ∈ (0, βλ0 ), Tλ(α) is a continuous function of λ � λ0 and limλ→∞ Tλ(α) = 0
by Lemma 3.3.

Define

m(λ) = min
α∈(0,βλ)

Tλ(α).

(Note that m(λ) exists for any λ > 0 by property (1).) By property (2), m(λ) is strictly decreasing in λ > 0.

We then prove that there exist two positive numbers λ3 < λ4 such that m(λ4) < 1 < m(λ3) as follows.
We take positive number λ5 = 1. It is easy to prove that the number supu∈(0,βλ5 ) g(u)/up−1 ∈ (0,∞) by (H1). Let

λ3 ≡ min

{
λ5, (p − 1)

(
π

p
csc

π

p

)p(
sup

u∈(0,βλ )

g(u)

up−1

)−1}
.

5
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Then for 0 < u < βλ3 (� βλ5 ),

fλ3(u) = λ3 g(u) − h(u)

< λ3 g(u)

� λ3

(
sup

u∈(0,βλ5 )

g(u)

up−1

)
up−1

� (p − 1)

(
π

p
csc

π

p

)p(
sup

u∈(0,βλ5 )

g(u)

up−1

)−1(
sup

u∈(0,βλ5 )

g(u)

up−1

)
up−1

= (p − 1)

(
π

p
csc

π

p

)p

up−1.

So for 0 < α < βλ3 , by modifying a comparison theorem of [9, Theorem 2.3], we obtain that

Tλ3(α) >

(
p − 1

p

)1/p α∫
0

[ α∫
u

(p − 1)

(
π

p
csc

π

p

)p

t p−1 dt

]−1/p

du

=
(

π

p
csc

π

p

)−1 α∫
0

(
αp − up)−1/p

du

=
(

π

p
csc

π

p

)−1 1∫
0

(
1 − w p)−1/p

dw (let u = αw)

=
(

π

p
csc

π

p

)−1(
π

p
csc

π

p

)
= 1.

Thus m(λ3) = minα∈(0,βλ3 ) Tλ3 (α) > 1. On the other hand, property (3) simply implies that there exists a number λ4 > λ3
such that m(λ4) < 1.

Next, we prove that m(λ) is continuous on [λ3, λ4]. For each fixed number λ6 ∈ [λ3, λ4], we can choose positive numbers
C̃ and D̃ satisfying C̃ < Cλ6 < Dλ6 < D̃ < βλ6 , where Cλ6 and Dλ6 are defined in (3.10) and (3.11) with f = fλ6 and β̃ = βλ6 ,

respectively. So

θ fλ6
(D̃) = pFλ6(D̃) − D̃ fλ6(D̃) > 0

and

θ ′
fλ6

(C̃) = (p − 1) fλ6(C̃) − C̃ f ′
λ6

(C̃) < 0.

By the continuity of functions θ fλ , θ ′
fλ

and βλ in λ > 0, there exists a number δ > 0 such that βλ > D̃,

θ fλ (D̃) = pFλ(D̃) − D̃ fλ(D̃) > 0

and

θ ′
fλ

(C̃) = (p − 1) fλ(C̃) − C̃ f ′
λ(C̃) < 0

for λ ∈ [λ6 − δ,λ6 + δ]. This implies that C̃ < Cλ < Dλ < D̃ < βλ for λ ∈ [λ6 − δ,λ6 + δ], where Cλ and Dλ are defined
in (3.10) and (3.11) with f = fλ and β̃ = βλ, respectively. Thus

m(λ) = min
α∈(0,βλ)

Tλ(α) = min
α∈[C̃,D̃]

Tλ(α) for λ ∈ [λ6 − δ,λ6 + δ] (4.3)

by (3.12). By property (2) and the Dini Theorem [14, p. 195], it is easy to see that

lim
λ→λ6

(
min

α∈[C̃,D̃]
Tλ(α)

)
= min

α∈[C̃,D̃]
Tλ6(α). (4.4)

By (4.3) and (4.4), limλ→λ6 m(λ) = m(λ6). Hence m(λ) is continuous on [λ3, λ4].



200 S.-H. Wang, T.-S. Yeh / J. Math. Anal. Appl. 369 (2010) 188–204
By above and the Intermediate Value Theorem, there exists a positive number λ∗ ∈ (λ3, λ4) such that m(λ∗) = 1. Since
m(λ) is strictly decreasing in λ > 0, λ∗ is unique. So we obtain that:

(4) There exists a unique positive number λ∗ < λ̂ (� ∞) such that

m
(
λ∗) = min

α∈(0,βλ∗ )
Tλ∗(α) = 1

by property (1).
So by above, we obtain immediately the exact multiplicity result and ordering results of the solutions in parts (i)–(ii).

(Note that the ordering result uλ < vλ can be proved easily.) The proof of part (iii) is easy but tedious; we omit it.
The proof of Theorem 2.1 is complete. �

Proof of Theorem 2.3. Consider (1.1) with p > 2. Suppose that fλ(u) = λg(u) − h(u) and g,h satisfy (H1)–(H5). For each
fixed λ > 0, fλ(0) = λg(0) − h(0) = 0. In addition, there exist two positive numbers γλ < βλ such that (1.4) and (1.6)
hold. By (4.1) and Remark 6, we obtain that f = fλ(u) = λg(u) − h(u) satisfies (3.13) with β̃ = βλ . In addition, by similar
arguments used in the proof of Theorem 2.1, we obtain that f = fλ(u) satisfies all assumptions of Lemma 3.2 with β̃ = βλ

and γ̃ = γλ . So by Lemma 3.2 and by the same arguments used to prove Theorem 2.1, we obtain that:
(1) For each fixed λ > 0, Tλ(α) has exactly one critical point, a minimum, on (0, βλ). In addition, the number

lim
α→0+ Tλ(α) =

(
p − 1

λmg
0

)1/p
π

p
csc

π

p

{= ∞ if mg
0 = 0,

< ∞ if 0 < mg
0 < ∞

(note that limα→0+ T
λ̂
(α) = 1) and it is strictly decreasing in λ > 0 if 0 < mg

0 < ∞. Also

lim
α→β−

λ

Tλ(α) ∈ (0,∞) (4.5)

for p > 2.
(2) For 0 < λ1 < λ2, we obtain (0 <) βλ1 < βλ2 (note that limλ→0+ βλ = 0 and limλ→∞ βλ = ∞) and Tλ1 (α) > Tλ2 (α) for

α ∈ (0, βλ1 ).
(3) For each positive number λ0 and fixed α ∈ (0, βλ0 ), Tλ(α) is a continuous function of λ � λ0 and limλ→∞ Tλ(α) = 0.
(4) There exists a unique positive number λ∗ < λ̂ (� ∞) such that

m
(
λ∗) = min

α∈(0,βλ∗ )
Tλ∗(α) = 1.

Also, we obtain that:
(5) limα→β−

λ
Tλ(α) is a strictly decreasing and continuous function of λ on (0,∞) and limλ→∞ limα→β−

λ
Tλ(α) = 0 by

Lemma 3.4.
By properties (1) and (4), we obtain limα→β−

λ∗ Tλ∗ (α) ∈ (1,∞). So by limα→β−
λ∗ Tλ∗ (α) ∈ (1,∞), property (5) and the

Intermediate Value Theorem, we obtain that:
(6) There exists a unique positive number λ̃ > λ∗ such that limα→β−

λ̃

T λ̃(α) = 1.

So by above, we obtain immediately the exact multiplicity result in parts (i)–(ii) and ordering results of the solutions in
parts (iii)–(iv); see, e.g., Figs. 5 and 6. (Note that the ordering result uλ < vλ can be proved easily.) The proof of part (v) is
easy but tedious; we omit it.

The proof of Theorem 2.3 is complete. �
Proof of Corollary 2.2. For part (i) where g(u) = uq and h(u) = ur with 1 < p � 2 and r > q > p − 1, it is easy to see that
g,h ∈ C[0,∞) ∩ C2(0,∞) satisfy (H1) with mg

0 = 0, and hence λ̂ = ∞. We then compute that h(u)/g(u) = ur−q which is
positive and strictly increasing on (0,∞) and satisfies

lim
u→0+

h(u)

g(u)
= 0, lim

u→∞
h(u)

g(u)
= ∞.

Thus g,h satisfy (H2). It is clear that (p − 2)g′(u) − ug′′(u) = (p − 1 − q)quq−1 < 0 on (0,∞) and (p − 2)h′(u) − uh′′(u) =
(p − 1 − r)rur−1 < 0 on (0,∞). Thus g,h satisfy (H3). Finally, we compute that

(p − 2)h′(u) − uh′′(u)

(p − 2)g′(u) − ug′′(u)
= (r − p + 1)r

(q − p + 1)q
ur−q

which is positive and strictly increasing on (0,∞) and satisfies

lim
u→0+

(p − 2)h′(u) − uh′′(u)

(p − 2)g′(u) − ug′′(u)
= 0, lim

u→∞
(p − 2)h′(u) − uh′′(u)

(p − 2)g′(u) − ug′′(u)
= ∞.

So g,h satisfy (H4). We conclude that g,h satisfy (H1)–(H4). So part (i) follows.
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Fig. 5. (a) Graphs of Tλ(α) for α ∈ (0, βλ) with varying λ > 0 in the case limα→0+ T λ̃(α) = ∞. (b) The corresponding bifurcation diagram of (1.1) with
p > 2.

Fig. 6. (a) Graphs of Tλ(α) for α ∈ (0, βλ) with varying λ > 0 in the case 0 < limα→0+ T λ̃(α) < 1. (b) The corresponding bifurcation diagram of (1.1) with
p > 2.

For part (ii) where g(u) = kup−1 + uq and h(u) = ur with 1 < p � 2, r > q > p − 1 and k > 0, it is easy to see that
g,h ∈ C[0,∞)∩ C2(0,∞) satisfy (H1) with mg

0 = k, and hence λ̂ = ((p −1)/k)((π/p) csc(π/p))p ∈ (0,∞). We then compute
that h(u)/g(u) = ur−q/(kup−1−q + 1) which is positive and strictly increasing on (0,∞) and satisfies

lim
u→0+

h(u)

g(u)
= 0, lim

u→∞
h(u)

g(u)
= ∞.

Thus g,h satisfy (H2). It is clear that (p − 2)g′(u) − ug′′(u) = (p − 1 − q)quq−1 < 0 on (0,∞) and (p − 2)h′(u) − uh′′(u) =
(p − 1 − r)rur−1 < 0 on (0,∞). Thus g,h satisfy (H3). Finally, we compute that

(p − 2)h′(u) − uh′′(u)

(p − 2)g′(u) − ug′′(u)
= (r − p + 1)r

(q − p + 1)q
ur−q

which is positive and strictly increasing on (0,∞) and satisfies

lim
u→0+

(p − 2)h′(u) − uh′′(u)

(p − 2)g′(u) − ug′′(u)
= 0, lim

u→∞
(p − 2)h′(u) − uh′′(u)

(p − 2)g′(u) − ug′′(u)
= ∞.

So g,h satisfy (H4). We conclude that g,h satisfy (H1)–(H4). So part (ii) follows.
The proof of Corollary 2.2 is complete. �

Proof of Corollary 2.4. For part (i) where g(u) = uq and h(u) = ur with p > 2 and r > q > p − 1, it was proved that g,h ∈
C[0,∞) ∩ C2(0,∞) satisfy (H1)–(H4) with mg

0 = 0, and hence λ̂ = ∞ in the proof of Corollary 2.2(i). So, to complete the
proof of part (i), it suffices to prove that g,h satisfy (H5). Taking p∗ = (r + q)/2 ∈ (q, r), we compute that g(u)/up∗ = uq−p∗

which is strictly decreasing on (0,∞) and h(u)/up∗ = ur−p∗
which is strictly increasing on (0,∞). In addition, for each fixed

s ∈ (0,1), we compute that h(u)g(su)/(g(u)h(su)) = sq−r ∈ (1,∞) which is a positive constant function of u on (0,∞) and
hence (1.3) holds. Also,
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h(su)

up−1

[
h(u)g(su)

g(u)h(su)
− 1

]
= (

sq − sr)ur−p+1

is a strictly increasing function of u on (0,∞). So g,h satisfy (H5). We conclude that g,h satisfy (H1)–(H5). So part (i)
follows.

For part (ii) where g(u) = kup−1 + uq and h(u) = ur with p > 2, r > q > p − 1 and k > 0, it was proved that g,h ∈
C[0,∞) ∩ C2(0,∞) satisfy (H1)–(H4) with mg

0 = k, and hence λ̂ = ((p − 1)/k)((π/p) csc(π/p))p ∈ (0,∞) in the proof of
Corollary 2.2(ii). We then prove that g,h satisfy (H5). Taking p∗ = (r +q)/2 ∈ (q, r), we compute that g(u)/up∗ = kup−1−p∗ +
uq−p∗

which is strictly decreasing on (0,∞) and h(u)/up∗ = ur−p∗
which is strictly increasing on (0,∞). In addition, for

each fixed s ∈ (0,1), we compute and see that

h(su)

up−1

[
h(u)g(su)

g(u)h(su)
− 1

]
= k(sp−1 − sr)ur−q + (sq − sr)ur−p+1

1 + kup−1−q
(4.6)

is a strictly increasing function of u on (0,∞), and

lim
u→∞

h(u)g(su)

g(u)h(su)
= lim

u→∞
ksp−1up−1 + squq

sr(kup−1 + uq)
= sq−r ∈ (1,∞).

So g,h satisfy (H5). We conclude that g,h satisfy (H1)–(H5).
Finally, we prove that there exists a unique positive number k∗ = k∗(p,q, r) such that:

(a) If 0 < k < k∗ , then 0 < λ̃(k) < λ̂(k) < ∞.
(b) If k = k∗ , then 0 < λ̂(k) = λ̃(k) < ∞.
(c) If k > k∗ , then 0 < λ̂(k) < λ̃(k) < ∞.

For each fixed k > 0, we denote that fλ = fλ,k, βλ = βλ,k , Tλ = Tλ,k, λ̂ = λ̂(k), and λ̃ = λ̃(k). By Remark 4, we obtain
that

λ̂(k) =
(

p − 1

k

)(
π

p
csc

π

p

)p

.

We define C p = (p − 1)( π
p csc π

p )p and we obtain that

f
λ̂(k),k(u) = C pup−1 + C p

k
uq − ur

for u ∈ (0,∞). Thus, for each fixed u ∈ (0,∞), f
λ̂(k),k(u) is strictly decreasing in k ∈ (0,∞). So by (1.4), β

λ̂(k),k is a strictly
decreasing function of k on (0,∞). In addition,

lim
k→0+ β

λ̂(k),k = ∞ and lim
k→∞

β
λ̂(k),k = (C p)1/(r−p+1).

For each fixed s ∈ (0,1), by (4.6), we obtain that

h(sβ
λ̂(k),k)

β
p−1
λ̂(k),k

[h(β
λ̂(k),k)g(sβ

λ̂(k),k)

g(β
λ̂(k),k)h(sβ

λ̂(k),k)
− 1

]
=

k(sp−1 − sr)β
r−q

λ̂(k),k
+ (sq − sr)β

r−p+1
λ̂(k),k

1 + kβ
p−1−q

λ̂(k),k

=
k(sp−1 − sr)βr

λ̂(k),k
+ (sq − sr)β

r+q−p+1
λ̂(k),k

kβ
p−1
λ̂(k),k

+ β
q

λ̂(k),k

=
k(sp−1 − sr)βr

λ̂(k),k
+ (sq − sr)β

r+q−p+1
λ̂(k),k

k
C p

βr
λ̂(k),k

(
by (1.4)

)

= C p

[(
sp−1 − sr) + (sq − sr)

k
β

q−p+1
λ̂(k),k

]

is a strictly decreasing function of k on (0,∞). So by (3.15), limα→β−
λ̂(k),k

T
λ̂(k),k(α) is a strictly increasing function of k

on (0,∞). In addition, for any number k0 ∈ (0,∞), by (3.15), we obtain that

lim
k→k0

lim
α→β−

λ̂(k),k

T
λ̂(k),k(α) = lim

k→k0

(
p − 1

p

)1/p 1∫ [ 1∫ h(sβ
λ̂(k),k)

β
p−1
ˆ

(h(β
λ̂(k),k)g(sβ

λ̂(k),k)

g(β
λ̂(k),k)h(sβ

λ̂(k),k)
− 1

)
ds

]−1/p

dv
0 v λ(k),k
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=
(

p − 1

p

)1/p 1∫
0

[ 1∫
v

lim
k→k0

h(sβ
λ̂(k),k)

β
p−1
λ̂(k),k

(h(β
λ̂(k),k)g(sβ

λ̂(k),k)

g(β
λ̂(k),k)h(sβ

λ̂(k),k)
− 1

)
ds

]−1/p

dv

(
by the Monotone Convergence Theorem [21, p. 75]

)

=
(

p − 1

p

)1/p 1∫
0

[ 1∫
v

h(sβ
λ̂(k0),k0

)

β
p−1
λ̂(k0),k0

(h(β
λ̂(k0),k0

)g(sβ
λ̂(k0),k0

)

g(β
λ̂(k0),k0

)h(sβ
λ̂(k0),k0

)
− 1

)
ds

]−1/p

dv

= lim
α→β−

λ̂(k0),k0

T
λ̂(k0),k0

(α).

So limα→β−
λ̂(k),k

T
λ̂(k),k(α) is a continuous function of k on (0,∞). Also, for each fixed s ∈ (0,1), we obtain that

lim
k→0+

h(sβ
λ̂(k),k)

β
p−1
λ̂(k),k

[h(β
λ̂(k),k)g(sβ

λ̂(k),k)

g(β
λ̂(k),k)h(sβ

λ̂(k),k)
− 1

]
= lim

k→0+ C p

[(
sp−1 − sr) + (sq − sr)

k
β

q−p+1
λ̂(k),k

]
= ∞

and

lim
k→∞

h(sβ
λ̂(k),k)

β
p−1
λ̂(k),k

[h(β
λ̂(k),k)g(sβ

λ̂(k),k)

g(β
λ̂(k),k)h(sβ

λ̂(k),k)
− 1

]
= lim

k→∞
C p

[(
sp−1 − sr) + (sq − sr)

k
β

q−p+1
λ̂(k),k

]

= C p
(
sp−1 − sr)

< C p sp−1 = (p − 1)

(
π

p
csc

π

p

)p

sp−1.

So by (3.15), limk→0+ limα→β−
λ̂(k),k

T
λ̂(k),k(α) = 0, and

lim
k→∞

lim
α→β−

λ̂(k),k

T
λ̂(k),k(α) >

(
p − 1

p

)1/p 1∫
0

[ 1∫
v

(p − 1)

(
π

p
csc

π

p

)p

sp−1 ds

]−1/p

dv

=
(

π

p
csc

π

p

)−1 1∫
0

(
1 − v p)−1/p

dv

=
(

π

p
csc

π

p

)−1(
π

p
csc

π

p

)
= 1.

By above results and the Intermediate Value Theorem, we obtain that there exists a unique positive number k∗ = k∗(p,q, r)
such that:

(1) If 0 < k < k∗ , then limα→β−
λ̂(k),k

T
λ̂(k),k(α) < 1.

(2) If k = k∗ , then limα→β−
λ̂(k∗),k∗

T
λ̂(k∗),k∗ (α) = 1.

(3) If k > k∗ , then limα→β−
λ̂(k),k

T
λ̂(k),k(α) > 1.

Since for each fixed k > 0, limα→β−
λ̃(k),k

T λ̃(k),k(α) = 1 and limα→β−
λ,k

Tλ,k(α) is a strictly decreasing function of λ on (0,∞).

Thus for such positive k∗ = k∗(p,q, r), we obtain that properties (a)–(c) hold. So part (ii) follows.
The proof of Corollary 2.4 is complete. �
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